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ABSTRACT
A lot of real-life data are of graph nature. However, it
is not until recently that business begins to exploit data’s
connectedness for business insights. On the other hand,
RDBMSs are a mature technology for data management, but
they are not for graph processing. Take graph traversal, a
common graph operation for example, it heavily relies on a
graph primitive that accesses a given node’s neighborhood.
We need to join tables following foreign keys to access the
nodes in the neighborhood if an RDBMS is used to manage
graph data. Graph exploration is a fundamental building
block of many graph algorithms. But this simple operation
is costly due to a large volume of I/O caused by the massive
amount of table joins. In this paper, we present G-SQL,
our effort toward the integration of a RDBMS and a native
in-memory graph processing engine. G-SQL leverages the
fast graph exploration capability provided by the graph
engine to answer multi-way join queries. Meanwhile, it uses
RDBMSs to provide mature data management functionalities,
such as reliable data storage and additional data access
methods. Specifically, G-SQL is a SQL dialect augmented
with graph exploration functionalities and it dispatches query
tasks to the in-memory graph engine and its underlying
RDMBS. The G-SQL runtime coordinates the two query
processors via a unified cost model to ensure the entire query
is processed efficiently. Experimental results show that our
approach greatly expands capabilities of RDBMs and delivers
exceptional performance for SQL-graph hybrid queries.

1. INTRODUCTION
Relational databases have been widely used in a variety

of industrial applications. Queries with multi-way joins are
prevalent in real workloads. Example 1 illustrates one of such
queries. As discussed in [1], database applications involving
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decision support and complex objects usually have to specify
their desired results in terms of multi-way join queries. An
earlier study on the workload of a real-life accounting system
reveals that there are almost 4% quires contain join opera-
tions [2]. The analysis of TPC-DS benchmark [3] shows that
23.6% (22 out of 93) queries join multiple tables1. A more
recent study [4] shows that real analytics workloads usually
involve queries of graph-lets (a frequent subgraph) and these
queries usually involve 5-10 self-joins on network data.

The execution process of join operations can be considered
as explorations over links in an entity-relationship graph.
For the mainstream relational databases, a single access
to a graph node representing an entity stored in a table
does not disclose information about its neighboring nodes
(entities in other tables) in the graph. These neighbors
have to be retrieved through additional table lookups, which
makes graph exploration intrinsically slow due to poor cache
locality.

Figure 1: A database schema

Example 1. Let us consider a simplified schema of a
real-life enterprise database (Figure 1). The database records
purchase and sales orders placed by employees of all divisions
with different companies. Suppose we want to find divisions
and employees who make purchase from companies in Seattle
and make sales to companies in New York. The corresponding
SQL query is shown in Figure 2.

In general, it is not efficient for a relational database to
perform a multi-way join of six tables to answer the query.

1Query 78 in Figure 10 of [3] even joins more than 20 tables.
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Even if we create indexes for each foreign key column, the
join process is still costly due to frequent disk I/O requests,
especially when values are not selective enough to reduce the
search space. The real-life database introduced in Example 1
has 0.86 million Company records and 2.7 million SalesOrder
records, the query takes 1.3 seconds to complete.

SELECT Division.Name, Employee.Name
FROM Division D, Employee E, Employment Y,

PurchasingOrder P, Company M
SalesOrder S, Company C

WHERE E.EmployeeID = S.EmployeeID and
S.CompanyID = C.CompanyID and
E.EmployeeID = P.EmployeeID and
P.CompanyID = M.CompanyID and
Y.DivisionID = D.DivisionID and
Y.EmployeeID = E.EmployeeID
C.Location = ‘New York’ and
M.Location = ‘Seattle’

Figure 2: A multi-way join in a relational database

Most multi-way join queries essentially are pattern match-
ings in the entity-relationship graphs as illustrated in Exam-
ple 1. Many graph-based query optimization techniques have
been proposed in graph database to boost the performance
of graph operations expressed by multi-way joins. Thus,
we may wonder if we can use graph database to boost the
performance of multi-join queries over relational database.

Basic Idea. In this paper, we present G-SQL that takes the
advantage of both graph database and relational database
to boost multi-way join queries on relational databases. The
execution of multi-way join queries in general can be decom-
posed into two parts: relation access and graph exploration.
The major concern of such an architecture is that we need
to boost the performance of multi-way join queries with-
out sacrificing the persistence, integrity, and many other
desired property of relational databases. Hence, we resort
to a hybrid architecture. Specifically, we use an in-memory
graph computation engine (Trinity [5]) to provide fast graph
exploration. We use RDBMSs or SQL engines, on the other
hand, to process relational queries and provide additional
functionalities such as data persistence, integrity and consis-
tence. With Trinity, we transform multi-way join operations
into subgraph matching or graph traversal operations on
an in-memory graph. In other words, Trinity manages the
graph topology while RDBMSs manage the data other than
the topology.

Let us continue our running example shown in Figure 2,
relation access can be efficiently implemented by employing
B+ tree index built upon C.Location and M.Location. The
join operation however can only be efficiently implemented
by a graph traversal operation from a Division node to an
Employee node, then to a Client node. The corresponding
query expressed in G-SQL is shown in Figure 3. The graph
traversal is dictated by the MATCH clause, where Division,
Employee and Client are graph nodes and -[Employees]-
and -[Clients]- are edges linking graph nodes. Relational
database systems in general are not good at handling graph
explorations expressed in multiple joins. A straightforward
solution thus is decomposing a query into the graph explo-
ration and traditional relation access parts. Then, using

graph computation engine and relation database engine to
process each part individually.

SELECT Division.Name, Employee.Name
FROM Division, Employee,

Company Client, Company Merchant
MATCH Division−[Employees]→Employee

−[Clients]→Client,
Employee−[Merchants]→Merchant

WHERE Merchant.Location = ‘Seattle’ AND
Client.Location = ‘New York’

Figure 3: A G-SQL example that integrates SQL with graph
exploration

Comparison with Materializd View. One alternative solu-
tion to speedup the multi-way join queries is to use material-
ized views. A materialized view is a derived table defined on
other base tables. Materialized view can be helpful in query
optimization. However, materialized view has some limita-
tions. First, a materialized view only works for a limited set
of queries. In other words, an ad-hoc query cannot be accel-
erated if no corresponding materialized views are defined. In
our approach, any queries with complex explorations can be
accelerated since the relational database has been replicated
to the graph store and the joins can be directly computed
by the graph processing engine. Second, as we will show in
the experimental study, by leveraging an in-memory graph
engine with fast graph exploration support, in general we
can have more performance gain than the materialized views.

Contributions. A big challenge we face is that G-SQL needs
to coordinate two query processors, namely SQL and Trinity.
By integrating the two execution engines, G-SQL needs a
global cost model to coordinate the two engines. In this
paper, we have made this following contributions: a) We
have designed a unified system G-SQL that can dramatically
speed up multi-join queries with graph explorations while
allowing users to continue benefiting from mature relational
technologies. b) We have designed a scheme that enables us
to leverage prior solutions of incremental view maintenance
to synchronize between the SQL database and the graph
store upon updates. c) We have devised a unified model that
allows G-SQL’s runtime to choose a hybrid execution plan
that interleaves SQL constructs and graph explorations to
achieve global optimality.

The remaining part is organized as follows. Section 2
describes how to model graphs and graph queries in G-SQL.
Section 3 overviews the query execution process of G-SQL.
Section 4 elaborates the process of graph query processing.
A unified cost model is elaborated in Section 5. Section
6 presents the experimental results. The related work is
discussed in Section 7. Section 8 concludes.

2. DATA MODELING
In this section, we present our G-SQL’s data model and

the graph construction and data updating process.

2.1 Relation Based Graph Modeling
We use the extended SQL to specify a graph node on

top of a relational database. The full specification of the
language is shown in Appendix C. Figure 4 shows an example
query that defines an Employee graph node type based on
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the schema in Figure 1. The FROM and WHERE clauses are
standard SQL statements. The SELECT clause is slightly
different. First, a SELECT element can be a SQL sub-query
that returns a collection of atomic values, e.g., the last three
SELECT elements in Figure 4. Second, the AS renaming
must specify what type a projected column is mapped to in
the graph, i.e., ATTRIBUTE, EDGE annotations in Figure 4.
Finally, we demand that one SELECT element be dedicated
for nodes’ identities. This column must be unique in the
query’s result, so that the nodes of this type can be uniquely
identified in the graph.

SELECT E.EmployeeID as NODEID[EmployeeID],
E.Name as ATTRIBUTE[Name],
(
SELECT Em.DivisionID
FROM Employment Em
WHERE Em.EmployeeID = E.EmployeeID
) AS EDGE[Divisions],
(
SELECT P.CompanyID
FROM PurchasingOrder P
WHERE P.EmployeeID = E.EmployeeID
) AS EDGE[Merchants],
(
SELECT S.CompanyID
FROM SalesOrder P
WHERE S.EmployeeID = E.EmployeeID
) AS EDGE[Clients],

FORM Employee E

Figure 4: A SQL query defining the Employee node

We introduce to SQL a new MATCH clause2 to specify
graph pattern matching that is prominent in graph processing.
A graph pattern consists of one or more paths. A path is
a sequence of node aliases specified in the FROM clause.
Node aliases are connected by named edges. A named edge
is a special property of a graph node that is annotated by
EdgeType attribute when the node is declared in the Trinity
script. An example query is shown in Figure 3, in which the
MATCH clause specifies two paths that form a tree pattern.

2.2 Graph Construction and Updating

Graph Construction. G-SQL allows users to declare a
graph schema with the augmented SQL. With the schema
defined in SQL, G-SQL will generate a graph schema spec-
ification script in TSL (Trinity Specification Language)3.
Figure 6 shows a tsl script that specifies the Employee node
generated from the SQL definition given in Figure 4. An
employee has two attributes EmployeeID and Name, as well as
3 groups of outgoing edges Clients, Merchants, and Divisions.
We use the “[...]” construct to annotate the construct that
follows it. Each element of Clients and Merchants is a 64-
bit identifier that references a graph node of type Company.
Each element of Divisions is a 64-bit integer that references
a graph node of type Division.

With a TSL script, the TSL compiler of Trinity graph
engine[5] automatically generates dedicated object-oriented

2The formal specification of the MATCH clause is given in
Appendix D.
3http://www.graphengine.io/docs/manual/TSL/tsl-
basics.html

data access methods to access the fields stored in the in-
memory blob. G-SQL also builds data access wrappers for
visiting the properties residing in the RDBMS so that every
field of a node can be accessed via unified interfaces as shown
in Figure 5. Using the data access methods generated by
TSL compiler, G-SQL extracts, constructs, and stores the
graph in the graph engine to leverage its efficient memory
storage for graph explorations.

Figure 5: Unified data access interfaces

cell struct Employee {
long EmployeeID;
string Name;
[EdgeType:SimpleEdge, ReferencedCell:Company]
List〈CellId〉 Clients;
[EdgeType:SimpleEdge, ReferencedCell:Company]
List〈CellId〉 Merchants;
[EdgeType:SimpleEdge, ReferencedCell:Division]
List〈CellId〉 Divisions;

}

Figure 6: TSL script that defines Employee node

Graph Updating. After constructing the graph, we need
to keep the graph up-to-date once the relational database
is changed. G-SQL regards the declared graph topology
as a special form of SQL nested views, which allows us to
leverage previous solutions of incremental view maintenance
to keep updated the Trinity-hosted topology when the SQL
database changes. There is a wealth of literature in SQL view
maintenance such as [6]. Let V = Q(R) be a view, where Q
is a SQL query and R = {R1, . . . , Rn} is a set of tables. A
common approach to incrementally maintaining V is through
differential tables. That is, every addition and deletion
to a base table Ri is recorded in two differential tables,
∆+Ri and ∆−Ri, respectively. An update is equivalent to
a combination of a deletion and an addition. Let ∆+R =
{∆+R1, . . . ,∆

+Rn} and ∆−R = {∆−R1, . . . ,∆
−Rn}. A

maintenance algorithm takes input as R,∆+R,∆−R and
computes differential tables ∆+V and ∆−V that can be
applied to V incrementally.

A graph node specification in G-SQL can be decomposed
into a root view corresponding to the outer query in Figure 4
and a number of child views corresponding to each sub-query
in the SELECT clause. By using differential tables, we will
be able to incrementally update these views and eventually
propagate updates to the graph.

3. QUERY EXECUTION
In this section, we explain how query processing is divided

between RDBMS and Trinity at the system level. We first
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present the basic procedure to execute queries in G-SQL
then discuss the optimization of the execution procedure.

3.1 Basic Procedure
A G-SQL query is semantically equivalent to a SQL query.

By using transformation rules, the G-SQL query can be
rewritten to its SQL equivalence and completely evaluated
by a SQL query engine. Conventional SQL databases, how-
ever, have limitations in graph explorations. Instead, G-SQL
leverages Trinity’s native graph store and execution engine to
process graph query constructs, and combine them with con-
ventional SQL constructs. In this subsection, we introduce
the query processing architecture of G-SQL.

A G-SQL query, including both conventional SQL state-
ments and extended query constructs, is parsed into a join
graph. A join graph is a core component used by conven-
tional SQL query optimizers to produce an execution plan. It
describes a number of tables connected by join predicates, as
well as a few peripherals, such as GROUP-BY, SUM/COUNT
or ORDER BY. A join graph in G-SQL involves both graph
nodes and relational tables. It can be divided into three
components: the graph pattern described in the MATCH
clause, conventional table-join graphs with their peripherals,
and a number of cut-set joins that connect the graph pattern
and the table-join graphs.

Figure 7: The join graph of the query in Figure 3

Figure 7 illustrates the join graph of the query in Figure 3.
The graph pattern described in the MATCH clause is in the
Trinity graph pattern region, and the remaining table-join
graphs are in the others. We use the prefix ‘g ’ to indicate
the graph nodes loaded in the graph engine. In this example,
the two table aliases Company C and Company M are not
connected, so they form their own table-join graphs. The
two table-join graphs are connected to the graph pattern
through joins on attributes.

G-SQL’s query processor takes as input a join graph, de-
rives an execution plan that assigns the join graph’s compo-
nents to the SQL and Trinity query engines, and coordinates
the two engines’ results at runtime. At the high level, the
query processor uses Trinity’s execution engine to process
graph patterns. For each table-join graph, G-SQL formulates
a new equivalent SQL query and sends it to the relational
database for evaluation. G-SQL’s query processor evaluates
cut-set joins by pushing values from one engine to the other
and calling the join API in the target engine. In the SQL
query engine, this API is implemented by storing the pushed
values into a temporary table and invoking a join with it in a
formulated SQL query. In Trinity, this API is implemented
by using the pushed values to update the graph exploration’s

runtime states. As we will show later, unlike the SQL exe-
cution engine that materializes intermediate results of each
physical operator at the earliest convenience, G-SQL main-
tains all explorations’ states and do not discard them until
all bindings of the nodes in the graph pattern have been
established.

3.2 Optimization
A core optimization of the G-SQL’s query processor is

to determine the order of cut-set joins that exchange inter-
mediate results between the two engines. G-SQL’s query
processor assigns table-join graphs and graph patterns to
the SQL engine and Trinity respectively. It relies on their
own execution engines to optimize and execute individual
components. However, the join order of cut-set joins will
ultimately change individual components’ execution plans
and the query’s overall cost.

To understand the effects of cut-set joins, consider the
example in Figure 7. When G-SQL’s query processor decides
to evaluate the second table-join graph first, an equivalent
SQL query is formulated and processed by the SQL execution
engine, as shown by the first query in Figure 8. G-SQL
processes the graph pattern first and passes the Merchant
node’s bindings into the SQL engine to perform the join
M.CompanyID = Merchant.CompanyID, the formulated SQL
query becomes the second query in Figure 8. The second SQL
query is likely to have a different execution plan from the
first. Assuming there is no secondary index on the Location
column, the second query tends to have a lower cost because
the input tables are smaller. By comparison, the SQL query
in the first plan may be more expensive. But the SQL query’s
results will help Trinity filter the bindings of the Merchant
node. Trinity’s query optimizer, in this case, will derive a
new graph exploration plan that takes advantages of the
filtering to reduce the graph explorations’ complexity.

SELECT M.CompanyID
FROM Company M
WHERE M.Location = ‘Seattle’

SELECT M.CompanyID
FROM Company M
WHERE M.Location = ‘Seattle’ AND

M.CompanyID IN (Merchant nodes’ binding set)

Figure 8: A SQL query w/ or w/o filtering by node bindings

We formalize G-SQL’s query optimization problem as fol-
lows. We use Qi(R1, . . . , Rmi), i = 1, . . . , n to denote n
table-join graphs and G(v1, . . . , vk) to denote the graph pat-
tern. The execution plan of a G-SQL’s query is a sequence
of steps, each represented as Qi → G or G→ Qj :

Qi → G: Qi is evaluated in the SQL engine, possibly with
the input tables filled by the graph nodes’ bindings gener-
ated from prior steps. Qi’s results are passed to Trinity to
update the connected nodes’ bindings.

G→ Qj: Trinity starts from the nodes whose bindings have
been established from the prior steps, and processes the
remaining graph pattern until it establishes all the bindings
of the nodes that are connected to Qj ’s input tables. Taking
these bindings as inputs, Qj is evaluated in the SQL engine.

G-SQL’s query optimizer aims to find a sequence of steps
such that the overall execution time is minimized. In the
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Figure 9: Different decomposition schemes

following two sections, we will first review the process of
native graph query processing, and then present cost models
of the two types of queries and a selection algorithm that
generates an execution plan.

4. GRAPH QUERY PROCESSING
G-SQL leverages Trinity graph engine’s distributed fast

random data access capability to process graph pattern
matching queries. In the G-SQL framework, Trinity functions
as a distributed in-memory graph engine that provides:
• Distributed in-memory data management;
• Cluster management in the distributed setting;
• Distributed message passing framework.

On top of Trinity’s data management and message passing
interfaces, we implemented the gStep distributed pattern
matching algorithm as the execution engine of G-SQL. In this
section, we introduce this graph query processing framework.

4.1 gStep: Distributed Graph Matching Unit
A G-SQL query’s MATCH clause specifies a graph pattern

to match. G-SQL decomposes the graph pattern into a
number of connected gSteps and evaluates them individually.

Definition 4.1 (gStep). A gStep, denoted by a triple
g = 〈rg, Lg, Cg〉, is a tree of height one. It consists of a root
node rg and n leaves Li

g, 1 ≤ i ≤ n and n ≥ 1. A leaf Li
g

may have predicate(s) Ci
g that are specified in the query’s

WHERE clause.

A gStep is a graph exploration primitive. It resembles
the STwig concept in [7]. As elaborated in [7], any patterns
including patterns with cycles can be decomposed into gSteps
or STwigs. There are usually multiple ways to decompose
a pattern into gSteps, especially when we also take reverse
edges into consideration. For example, the graph pattern
in Figure 3 can be decomposed in two ways, as shown in
Figure 9. The two plans may have dramatic performance
differences, depending on the cost of each individual gStep
and the cardinalities of their results. We defer the discussion
of finding an optimal decomposition to Section 5. In this
section, we assume a decomposition is given, and present
how G-SQL processes each individual gStep, and how to join
them to generate the final results.

4.2 gStep Matching
A gStep g = 〈rg, Lg, Cg〉 is evaluated by establishing node

bindings for g’s query nodes—the root rg and each leaf Li
g.

A binding for a query node is a collection of matched graph
node instances. It is established either by SQL constructs or
by prior evaluations of other connected gSteps. A gStep’s
node bindings are execution states and can be passed to other

connected gSteps to reduce their evaluation complexities. By
using node bindings, we avoid materializing g’s matches
as intermediate results, and may reduce memory usage and
message passing across machines. In the following, we denote
the bindings of a query node by B(rg) or B(Li

g) and the
matches for the gStep by M(g).

The evaluation of a gStep g = 〈rg, Lg, Cg〉 starts by initial-
izing B(rg) and loading all matched node instances into it.
The query processor then enumerates nodes in B(rg), and for
each node, retrieves their neighbors as candidate nodes of Li

g

and sends them to B(Li
g). Upon receiving these candidates,

B(Li
g) checks the candidates’ eligibility, i.e., whether they

satisfy the node type of Li
g and the predicates Ci

g associated

with Li
g, and only keeps those satisfied. B(Li

g)’s satisfied
node instances are sent back to B(rg) to further prune B(rg):
a node instance in B(rg) that does not receive responses from
all B(Li

g), i ≥ 1 is removed from B(rg), because its neighbors
do not satisfy Lg.

(a) Graph exploration sketch

(b) An example graph

Phase B(Employee) B(Merchant) B(Client)
Prior {101,102,103,104} {} {}
Init {101,102,103} {} {}
2.1 {101,102,103} {302,303} {304}
2.2 {103} {302,303} {304}

(c) Dynamic bindings of query nodes

Figure 10: The evaluation of an example gStep

Figure 10a illustrates the process of evaluating g2 (de-
fined in Figure 9) in Plan A for the data graph shown in
Figure 10b. Each graph node in the figure is labeled with
a unique ID in the parenthesis. The arrows in Figure 10a
indicate the message passing between different bindings. In
the first stage, B(Employee) is filled with {101, 102, 103, 104},
a binding given by g1’s evaluation. For each node instances
in B(Employee), the query processor explores its neighbors.
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Node 104 is immediately pruned in the 2nd row in Fig-
ure 10c, because it does not have a Clients neighbor at all.
The others emit {302, 303} as a message to B(Merchant)
and {301, 303, 304} to B(Client), as shown in the 3rd row in
Figure 10c. B(Merchant) receives candidates, verifies their
eligibility, and returns {302, 303} to B(Employee) as qualified
merchants. B(Client) acts similarly. B(Employee) eventually
collects responses from B (Merchant) and B(Client), and de-
tects that only node 103 points to neighbors in both bindings.
Hence, only node 103 is kept (the last row of Figure 10c).

4.3 Joining Multiple gSteps
Matches for the sequence of decomposed gSteps are re-

trieved as M(g1),M(g2)... respectively. However, they are
matches for a single gStep rather than the matches for the
whole pattern graph. An extra step is required to get the
final results: we need to join all the gStep matches. The
graph processing engine is responsible for merging all the
gStep matches.

Even if we make lots of binding prunings during explo-
ration, invalid intermediate results still remain. For example
(201, {101}) is added to M(g1) after the evaluation of gStep
g1 but it turns out to be an invalid intermediate result after
g2 is evaluated. However, it is our design philosophy not to
remove it because we assume each gStep’s evaluation does
not attempt to backtrack previous gSteps’ matches or previ-
ous query nodes’ bindings. This design avoids tracking too
much historical information during the graph exploration,
which is costly to communicate. The tradeoff for such design
is that a final join is required after all gSteps have been eval-
uated. Fortunately, our voluntary binding pruning within
each gStep evaluation will greatly reduce the intermediate
results, which makes the final join relatively light weight
compared to traditional relational solutions.

We call a set of gSteps linearly ordered if these gSteps
decomposed from a query graph are executed in an order
that each gStep’s root node exists in the preceding gStep’s
leaf nodes. Under this condition, joining in the reverse order
of execution tends to be the best choice because it guarantees
that every intermediate join output will be in the final results.
In other words, no intermediate output will be generated
in vain. However, gSteps in real situations may not simply
exhibit a linear pattern. We adopt a first-executed last-joined
strategy to join the final results since we assume the scale of
final join is relatively small.

5. COST MODEL AND QUERY PLANNING
In this section, we present G-SQL’s query optimizer. We

first introduce cost models for SQL queries and gSteps that
are measured by elapsed time and result cardinality. We
then present a dynamic programming algorithm that finds
an optimal execution plan.

5.1 Cost Model for SQL Constructs
A G-SQL query’s execution plan is a sequence of Qi → G

and G→ Qi steps. A table-join graph Qi is evaluated with
or without node bindings as input tables. When there are
no input tables, Qi is a conventional SQL query and its
cost and cardinality is given by the SQL optimizer. In the
following, we focus on Qi with input tables. In such cases,
the input tables are joined with Qi through IN clauses (as
demonstrated in Figure 8).

We use a simple model to estimate the cost of Qi when
Qi has a binding set as the input table. The idea is derived
from the merge join and the nested loop join in the relational
world: when we join two tables, if one is small, the nested
loop join is preferable. The execution plan iterates through
each tuple of the smaller table and looks up the other; if one
table’s size is comparable to the other’s, the merge join is
often better. Likewise in our case, if Qi’s input table is small,
it’s preferable to iterate through each tuple in the input and
feeds it into Qi; if the input size is large, the execution plan
could evaluate Qi completely and join with the input table
thereafter.

Given a table-join graph Qi, the cost model estimates the
time for executing Qi, denoted as ET (Qi), and the result
cardinality, denoted as ER(Qi). The model relies on two

SQL queries, Q
{}
i and Q

{1}
i , whose costs are given by the

SQL optimizer. Q
{}
i is the full query describing the table-join

graph, e.g., the first query in Figure 8. Its cost corresponds

to the plan using the merge join. Q
{1}
i adds to Qi a 1-

node binding set in an IN clause, e.g., the second query in
Figure 8. This query describes the unit cost of evaluating a

node binding when using the nested loop join. Putting Q
{}
i

and Q
{1}
i together, we have the following equation, where x

is the estimated size of the node binding set, to estimate the
time cost:

ET (Qi) =


x · ET (Q

{1}
i ) x <

ET (Q
{}
i )

ET (Q
{1}
i )

ET (Q
{}
i ) x ≥

ET (Q
{}
i )

ET (Q
{1}
i )

We use the following equation to estimate Qi’s result

cardinality: ER(Qi) = x · ER(Q
{}
i )

nc(T )
+ 1, where T is the type

of the graph node connected to the table join graph Qi and
nc(T ) is the number of node instances in the graph. The
intuition of the equation is as follows: when there are no

node bindings, ER(Qi) is ER(Q
{}
i ) and all graph nodes of

type t contribute to Q
{}
i ’s results. We assume that these

nodes contribute to Q
{}
i ’s results equally. So when only a

portion of them are selected (by graph patterns), ER(Qi)
is proportional to how many nodes are selected, which is

characterized by
x

nc(T )
.

5.2 Cost Model for gSteps
The graph query processing engine preprocesses the data

graph and uses the following statistics to guide the optimizer:
a) Number of instances of a node type Tn, denoted by nc(Tn);
b) Number of instances of an edge type Te, denoted by ec(Te);
c) Shrink ratio of an edge type Te, denoted by sr(Te). Edge
instances of the same edge type may point to identical nodes.
And we use shrink ratio to capture the degree of overlapping.
It is equal to the number of unique nodes pointed by any
edge of type Te, divided by ec(Te).

Recall that the evaluation of a gStep starts from loading
all members in B(rg), which is the binding for the root node
of the gStep g, and goes through the following four stages:
• Enumerate binding members to find their neighbor

candidates.
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• Locally serialize these candidates to multiple packages,
and send them to the target machines through net-
work/loopback.
• The receivers unpack the packages and check each

candidate’s eligibility.
• The receivers send back the checked results.

The estimated time cost for evaluating a gStep is: ET (g) =
|B(rg)| · enumcost +

∑
i |Candidate(L

i
g)| · (passcost ∗ 2 +

checkcost). In this equation, enumcost, passcost, checkcost
are amortized time for the aforementioned step 1,2,3 re-
spectively. The cost of step 4 is regarded to be equal
to that of step 2, so passcost is doubled in the equation.
|Candidate(Li

g)| is the number of candidate neighbors that
are supposed to be sent to the ith machine. The sum of the
candidate neighbors can be easily estimated given |B(rg)|
and the average degree for each edge type. We can safely
ignore the cost for enumerating because normally enumcost
is negligible since it can be done in Trinity’s memory storage
efficiently. Thus, we have ET (g) ≈ α ·

∑
i |Candidate(L

i
g)|,

where α is a constant factor and can be estimated by profil-
ing.

The estimation of the root node and leaf node binding
sizes are also required. To illustrate it we first consider a
gStep that has only one leaf node denoted as Lg. Assume
the edge connecting rg and Lg is of edge type te, Lg of
node type tl and rg of node type tr. We also assume that
the predicate on Lg is checked by cut-set joining with the
results from SQL construct Q. The problem here is to
estimate the size of B(rg) and B(Lg) after the gStep gets
evaluated, denoted as ER(rg) and ER(Lg) respectively. First

of all, we define two parameters: hitratio = ER(Q{})
nc(tl)

and

avgdegree = ec(te)
nc(tr)

. The hitratio parameter indicates the

likelihood of a random tl typed node satisfying the predicate
on Lg, and the argdegree parameter represents how many
te edges each tr node has on average. Given these two
parameters, ER(rg) = (1−(1−hitratio)avgdegree)·|B(rg)|+1
and ER(Lg) = hitratio · avgdegree · |B(rg)| · sr(te) + 1.

After gStep matching, the members in B(rg) gets pruned
if none of its neighbors satisfy the predicate on Lg. In other
words, the members keep staying in B(rg) as long as at least
one of its avgdegree neighbors is qualified, thus a 1−(1−p)n
probability factor is applied in ER(rg).
B(Lg) is essentially the result of propagating B(rg)’s neigh-

bors with a likelihood, so ER(Lg) can be estimated by mul-
tiplying the count of neighbors(avgdegree · |B(rg)|) with
hitratio. It is further multiplied by a shrink ratio factor
sr(te) to eliminate duplications.

Both ER(rg) and ER(Lg) are added by one for normal-
ization. The estimation of gSteps with more than one leaf
nodes works similarly. We assume the independence of hit
ratios among different leaf nodes.

5.3 Execution Plan Optimization
G-SQL’s query optimizer aims to find an optimal sequence

of SQL constructs and gSteps. G-SQL translates it into
a dynamic programming(DP) problem as follows: For any
G-SQL queries, we have a pattern graph and multiple table
join graphs connecting to the nodes in the pattern graph
by cut-set joins. If we degrade each table join graph into
a special SQL node, we get an extended pattern graph, or
search graph. The problem is now to sequentially pick edges
from the search graph so as to keep the cost at the minimum.

If the picked edge belongs to the original pattern graph,
the edge corresponds to a gStep to be added into the execu-
tion list, and the incurred cost of such behavior equals the
estimated cost of the gStep. Otherwise it is mapped to a
SQL construct and the cost equals the estimated cost of the
SQL construct under the current binding situation. Note a
gStep can contain multiple edges, so we also allow picking
more than one edges at a time.

We use ξ to denote the set of selected edges from the search
graph. ξ can be used to denote a state in DP. Each state
maintains the binding estimation for each query node. After
edge selections, both the cost and binding estimations are
updated. G-SQL starts from the states of size one, that is, G-
SQL starts from choosing a one-leaf gStep or a SQL subquery
to form a ξ of cardinality one. Once the computation for
the state of size k is finished, G-SQL starts to compute the
subgraphs of size k + 1. The states of the same size get
merged if their covering edges are identical. Specifically, if
a gStep g with i leaf nodes is selected by a state s of size
k+ 1− i. A new state s′ of size k+ 1 is created, and we have:
cost(s′) = min{cost(s′), cost(s) + ET (g)}. Here, cost(s)
stands for the accumulated time consumptions for state s.
The selected new component of the state can be disconnected
with the original subgraph, because for many scenarios G-
SQL needs to explore from multiple graph nodes to fully
take advantage of the selective SQL constructs connected to
them.

6. EVALUATION
In this section, we present our experimental results. We

have done experiments on three real-life data sets.
• First, we compare the performance of G-SQL with

Microsoft (R) SQL Server on the Microsoft Academic
Graph (MAG for short) data set4 (2015-11-06 snap-
shot is used). The decompressed raw data size is
99,172,505,167 bytes in tab-separated values format.
• Second, we compare the performance of G-SQL with

SQL Server on a real-life enterprise CRM database.
• Third, we evaluate the performance of G-SQL on Mi-

crosoft Satori knowledge graph5 in a distributed setting.
All these three data sets are graphs with power-law distri-

bution: even the average degree is small, some nodes’ degrees
are large.

Table Row Count
Papers 120,383,707

Authors 119,890,853
FieldsOfStudy 53,834

PaperKeywords 157,052,442
PaperReferences 952,364,264

PaperAuthorAffliation 312,274,259

Table 1: Statistics of the MAG data set

We have implemented G-SQL in C# and we have three
deployments:
• For the experiments on the MAG data set, both G-SQL

and SQL Server are deployed to the same machine that
has a 2.60 GHz Intel(R) Xeon(R) E5-2690 v3 CPU,
with 256 GB DDR3 RAM.

4http://research.microsoft.com/en-us/projects/mag/
5https://en.wikipedia.org/wiki/Knowledge Graph
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• For the experiments on the CRM database, both G-
SQL and SQL Server are deployed to the same machine
that has two 2.67 GHz Intel(R) Xeon(R) E5650 CPUs,
with 98 GB DDR3 RAM.
• For the experiments on the Satori knowledge graph,

G-SQL is deployed to a 16-machine cluster. The specs
of each machine are the same as the machine used in
the CRM experiments. The servers are connected by
40Gb/s InfiniBand Network adapters.

The operating system used in our experiments is 64-bit
Windows Server 2008 R2 Enterprise with service pack 1.
The relational database management system in comparison
is Microsoft(R) SQL Server 2012. We built indexes on both
primary and foreign keys for each table to improve SQL
Server’s performance. For the experiments with “Warm
Cache”, we reserved enough memory for SQL server and
scanned every table before the experiments to warm up the
SQL Server.

6.1 Experiments on MAG
We conducted comparison experiments on the MAG data

set for both SQL and G-SQL. The statistical information of
the MAG tables used in our experiments is shown in Table
1. We carefully chose 8 queries as listed in Appendix A.
These 8 queries mimicked the common query patterns for
Microsoft Academic portal6. The statistical information of
these queries is shown in Table 2.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
table # 5 4 4 4 4 4 5 7

table join # 4 3 3 3 3 4 4 6
cut-set join # 2 1 1 1 1 0 1 2

Table 2: Statistics of MAG queries

Warm Cache. The first two columns for each query in Fig-
ure 11 are the execution time of SQL and G-SQL respectively.
Note that log scaling is used for the vertical axis. For the
MAG data set, G-SQL outperforms SQL by at least 5 times.
For certain queries such as Q6 and Q8, G-SQL even outper-
forms SQL by two orders of magnitudes. The composition
of the G-SQL cost is shown in the last two columns for each
query. Column G-SQL(SQL) represents the component cost
of accessing SQL Server during the execution of a G-SQL
query, while G-SQL(REST) includes the Trinity runtime cost
and the coordination cost.

Generally speaking, G-SQL delivers better performance
than pure SQL, thanks to the fast graph exploration mecha-
nism that offloads the costly multi-way joins onto the graph
engine. G-SQL performs exceptionally well on certain type of
queries, such as Q2, Q3, Q6 and Q8. The reason is elaborated
in the introduction section.

Cold Start. Figure 12 shows the comparison results without
cache warm-up. The overall performance decreases dramati-
cally because extra disk IO operations are incurred. In cold
start, G-SQL outperforms pure SQL queries by at least 7
times. For most of the queries except for Q3 and Q8, the
execution time of G-SQL(SQL) is dominating (larger than
79%).

6http://academic.research.microsoft.com/
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Figure 11: Execution time for Warm Cache (MAG)
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Figure 12: Execution time for Cold Start (MAG)

Materialized View. To compare G-SQL and materialized
view, we have created indexed materialized views in SQL
Server. We rewrote Q1, Q4, Q5, Q7, Q8 to leverage the
materialized view listed in Appendix B. The comparison per-
formance numbers are shown in Figure 13, the columns from
left to right for each query are: SQL (cold start), SQL (warm
cache), G-SQL (cold start), G-SQL (warm cache), SQL with
materalized view (cold start), SQL with materialized view
(warm cache). For Q1, the execution time with materialized
view is dramatically less than that without materialized view,
especially in cold start. For Q4 and Q5, the performance with
materialized view is slightly better. For Q7, the execution
times with/without materialized view are almost the same.
Interestingly, the performance numbers with materialized
view for Q8 are worse than those without materialzied view.
Our observation is that materialized view can sometimes
dramatically boost the query processing performance; but it
is not always the case.

6.2 Experiments on CRM database
The CRM used in the experiments has very complex rela-

tions among its entities. The schema of the CRM database
consists of 38 tables and 40.45 million rows. There are over 34
million nodes and over 150 million edges in the constructed
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Figure 13: Performance comparison between SQL, G-SQL,
and SQL with Materialized View (MAG)

SELECT a.Attr1, b.Attr2
FROM TableA a, TableB b,

TableC c, TableD d,
MATCH a−[FK1]→b−[FK2]→c,

d−[FK3]→c
WHERE a.Attr3 = ‘XXX’ AND

d.Attr4 = ‘YYY’

SELECT a.Attr1, b.Attr2
FROM TableA a, TableB b,

TableC c, TableD d,
MATCH a−[FK1]→d−[FK2]→b,

c−[FK3]→d
WHERE a.Attr3 = ‘XXX’ AND

b.Attr4 = ‘YYY’ AND
c.Attr5 = ‘ZZZ’

Figure 14: Example query

graph. We selected seven queries whose patterns are exem-
plified in Figure 14. The table names and attributes are
anonymized. The statistical information for each query is
shown in Table 3.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
table # 4 3 4 3 4 4 4

table join # 3 2 3 2 3 3 3
cut-set join # 2 1 2 2 2 3 2

Table 3: Statistics of SQL queries

Warm Cache. The experimental results are shown in Fig-
ure 15. Because the data size of CRM is much smaller than
that of MAG, the performance gain of G-SQL is not as dra-
matic as that in the MAG experiments: G-SQL outperforms
SQL by 3.87 times on average. However, it is still clear that
G-SQL(SQL) accounts for a large portion of the total cost.
The ratio is about 56.6% on average.

For the CRM data set, G-SQL performs exceptionally well
for certain type of queries, such as Q3, Q4 and Q6. But, for
queries such as Q1 and Q2, G-SQL only performs slightly
better than SQL. This is because these queries require little
exploration along primary key and foreign key relations. In
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Figure 15: Execution time for Warm Cache (CRM)
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Figure 16: Execution time for Cold Start (CRM)

this case, the execution of SQL dominates the overall cost
and the graph engine cannot help much.

Cold Start. Figure 16 shows the comparison results without
cache warm-up. For the CRM queries, G-SQL(SQL) accounts
for about 93.3% of the G-SQL’s cost. G-SQL outperforms
pure SQL by at least 4 times, which is even more significant
than that in the warm cache setting.

Effects of Query Plan Optimization. Figure 17 shows the
overall time cost for each G-SQL query, together with the
time spent on SQL. The first and the second column show
the results for the naive approach denoted as G-SQL*; The
third and the fourth column are for G-SQL with optimization
based on our cost model. The effect is most dramatic for
Q3, where G-SQL outperforms naive G-SQL* by 67 times.
G-SQL can take advantage of the binding established by
prior graph exploration to replace table scans with lookups.
Since execution cost of SQL usually dominates a G-SQL
query, the overall performance gain is dramatic. The same
situation applies for Q1, Q6, and Q7. For queries such as Q2,
Q4, and Q5, G-SQL is spending as much time as G-SQL* on
SQL operations, this is where the size of estimated binding
set grows so large that the G-SQL coordinator considers it
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Figure 17: Comparison of different query plans

 10

 20

 30

 40

 50

 60

 70

S1 S2 S3 S4 S5 S6 S7

E
x
e

c
u

ti
o
n

 T
im

e
 (

m
s
)

X16
X8

Figure 18: Execution time for a large RDF data set

worthless to leverage any bindings as input table for the SQL
query.

To summarize, G-SQL brings significant performance gain
to the traditional SQL databases without comprising its func-
tionality. The performance gains are obtained by replacing
SQL joins with graph explorations. It is worth mentioning
that in our experiments we ensure all SQL Server tables are
cached in the main memory for fair comparisons.

6.3 Experiments on distributed RDF database
We have a real RDF dataset that contains 11 billion tuples.

The dataset ends up more than 3.5 billion nodes in the
constructed graph. It takes about 460 GB main memory
over a cluster of Trinity servers. We prepared seven queries
for this dataset (S1 ∼ S7), e.g., to find persons who is engaged
in a romantic relationship with celebrity Winona Ryder, or
to get a list of actors who have costarred with Harrison Ford
in a film. The experiments are conducted in two settings,
one uses 8 machines (denoted as X8) and the other uses 16
machines (denoted as X16).

As shown in Figure 18, the execution times of the seven
G-SQL queries are within 100 ms under X8 and X16 settings.
With more machines, the computation power and system
resources increase; but meanwhile the coordination costs and
the number of network messages increase as well. Therefore,
X16 does not necessarily outperform X8 for all queries.

7. RELATED WORK
Applications empowered by large graph processing are

rising. Graphs are the natural representations for many
categories of problems. First, graph can be used to model
complex networks such as web graphs and social networks.
The most well-known application for the web graph is the
PageRank algorithm, which treats web documents as nodes
and hyper links as edges. Graphs are also adopted by social
network mining algorithms to accomplish tasks like commu-
nity detection, which relates to the node clustering problem
on large graphs [8]. Second, graph can be used to represent
chemical and biology structures. The structure activity re-
lationship (SAR) principle argues that the properties and
biological activities of a chemical compound are related to its
structure. Thus, graph mining may help reveal chemical and
biology characteristics such as activity, toxicity, absorption,
and metabolism [9]. Third, since the control flow in software
systems can be modeled as call graphs, graph model can
be used for software bug localization [10, 11], which aims
to mine such call graphs in order to determine the bugs in
the underlying programs. Similarly, some distributed com-
putation frameworks like GraphLab [12] adopt graphs to
represent the computation dependencies to facilitate parallel
computing.

A number of graph stores/databases are developed to meet
the growing market demands. Pregel [13], PowerGraph [14],
Neo4j [15], and GraphChi [16] are the representative ones.
Many research efforts are devoted to graph query languages.
GraphLog [17] represents both data and queries as graphs.
GraphQL [18] is a query language for graph databases that
supports arbitrary attributes on vertices, edges, and graphs.
In GraphQL, graphs are the basic unit of information and
each query manipulates one or more collections of graphs.
Some graph query languages, such as GOOD [19], GraphDB
[20], and GOQL [21], adopt a graph-oriented object data
model and provide functionalities for manipulating the graph
data. As to the Resource Description Framework(RDF),
SPARQL query language was made a standard by World
Wide Web Consortium (W3C) and is recognized as one of
the key technologies in the semantic web.

A lot of graph research interests have been spurred by
Semantic Web and the accompanying RDF model. Many
researcher [22, 23, 24, 25] investigated the possibility of
querying web scale RDF data by storing it into native graph
databases or object oriented databases. R. Angles et al. [24]
argued that graph database models are closer to RDF models
in motivations and use cases, and studied incorporating new
query language primitives to support graph-like queries on
RDF data. V. Bonstrom et al. [25] argued that RDF should
be stored as a graph instead of triples to enable the semantic
interpretation of RDF schema. They built a prototypical
RDF system on an object oriented database. J. Hayes et al.
[22] proposed a novel graph model called RDF bipartite graphs
as an alternate graph representation for RDF data. Recently
K. Zeng et al. [26] leveraged distributed graph exploration
for querying RDF data stored as a graph and achieved a
significant performance gain. Their implementation adopted
special filters on nodes/edges as an optimization technique for
pipelined execution plans. This work shares the same design
philosophy to perform efficient graph pattern matching over
a server cluster.

Interestingly, the combination of relational databases and
graph computation is precedented, yet in an opposite way
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to our work. Many efforts were devoted to tackling graph
problems by leveraging existing relational database function-
alities. Take the RDF problem for an instance: RDF model
describes a graph by a set of triples, each of which describes
an (attribute, value) pair or an interconnection between two
nodes. Many existing systems including SW-Store [27], Hex-
astore [28], and RDF-3x [29] resort to SPARQL queries by
storing RDF data as triples in relational databases and use
SQL joins to simulate graph matching. However, such ap-
proaches suffer from the cache locality issues when exploring
a large graph. A recent work [30] realized this problem and
tried to build a special table to promote locality by putting
an entity’s predicates in the same row. In our point of view,
it simulated a graph layer on top of relational databases by
flattening the graph nodes in the table rows. Their method
relieves the locality issues to some degree, but still requires
building extra tables to fit the multi-valued predicates due
to the limitations of relational databases.

8. CONCLUSION
We presented G-SQL, an integrated approach to acceler-

ating the processing of expensive SQL-graph hybrid queries.
G-SQL employs an in-memory graph engine on top of a
relational database. G-SQL well leverages the maturity of
relational database technology and the fast graph exploration
power of the in-memory graph engine. We introduced a uni-
fied cost model to coordinate the underlying SQL execution
engine and the native graph query processing engine. The
in-memory graph engine utilizes fast graph traversal to avoid
costly multi-way join queries on relational tables. The dra-
matic performance gain introduced by the graph-empowered
G-SQL is confirmed by our comprehensive experiments.
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APPENDIX
A. Queries on MAG
Q1: Find the names of the authors who have published more
than 100 papers in the database field during 2011 to 2015.

SELECT A.Name

FROM Authors A, Papers P, PaperKeywords K,

FieldsOfStudy F, PaperAuthorAffliation PAA

WHERE A.ID = PAA.AuthorId AND PAA.PaperId = P.ID

AND P.ID = K.PaperId AND K.FieldStudyId = F.ID

AND F.Name = ’Database’

AND P.Year BETWEEN 2011 AND 2015

GROUP BY A.ID, A.Name

HAVING COUNT(*) > 100

Q2: Find all the co-authors of Michael Stonebraker.

SELECT A2.Name
FROM Authors A1, PaperAuthorAffliation PAA1,

PaperAuthorAffliation PAA2, Authors A2
WHERE A1.ID = PAA1.AuthorId

AND PAA1.PaperId = PAA2.PaperId
AND PAA2.AuthorId = A2.ID
AND A1.ID <> A2.ID
AND A1.Name = ’Michael Stonebraker’

Q3: Find all the papers that cite Leslie Lamport’s papers.

SELECT P.Title
FROM Authors A, PaperAuthorAffliation PAA,

PaperReferences R, Papers P
WHERE A.ID = PAA.AuthorId

AND PAA.PaperId = R.ReferenceId
AND R.PaperId = P.ID
AND A.Name = ’Leslie Lamport’

Q4: Find the fields of study of Judea Pearl.

SELECT DISTINCT F.Name
FROM Authors A, PaperAuthorAffliation PAA,

PaperKeywords K, FieldsOfStudy F
WHERE A.ID = PAA.AuthorId

AND PAA.PaperId = K.PaperId
AND K.FieldStudyId = F.ID
AND A.Name = ’Judea Pearl’

Q5: Find the top 10 cited papers in the database field.

SELECT TOP 10 P.Title
FROM Papers P, PaperReferences R,

PaperKeywords K, FieldsOfStudy F
WHERE A.ID = PAA.AuthorId

AND PAA.PaperId = K.PaperId
AND K.FieldStudyId = F.ID
AND F.Name = ’Database’

GROUP BY P.Title
ORDER BY COUNT(*) DESC

Q6: Find the top 10 authors with the highest self citation
numbers.

SELECT TOP 10 A.Name
FROM Authors A, PaperAuthorAffliation PAA1,

PaperReferences R, PaperAuthorAffliation PAA2
WHERE A.ID = PAA1.AuthorId

AND PAA1.PaperId = R.PaperId
AND R.ReferenceId = PAA2.PaperId
AND PAA2.AuthorId = A.ID

GROUP BY A.ID, A.Name
ORDER BY COUNT(*) DESC

Q7: Find all the papers that have more than 10 authors
in the field of mathematics.

SELECT P.Title
FROM Papers P, PaperAuthorAffliation PAA

PaperKeywords K, FieldsOfStudy F
WHERE PAA.PaperId = P.ID AND P.ID = K.PaperId

AND K.FieldStudyId = F.ID
AND F.Name = ’Mathematics’

GROUP BY P.ID, P.Title
HAVING COUNT(*) > 10

Q8: Find the common fields of study of Leslie Lamport
and Michael Stonebraker.

SELECT DISTINCT F.Name
FROM Authors A1, PaperAuthorAffliation PAA1,

PaperKeywords K1, FieldsOfStudy F, Authors A2,
PaperAuthorAffliation PAA2, PaperKeywords K2

WHERE A1.ID = PAA1.AuthorId
AND PAA1.PaperId = K1.PaperId
AND K1.FieldStudyId = K2.FieldStudyId
AND K2.PaperId = PAA2.PaperId
AND PAA2.AuthorId = A2.ID
AND K1.FieldStudyId = F.ID
AND A1.Name =’Leslie Lamport’
AND A2.Name = ’Michael Stonebraker’

B. Materialized view defined for MAG

CREATE VIEW PaperFieldOfStudyView
WITH SCHEMABINDING AS

SELECT SELECT P.ID, F.Name, COUNT BIG(*) AS CNT
FROM dbo.Papers P, dbo.PaperKeywords K,

dbo.FieldsOfStudy F
WHERE P.ID = K.PaperId

AND K.FieldStudyId = F.ID
GROUP BY P.ID, F.Name;
CREATE UNIQUE CLUSTERED INDEX
PaperFieldOfStudyViewIndex ON
PaperFieldOfStudyView(ID,Name)

C. The syntax specification of the augmented SQL

〈node spec〉 ::= SELECT 〈sel element〉+
FROM R

(
, R
)
∗

WHERE cond (AND cond)*
〈sel element〉::= Ri.col AS 〈type〉[name]

| (sql expression) AS 〈type〉[name]
〈type〉 ::= EDGE | ATTRIBUTE | NODEID

D. The syntax specification of MATCH clause

〈pattern〉::= 〈path〉
(
, 〈path〉

)
*

〈path〉 ::= 〈node〉
(
−〈edge〉?→ 〈node〉

)
*

〈node〉 ::= string

〈edge〉 ::= string
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