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ABSTRACT
Nowadays, there is a rising trend of building array-based dis-

tributed computing frameworks, which are suitable for implement-
ing many machine learning and data mining algorithms. However,
most of these frameworks only execute each primitive in an isolated
manner and in the exact order defined by programmers, which im-
plies a huge space for optimization. In this paper, we propose a
novel array-based programming model, named KASEN, which dis-
tinguishes itself from models in the existing literature by defining a
strict computation and communication model. This model makes it
easy to analyze programs’ behavior and measure their performance,
with which we design a corresponding optimizer that can automat-
ically apply high-level optimizations to the original programs writ-
ten by programmers. According to our evaluation, the optimizer of
KASEN can achieve a significant reduction on memory read/write,
buffer allocation and network traffic, which leads to a speedup up
to 5.82×.

1. INTRODUCTION

1.1 Motivation
Traditional array-based languages, such as MATLAB and R, are

able to concisely express broad ideas about data manipulations.
Thus they are commonly used in data-analysis and scientific set-
tings. In order to retain this expressive power on large datasets,
many tools [26] have been built to provide a similar interface over
modern data-parallel computing frameworks. However, due to the
restrictive primitives (e.g., the data set manipulation pattern used in
Spark [30]) given by the underlying infrastructure, these tools are
usually inefficient [28, 24].

As a result, there is a rising trend of building scalable and
fault-tolerant computing frameworks that are directly based on dis-
tributed array operations [24, 28, 15]. These frameworks repre-
sent data in distributed (N-dimensional) arrays and leverage exist-
ing advanced techniques in the High-Performance Computing com-
munity to execute each operation (e.g., loop tiling). According to
their evaluations, these array-based frameworks have achieved sig-
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nificant performance improvement (at least 10× faster) for many
important algorithms.

Nevertheless, an important building block is still missing from
the current array-based frameworks’ architecture, which is a com-
prehensive optimizer that can speed up a program by equivalently
reordering or even rewriting it. Most of the existing works adopt a
naive implementation of executing each array operation in an iso-
lated manner and in the exact order defined by programmers, which
implies a huge space for optimization. As an illustration of the po-
tentials on optimization, Spartan [15], a distributed implementation
of NumPy, is shipped with a simple optimizer. According to their
evaluation, Spartan’s optimizer can achieve a speedup up to 2× by
only fusing successive Map operations and Map-Reduce pairs.

1.2 Challenges
The idea of optimizing local array programs has been quite pop-

ular [5, 31]. But these tools cannot be applied to distributed ar-
ray programs directly as they are agnostic to data synchronizations,
which are required in a distributed environment. In contrast, we in-
tend to design an optimizer that is both effective for reducing local
computation time and communication cost. To achieve this goal,
we retrospect our experiences of manually optimizing distributed
machine learning programs and summarize three most useful op-
timization heuristics: 1) make best use of the data in cache to re-
duce memory read/write; 2) reuse buffers to lower memory con-
sumption and allocation overhead; and 3) adjust the execution or-
der to decrease communication cost. However, although the above
three heuristics can be used in the implementation of most algo-
rithms, their usages are highly coupled with the particular algo-
rithm. Hence they are currently applied by programmers manually.
That is to say, in order to design an automatic optimizer that is
effective for various algorithms, we need to first address several
challenges.

i) According to our investigation, existing array-based comput-
ing frameworks usually provide users with a variety of operators
[15] and the ability of using point-to-point communications [28].
Although these frameworks are generally productive for writing
concise programs, they are difficult for analyzing programs’ be-
havior and are therefore hard to optimize. As a result, we need to
propose a new programming model that is both restricted enough
for enabling effective automatic optimizations and is still general-
ized enough for writing various algorithms.

ii) Idiomatic array programs, especially when programmed in a
selected set of primitives, generate a large number of isolated com-
putation steps and expensive temporary arrays [15]. To address
this problem, Spartan has explored the usages of substitution and
achieved significant improvement on performance. Specifically, by
fusing successive Map operations and Map-Reduce pairs into a sin-
gle Map or Reduce operation respectively, the runtime of Spartan
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is able to pipeline the cached partial results of a former operation
to its subsequent operation without allocating a temporary array
for reserving intermediate results. However, the method used in
Spartan is constrained by both primitives’ type and the number of
their inputs (only unitary primitives)1. Hence, a generalized opti-
mization algorithm that can properly substitute a group of arbitrary
operations with a fused operation is desirable.

iii) Communication cost can be reduced by reordering the pro-
gram execution order. But existing frameworks synchronize their
data either always eagerly (immediately after the data become in-
consistent) or always lazily (until it is forced by users or used for
flow control). As we will show in Section 5, neither of these two
options is optimal; therefore a combined method is preferred.

1.3 Our Contribution
In this paper, we resolve the above three challenges in the inter-

face level by presenting a novel array-based programming model
KASEN (Section 3). Similar to the MPI standard [13], KASEN
only specifies a set of routines without providing exact implementa-
tions. However, it constrains the data layout by defining three stor-
age states, the communication by explicit storage-state transitions,
and the computation by a restrictive set of primitives (Section 4).
Through imposing these restrictions, KASEN makes the data, the
computation, and the communication controllable and measur-
able, hence enables us to design an effective optimization frame-
work that is decoupled from the implementation of each primitive
(Section 5). Here, by using the phrase “controllable and measur-
able”, we mean that static program analyses can be used to reason
both how many and what kinds of optimizations can be used, and
the effect they will deliver. By using the word “decoupled”, we
mean that our optimizer works on the interface level. Hence users
can use arbitrary methods to implement the primitives defined in
KASEN, and they can all benefit from our optimization framework.

As we will show in Section 3.4, KASEN is sufficient for imple-
menting many important machine learning and graph algorithms.
More importantly, according to our quantitative analyses on vari-
ous algorithms, the optimizer of KASEN can achieve significant re-
duction on their memory read/write, buffer allocation and network
traffic (Section 8.1). In order to validate our analysis results, we
also built a simple prototype of KASEN. Evaluation results based
on this implementation (Section 8.2) show that our optimizer can
achieve about 1.22×−5.82× speedup on real-world and synthetic
datasets.

2. OVERVIEW
KASEN provides a restricted set of primitives, which makes pro-

grams written in KASEN are easy to analyze and measure and hence
enables us to apply effective optimizations. In this section, we’ll
describe major design choices of KASEN and the rationale behind.

i) Only two kinds of high-level data structures are allowed in
KASEN. Specifically, if KASEN’s users expect their data to be
distributively stored on a cluster (i.e., each worker of the cluster
contains only a part of the data), they should organize their data
elements as a 1D dense vector or a 2D dense/sparse matrix. Other-
wise, a copy of that data is maintained by each worker of the cluster.
Moreover, only a restricted set of computing primitives can be used
to operate these two high-level data structures: 1) three vector-only

1As an illustration of insufficiencies, two binary primitives that
share one input array may be fused into a 3-in/2-out computing
unit, which can save redundant reads of the common input.

primitives: Map, Reduce and ZipWith; and 2) a (sparse-)matrix-
vector primitive MxV. All these four primitives operate data mod-
elled in vector or matrix as a whole object (i.e., operating only some
elements of a vector/matrix is prohibited) and hence enables us to
precisely analyze the dependency relations among data variables,
which is a prerequisite of the following optimizations. More de-
tails about these primitives are given in Section 3.

ii) KASEN explicitly separates communications from local com-
putations. Each variable defined in KASEN can be stored in one
of the three different storage states and only transitions between
these storage states require the network. In other words, all the
computing primitives are executed locally. The advantage of this
refinement is two-fold: 1) it makes each step measurable so that we
can estimate each step’s computation overhead or communication
cost; 2) it naturally fits programs into the bulk synchronous parallel
(BSP) model [27]. Thus the optimizer can radically work on each
local-computing period without considering the other workers.

iii) We carefully studied the constraints on what kinds of com-
puting primitives can be applied to what kinds of storage states, and
the possible forms of equivalent reordering and substitutions. With
the guidance of these rules, our optimizer can equivalently trans-
mute the original program for better performance (e.g., reducing
the total network traffic by heuristically switching between eager
and lazy synchronizations) while guarantee the correctness.

iv) Finally, after the above three steps, we can now concentrate
on optimizing each local-computing period, which means that theo-
retically the baton can be passed to an existing local array optimizer
such as BTO [5]. However, the integration of our novel program-
ming model and existing optimizers is nontrivial hence we decide
to design a domain-specific optimizer ourselves. The optimizer we
developed is simple yet still effective. In particular, our optimizer is
based on the same principle of conventional loop fusion techniques.
We find that two or more operations can be fused into a generalized
X-in/Y-out operation if they share the same memory access pattern
and their input arrays are synergistically partitioned2. For exam-
ple, if we want to calculate the dot product of two vectors, we will
need to execute a ZipWith operation to get the products of the corre-
sponding elements and then a Reduce operation to obtain the sum.
Fusing these two operations into one enables us to omit the write
(by ZipWith) and the read (by Reduce) of the intermediate vector by
pipelining the computations. According to our evaluation, the pro-
gram’s performance can be improved significantly by just applying
the above fusion technique greedily.

As a summary, due to the strict programming model of KASEN,
a program written in it can be easily transformed into a dependency
directed acyclic graph (DDAG) that formalizes the data dependen-
cies of the program. Each node of a DDAG represents a data vari-
able and the edges are data dependencies. Since KASEN explicitly
separates communications from computations, there are also two
kinds of edges in a DDAG: 1) local-computation edges that rep-
resent computing primitives; and 2) global-communication edges
that represent storage-state transitions. The communication edges
separate a whole DDAG into Sub-DDAGs, each of which is a local-
computing period that a local optimizer can work on. As a re-
sult, a naive implementation of the global optimizer may explore
all equivalent DDAGs by using the reordering/substitution rules
we provide, estimate the cost after optimizing each Sub-DDAG,
and then choose the best one. However, the overhead of the above
naive algorithm grows exponentially with the number of nodes in
the DDAG, which may be unacceptable in many real-world cases.

2The input arrays have the same size and the elements in these
arrays are assigned to the same worker if they have the same index.
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Thus we design a greedy-based algorithm to replace it (more details
can be found in Section 5.4).

3. PROGRAMMING WITH KASEN
Programming with KASEN is easy, which consists of only two

steps: 1) implementing an algorithm just like you are using a single
machine; and 2) properly partitioning the input data to exclusive
worker-number parts. The framework will take care of all the other
things such as storage-state transitions and optimizations. In this
section, we first describe how to define data in KASEN and then
how to operate them. We also provide an example of implementing
the PageRank algorithm with KASEN.

3.1 Data
Data Definition As we have described in Section 2, KASEN only
provides two kinds of high-level data structures namely Vector and
Matrix. Variables defined in these two types will be automatically
partitioned and distributed among workers. In other cases, data can
also be modelled as Shared variables, which will be replicated and
each worker will maintain an entire copy of them. For convenience,
readers may analogize the types that KASEN provided to containers
defined in C++ STL. They both contain one or a collection of C-
style variables and constrain the allowed operations on them. In the
rest of this paper, a variable is defined by using:

Shared: Shared<C-style type>

Vector: Vector<C-style type>[Length]

Matrix: Matrix<C-style type>[Height, Width]

Users may also define a fixed-size array of these types by using the
C-style grammar, e.g., “Vector<int> tmp[10]”. Moreover, users
can set the contained type of Matrix variables to null, which in-
dicates that only the indexes are needed (i.e., no extra properties;
usually used for 0/1 matrices).
Data Partition Each Vector/Matrix variable defined in KASEN
should be partitioned into exclusive worker-number parts and dis-
tributively placed on the cluster. And, in order to enable local-only
computation of computing primitives, we constrain that if the sizes
of two Vector/Matrix variables are the same, they should be parti-
tioned synergistically. Specifically, if Vector V 1 and V 2 have the
same length, V 1[i] and V 2[i] are assigned to the same worker. Sim-
ilarly, if Matrix M1 and M2 have the same height and the same
width, M1[i][ j] and M2[i][ j] are also assigned to the same worker.

However, as we will discuss in Section 5, the effectiveness of our
optimizer (when measured in proportion) is decoupled from exact
data partitions. Thus users can choose any of existing partitioning
algorithms for the partitioning. In our implementation, we use the
block-based partitioning algorithm [9] for dense vectors/matrices
and hybrid-cut [10] for sparse matrices since they work well on
real-world datasets.

3.2 Computation
Shared Operations Since a copy of the variable is maintained by
each worker of the cluster, in KASEN, programmers can write arbi-
trary functions to operate Shared variables, i.e.,

Shared ResS = F(Shared Arg1, Shared Arg2, . . .)

Vector-only Operations Different from the Shared operations,
KASEN defines three vector-only operations for operating the vec-
tors. Specifically, the Map operation transforms an input Vector
V to an output Vector ResV with the same length by applying the

user-defined function F to each element of V (with the same sup-
plemental argument).

Vector ResV = Map(Function F, Vector V, Shared Arg)

in which, ResV [i] = F(V [i], Arg)

In contrast, the Reduce operation transforms an input Vector V to
an output Shared variable ResS by applying the user-defined binary
function F repeatedly through iterating all the elements of V . In
addition, KASEN constrains that the binary function F must satisfy
the associative and the commutative law. Thus the iteration is not
required to be in order.

Shared ResS = Reduce(Function F, Vector V )

in which, ResS = F(V [0],F(V [1],F(V [2], . . .)))

Finally, the ZipWith operation zips two input Vector V 1 and V 2
into an output Vector ResV by applying the user-defined function F
to elements with the same index.

Vector ResV = ZipWith(Function F, Vector V 1,
Vector V 2, Shared Arg)

in which, ResV [i] = F(V 1[i], V 2[i], Arg)

Note that all the above three vector-only operations share the
same memory access pattern, i.e., they will iterate over all the ele-
ments of the input vector(s) without caring about the iterating order.
Thus they can be executed simultaneously (i.e., fused by pipelining
the computation) if the input vectors are synergistically partitioned.
Matrix-vector Operation KASEN also defines a (sparse-)matrix-
vector operation MxV, whose definition is

Vector ResV = MxV (Function FZ , Function FR,

Vector V, Matrix M)

in which, ResV [i] = Reduce(FR,ZipWith(FZ ,V,M[:, i]T ))

This operation takes a Vector with length H, a Matrix with size
H×W and outputs a Vector with length W . The computation order
is just like the normal multiplication between vector and matrix,
i.e., the result of the ith element in ResV is computed by 1) ZipWith
the vector V and the ith column of matrix W with function FZ ; and
2) reduces the resulting vector to a scalar with function FR. Similar
to the Reduce operation, in order to enable local-only computation
of MxV, KASEN also constrains that FR must satisfy the associa-
tive and the commutative law. As we will discuss in more detail
at Section 5, successive MxV operations that share the same input
matrix can be fused into a matrix-matrix multiplication and hence
save redundant reads of the original input matrix.

Moreover, we also define the operation MxVT, which shares
the same type of arguments and property with MxV, just using the
transpose of the input matrix, i.e., MT , instead of the matrix itself.

One may notice that we do not distinguish sparse matrices from
dense ones. This is because that users can always use the best
method they believed to implement the MxV(T) primitive, and they
can all benefit from KASEN’s optimization framework.

3.3 Example: PageRank
In this section, we use the PageRank algorithm as an example

of programming with KASEN. As a formal definition, PageRank
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Figure 1: An illustration of how to store a matrix and the corresponding vectors in a cluster of 3 workers. Data assigned to the same worker
is labeled with the same color.

Algorithm 1 Program for PageRank.

Data:
Shared<int> N = load();
Matrix<null>[N, N] G = load();
Vector<double>[N] pr = {1}, new_pr, tmp1, tmp2, degree;
Shared<double> diff, r = load(), theta = load();
Shared<bool> not-converged = True;

Definition:
F1(x,y) = x/y
F2(x,r) = (1− r)+ r ∗ x
F3(x,y) = abs(x− y)
F4(x) = x

Computation:
1: degree = MxVT(*, +, G, pr);
2: while not-converged do
3: tmp1 = ZipWith(F1, pr, degree);
4: tmp2 = MxV(*, +, G, tmp1);
5: new_pr = Map(F2, tmp2, r);
6: diff = Reduce(+, ZipWith(F3, pr, new_pr));
7: pr = Map(F4, new_pr);
8: not-converged = (diff > theta);
9: end while

computes a value named “page rank” for every vertex in a di-
rected graph, which is usually implemented by initializing each
vertex with the same initial value 1 and then updating them it-
eratively. At every iteration, the updating formula is as follow:
prt+1[v] := (1− r)+ r ∗∑(u,v)∈E(prt [u]/degree(u)), where r is the
probability of a random jump, E is the set of directed edges in
graph G, prt [u] denotes the page rank of vertex u at iteration t,
and degree(u) is the out degree of vertex u.

The program of PageRank is given in Algorithm 1. As one can
see from the program, an MxVT operation is first used for calcu-
lating the out degree of each vertex. Then, the pagerank of each
vertex is calculated by repeatedly performing the above updating
formula until convergence.

3.4 Discussion
Although KASEN currently only supports a restrictive set of

primitives, it is already sufficient for implementing many impor-
tant machine learning and graph algorithms. Specifically, we have
checked that all the level 1 and level 2 operations of BLAS that do
not output a matrix can be implemented by KASEN. All of the other
operations that are not supported run in at least quadratic time and
hence are infrequently used in big data applications. As a real ex-
ample, the L-BFGS algorithm [19] can be implemented by KASEN,
which is a generalized technique for finding zeroes or local maxi-
ma/minima of functions. Thus the L-BFGS algorithm can be used
to solve many other problems that are essentially equivalent to find-
ing an extremum, such as linear regression, SVM. Moreover, the
programming model of PowerGraph [14] is equivalent to the com-
bination of using MxV and MxVT, thus all the graph algorithms
supported by PowerGraph is also supported by KASEN.

4. SPECIFICATIONS
Section 3 only discusses how a program is written by users, with-

out mentioning how the program is really interpreted/executed by
the runtime. Thus, in this section, we describe in details the specifi-
cations of 1) how data are actually stored in a cluster (i.e., the three
storage states); 2) how data are synchronized (i.e., the storage-state
transition); and 3) the constraints on what kinds of primitives can
be applied to what kinds of data, and what to do if these constraints
are not satisfied.

4.1 Three Storage States
As discussed in Section 3.1, programmers of KASEN should pro-

vide an assignment for elements of each Vector/Matrix variable, so
that 1) they are exclusively partitioned into worker-number parts;
and 2) variables that have the same size should be partitioned syn-
ergistically, i.e., elements of these variables must be assigned to the
same worker if they have the same index. In the rest of this paper, if
an element of a vector or matrix is stored in its assigned worker, we
name it as the master. For a vector variable V or a matrix variable
M, if each of the workers only stores elements assigned to it, the
variable is stored in the Partitioned state, which is represented by
adding a subscript P to the variable’s label, i.e., VP and MP.

However, the partitioning of matrices and vectors are decoupled.
Thus, when computing a MxV (T ) operation, the sub-matrix as-
signed to one worker may contain non-zero elements that the cor-
responding vector elements are not assigned to this worker. As a
result, we also allow vectors to be stored in a Consistent state, so
that each worker stores both the elements that are assigned to it and
several slaves that have the same value as the corresponding mas-
ters. Formally, if a non-zero element in the ith row and jth column
of an H×W Matrix M is assigned to worker k, the ith element of
all the vectors with length H, and the jth element of all the vec-
tors with length W , are either assigned to worker k or mirrored by
slaves stored in worker k. In this paper, we represent a vector V in
consistent state by adding a subscript C, i.e., VC.

Moreover, we also allow Vector variables to be stored in a Pre-
reduced state for representing intermediate results of some primi-
tives. For each Vector in the pre-reduced state, an associative and
commutative binary function R must be assigned to it as the reduc-
ing function. The exact value of each element is a combination
of the master and all the slaves, and it is calculated by applying the
reducing function R repeatedly. For instance, if an element of a pre-
reduced Vector is stored in one master a and two slaves b and c, the
actual value of this element is R(a,R(b,c)). As another example,
if we want to get the result of multiplying a consistent vector VC
with a partitioned matrix MP, we only need to multiply the consis-
tent sub-vector to the partitioned sub-matrix stored in each worker
locally, and the result will be a pre-reduced vector with reducing
function +, which means that the actual value is the sum of master
and all the slaves. The existence of pre-reduced state enables us
to postpone certain network communications, and hence enables
much more potential for reducing communication costs (see Sec-
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Table 1: All the possible forms of storage-state transitions and local computations. The type of each variable is the same as the definitions
given in Section 3.2. There is an “iff" clause for Equations (10), (11), (14), and (15), which means that if and only if the following constraint
is satisfied the corresponding primitive can accept one of its input Vector to be stored in pre-reduced state. Moreover, the Equation (11) and
(15) are labeled with a ?. When these two kinds of conditions are met, the user-given function is only applied to the masters.

Explicit storage-state transition

(1) VPR(R)
gather−−−→VP

scatter−−−→VC (2) SPR(R)
gather−−−→ SP

scatter−−−→ SC
Operating shared variables
(3) ResSC = F(Arg1C, Arg2C, . . .)
Reduce
(4) ResSPR(F) = Reduce(F, VP) (5) ResSPR(F) = Reduce(F, VPR(F))
MxV(T)
(6) ResVPR(FR) = MxV (FZ , FR, VC, MP) (7) ResVPR(FR) = MxV T (FZ , FR, VC, MP)
Map
(8) ResVP = Map(F, VP, ArgC) (9) ResVC = Map(F, VC, ArgC)
(10) ResVPR(R) = Map(F, VPR(R), ArgC) iff F(R(a, b), Arg) = R(F(a, Arg),F(b, Arg))
(11) ResVPR(R) = Map(F, VPR(R), ArgC) iff F(R(a, b), Arg) = R(F(a, Arg), b) = R(a, F(b, Arg))?

ZipWith
(12) ResVP = ZipWith(F, V 1P, V 2P, ArgC) (13) ResVC = ZipWith(F, V 1C, V 2C, ArgC)
(14) ResVPR(R) = ZipWith(F, V 1PR(R), V 2C, ArgC) iff F(R(a, b), c, Arg) = R(F(a, c, Arg),F(b, c, Arg))
(15) ResVPR(R) = ZipWith(F, V 1PR(R), V 2P, ArgC) iff F(R(a, b), c, Arg) = R(F(a, c, Arg), b) = R(a, F(b, c, Arg))?

tion 5 for more details). Again, in the rest of this paper, we repre-
sent a vector V stored in pre-reduced state with reducing function
R by adding a subscript PR(R) to the variable’s label, i.e., VPR(R).

As a summarization, Figure 1a shows an assignment from user,
and Figure 1b gives the exact data stored in each worker. In Figure
1a, elements assigned to different workers are labeled with different
colors. If data is stored in partitioned state, each worker only stores
the elements assigned to it. In contrast, as shown by Figure 1b,
certain number of slaves are maintained for data stored in consistent
or pre-reduced state. Specifically, in a consistent/pre-reduced state,
each worker stores both the data assigned to it (the masters) and
slaves of other workers according to the assigned sub-matrix. The
only difference between these two states is that: 1) in consistent
state, the values of slaves are equal to the corresponding masters;
and 2) in pre-reduced state, the actual value of each element is a
combination of master and all the slaves.

Similar to vectors, a Shared variable can also be stored in par-
titioned, consistent or pre-reduced state, which are represented by
SP, SC and SPR(R), respectively. The value of SP is only stored in its
master; while the actual value of SPR(R) is calculated by reducing
all the workers’ value.

4.2 Explicit Storage State Transition
Explicit transitions between the above three storage states are

unidirectional. A pre-reduced vector VPR(R) can be transformed
into a partitioned vector VP via a gather operation, implying that
the master of each element gathers the information of all its slaves
and calculate the actual value of that element by applying the reduc-
ing function R repeatedly. After the gather operation, only masters
contain valid data. Then, a partitioned vector VP can be transformed
into a consistent vector VC via a scatter operation, which indicates
that the master of each element scatters its value to all its slaves.
The state transition of a Shared variable is just the same as vec-
tors. However, the matrix should always be stored in partitioned
state. As discussed in Section 2, only these explicit storage-state
transitions require the network.

One may notice that the amount of network traffic for each gath-
er/scatter operation depends on the data partition. However, as
we will describe in Section 5, what the optimizer of KASEN actu-
ally does is reducing the number of these storage-state transitions.

Thus, our optimizer’s effectiveness is decoupled with the exact data
partitioning.

4.3 Constraints on Executing the Primitives
Since the execution of a computing primitive only computes a

partial result on the data locally stored in each worker, we should
carefully consider the storage state of input data and the property
that the user-defined function has before executing the four primi-
tives defined in Section 3.2. Specifically, all the possible forms of
executions are given in Table 1 and we summarize them into the
following rules:

i) All the Shared variables should be stored in consistent state
before executing any primitive. This is obvious since Shared vari-
ables can be operated by an arbitrary function.

ii) The input vector of a Reduce operation should be stored in
partitioned state. It can also be stored in pre-reduced state if the
user-defined function is the same as the vector’s reducing function.
In contrast, the resulted Shared variable is always stored in pre-
reduced state since each worker only calculates the result locally.

iii) Before executing MxV(T), the input vector V must be stored
in consistent state, and the resulted vector is stored in pre-reduce
state with reducing function FR, which is the same as the second
argument of MxV(T).

iv) The input vector V of a Map operation is allowed to be stored
in partitioned, consistent and pre-reduce states, and the resulted
vector ResV has the same storage state as V . However, if the input
vector is stored in pre-reduce state with reducing function R, the
execution of this Map operation is only allowed if the user-defined
F and R satisfy the constraint given by Equation (10) or (11).

In the rest of this paper, we will name the constraint of Equation
(10) as the exchange law. In order to prove that the exchange law
is a sufficient constraint, we should show that after each worker
locally applying the function F to all the masters and slaves of
a pre-reduced vector VPR(R), the result will be a pre-reduced vec-
tor ResVPR(R). It is equivalent to show that the exchange law can
be extended to a generalized form, i.e., F(R(a,R(b,R(c, . . .)))) =
R(F(a),R(F(b),R(F(C), . . .))), which can be proved by using the
exchange law repeatedly.

As a comparison, we name the constraint of Equation (11) as
the pushdown law, since the out-layer operation can be “pushed
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down” to either of the inner-layer operation’s input. In such a case,
the user-given function F is only applied to masters of the pre-
reduced vector, so that F is only applied once for every element.
For example, if “F(x) = x+1” and the reducing function of the in-
put pre-reduced vector is also +, they satisfy the pushdown law. As
a result, each worker can execute this operation by independently
adding 1 to each master of the vector. The whole operation can be
executed locally by each worker, and the result is still a pre-reduced
vector with reducing function +.

v) The input vector V 1 and V 2 of a ZipWith operation are al-
lowed to be stored 1) in both partitioned state; 2) in both consis-
tent state; 3) one in pre-reduce state and one in consistent state if
the user-defined function F and the reducing function R satisfy the
constraint given by Equation (14), which is the distributive law;
and 4) one in pre-reduce state and one in partitioned state if F and
R satisfy the constraint given by Equation (15), which is another
kind of the pushdown law. Taking the most popular reducing func-
tion + as an illustration, if F = ∗, they satisfy the distributive law
and if F = −, they satisfy the pushdown law. The proof of Equa-
tion (14) and (15) is similar to the proof of Equation (10) and (11)
respectively, thus we omit it because of the space limit.

Finally, if the runtime detects that the current storage state of the
input variable does not satisfy any of the forms listed in Table 1, it
should insert explicit storage-state transitions. As we will discuss
in the next section, the optimizer will instruct the runtime to insert
these transitions in a way that incurs the lowest network traffic.

5. FUSION-BASED OPTIMIZATION
As discussed in Section 1.2, in order to enable effective and au-

tomatic optimizations, a restrictive computation model is preferred.
In light of this principle, we selectively choose only four kinds
of computation primitives for KASEN (i.e., Map, Reduce, Zip-
With, and MxM), which, according to our investigation, are already
enough for implementing various important algorithms. Moreover,
all these primitives are simple transformations that are prevalently
used and extensively studied in the literature: 1) all the three vector-
only operators can be implemented with a single for loop, which,
if used isolatedly, can be tuned to perform at or near the possible
peak by any sophisticated compiler; and 2) MxV(T) is also a pop-
ular and important computation kernel that has been provided by
many existing libraries [9, 20].

Nevertheless, tuning these operations in isolation will miss the
opportunity of optimizations that result from composing multiple
subprograms. To resolve this issue, we design an optimization
framework for KASEN, which is based on the same principle of
conventional loop fusion techniques. As we will show later in
Section 8, according to our theoretical analyses and experimental
results, KASEN’s optimizer can achieve significant reductions on
both the local computation time and communication cost.

5.1 Loop Fusion
Data locality plays a vital role in the implementation of efficient

array programs, and it is especially important for programs that pro-
cess “Big Data”. As implied by the name, the input size of big data
programs is tremendous. Thus, in order to be practical, most of big
data algorithms run in quasilinear time (i.e, O(n ∗ logkn)), which
indicates that their performances are usually limited by memory
bandwidth [5]. In such cases, tuning the performance of each sin-
gle operation becomes not enough, and hence an optimizer that can
cross operation bounds is highly desired.

To this end, a sort of optimization techniques named loop fusion
has been proposed and studied in the HPC community. Loop fu-
sion is a transformation that fuses one or more loops into a single

loop. When the fused loops reference the same matrices or vectors,
the temporal locality of those references can be improved. Taking
the PageRank program given in Algorithm 1 as an example, if im-
plemented in an isolated manner, the five vector-only operations in
line 5-7 and line 3 of the next iteration should take five for loops
(as shown in Figure 2 (a))3, whose data locality can be largely im-
proved by fusing them into a single for loop. As only nine different
variables are read/write for each i, if the cache is large enough for
storing them, the fused implementation given in Figure 2 (b) will
only read three vectors (i.e., tmp2, pr, degree) and write two vec-
tors (i.e., pr, tmp1), which leads to a 55% reduction on memory
read/write. According to recent investigations [5], loop fusion can
achieve significant runtime speedups for memory-bound linear al-
gebra computations.

⇒

foruiu=u1:N
uuuunew_pr[i]u=uF2(tmp2[i],ur)
foruiu=u1:N
uuuu_tmp[i]u=uF3(pr[i],unew_pr[i])
diffu=u0
foruiu=u1:N
uuuudiffu=udiffu+u_tmp[t]
foruiu=u1:N
uuuupr[i]u=uF4(new_pr[i])
foruiu=u1:n
uuuutmp1[i]u=uF1(pr[i],udegree[i])

(a)uBeforeufusing

diffu=u0
foruiu=u1:N
uuuunew_pru=uF2(tmp2[i],ur)
uuuu_tmpu=uF3(pr[i],unew_pr)
uuuudiffu=udiffu+u_tmp
uuuupr[i]u=uF4(new_pr)
uuuutmp1[i]u=uF1(pr[i],udegree[i])

(b)uAfterufusing
Figure 2: An illustration of loop fusion.

In KASEN, a program can also be optimized by using the same
principle of loop fusion. As we have mentioned in Section 3.2, the
four kinds of computing primitives can be grouped into two cate-
gories according to their memory access pattern, and a sequence
of operations that belong to the same category can be fused for
improving the performance. However, applying loop fusion to
KASEN is not as straightforward as fusing all the operations. As
listed in Table 1, the output variable of each operation is stored in
various storage states, and only several combinations of operation
types and storage states are valid. Thus fusing can be interrupted
because of a state mismatch, and proper storage state transitions
are needed to be automatically inserted. Moreover, in order to de-
crease the amount of network traffic, we also need to design a hy-
brid scheme (that combines eager and lazy synchronization) for this
insertion.

In the rest of this section, we will first describe the specifications
of two internal operators used in KASEN. Each of them represents
a unique memory access pattern, and all the external operators (as
listed in Section 3.2) that follow this pattern can be replaced by
the corresponding internal operator. Then, we will introduce the
Dependency DAG, which is a data structure that facilitates the ana-
lyzing procedure of KASEN’s optimization. Finally, we will discuss
about our optimization framework, including some implementation
details and real-world examples.

5.2 Internal Operators
The most straightforward method of enabling fusion on KASEN

is providing some more combined versions of operators. For ex-
ample, we can provide a 3-in/1-out operator ZipWith3(Func, a, b,
c) for replacing the original combination of two ZipWith operations
(i.e., ZipWith(Func1, ZipWith(Func2, a, b), c)). However, it is in-
feasible to add every possible combination to the standard. Even if

3One may notice that the temporary variables _tmp and new_pr are
vectors in Figure 2 (a) and are only scalars in Figure 2 (b). This is
an illustration of how fusion can help reducing temporary vectors.
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it is possible, they are still tedious for programmers to use. As a
comparison, in KASEN, we only define one more internal opera-
tion for every unique memory access pattern (i.e., two in total). And
it is the optimizer’s responsibility to automatically map external op-
erations to internal ones, which is transparent to programmers.
IterOnVec As we have mentioned in section 3.2, all the three
vector-only operations (i.e., Map, Reduce, and ZipWith) KASEN
provided share the same memory access pattern. They can all be
implemented by iterating on the input vector(s), and, more impor-
tantly, the order of this iteration does not matter. As a result, in-
stead of executing each of the operations in isolation, a sequence
of vector-only operations can also be executed as a single fused for
loop (as shown by Figure 2 (b)). Even in a distributed environment,
this fusion is possible as long as all the needed input data are al-
ready stored in local (i.e., the combination rules given in Table 1 are
not violated). As a result, we define an IterOnVec operator to for-
malize this kind of fusion. The IterOnVec operation is implemented
as a variadic function that takes a fused X-in/Y-out function, read
X input variables, and output Y variables simultaneously. If the
fused external operations reference the same vectors, the redundant
read of them are reduced. Moreover, all the temporary vectors that
are original used for reserving intermediate results can be replaced
with only a single temporary variable, which is much cheaper.
MxM(T) Similar to IterOnVec, MxM(T) is a generalized variadic
operator that can replace a sequence of MxV(T) operations. How-
ever, it requires that all these fused MxV(T)s should share the same
input matrix, and they do not constitute a dependency relation. In
such case, redundant read of the input Matrix variable can be saved.
As for the implementation, MxM(T) essentially implements the so-
called GEneral Matrix to Matrix Multiplication (GEMM) operation
in which the combined matrix is small but dense, while the other
one can be sparse. As GEMM is also a prevalently used computa-
tion kernel that has been studied extensively, we omit the details of
its implementation for saving the space.

5.3 Dependency DAG
For facilitating the automatic procedure of mapping external

APIs to internal operators, we proposed a data structure named
Dependency DAG (DDAG). Each DDAG is an equivalent repre-
sentation of a code snippet, which is both easy for human to read
and for computer to process. Specifically, each node of a DDAG
represents a variable and the edges are data dependencies. Since
KASEN explicitly separates communications from computations,
there are also two kinds of edges in a DDAG: 1) local-computation
edges that represent computing primitives (i.e., external computa-
tion operators); and 2) global-communication edges that represent
storage-state transitions. Moreover, the storage state of each vari-
able, which is critical for determining whether a DDAG violates the
combination rules or not, is attached to each node as a property.

As an illustration, Figure 3 presents two equivalent DDAGs that
can be transformed from Algorithm 1’s line 5-7 and line 3 from
the next iteration. In this figure, the storage states are labeled in
subscripts, while the local-computation and global-communication
edges are represented by black solid and blue dotted arrows respec-
tively. As we can see, the only difference of these two equivalent
DDAGs are related to the storage state transformations. DDAG
2 defers one Scatter operation to bottom of the DDAG, while, in
contrast, DDAG 1 uses an eager-synchronization schema that syn-
chronizes vector tmp2 immediately after it becomes inconsistent
(i.e., stored in pre-reduced state). As we will discuss in the next
section, since the cost of operating a pre-reduced/consistent Vec-
tor variable is bigger than operating a partitioned vector, the hybrid
schema used by DDAG 2 is a better choice. Moreover, Section 6
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Figure 3: Two equivalent DDAGs that are both transformed from
Algorithm 1’s line 5-7 and line 3 from the next iteration.

will give exact formulas that can be used to estimate the cost of
these two DDAGs.

Based on the above definitions, we can further define fusible
Sub-DDAGs. A fusible Sub-DDAG is a connected part of the orig-
inal DDAG that can be fused and executed by either one IterOnVec
or one MxM(T) operation. That is to say, all the operations com-
pose a fusible Sub-DDAG should be 1) vector-only operators; or 2)
a sequence of MxV(T) operations that share the same input matrix.
Take Figure 3 as an example, all the local-computation edges and
the related nodes constitute a fusible Sub-DDAG; they can be fused
and executed by one IterOnVec operation.

5.4 The Optimization Framework
With former tools, we can now start designing an optimizer for

KASEN. Since the whole program can be transferred to a DDAG,
a naive implementation of the optimizer is enumerating all the
possible equivalent DDAGs; estimating the cost after fusing ev-
ery fusible Sub-DDAG; and then choose the best execution plan
from them. However, such an implementation may incur an unac-
ceptable overhead since the number of equivalent DDAGs grows
exponentially with the number of nodes in the DDAG. Thus we de-
sign a greedy-based algorithm that dynamically outputs one fusible
Sub-DDAG at a time for the execution.
Overview As a summary, our optimizer will try to expand the cur-
rent constructing Sub-DDAG as much as possible as long as the
operations that presented by the added edges are 1) ready for execu-
tion; and 2) can be fused with the other operations that are already
in the Sub-DDAG. Each iteration of our optimizer is implemented
by the following steps:

Step 1: Start with an empty Sub-DDAG.

Step 2: Expand the current Sub-DDAG by repeatedly adding
statements that are currently ready for execution and can be fused
with the other operations that are already in the Sub-DDAG.
• A statement is not ready for execution if:

(a) the data needed are not yet available;
(b) the data are ready but the storage states of the data do not

match the possible forms listed in Table 1;
(c) conditions of the corresponding control statements are

not yet available.

• Two operations can be fused if:

(a) they are both vector-only operations and the input vectors
are synergistically partitioned;

(b) they are both MxV or both MxVT operations that read the
same Matrix variable and do not constitute a dependency
relation.
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Step 3: Insert explicit storage-state transitions in a way that incurs
lowest network traffic.
Step 4: Identify variables that are still needed after finishing all
the operations belonged to this Sub-DDAG; and prepare buffers
for them.
Step 5: Fuse the whole Sub-DDAG into one IterOnVec or MxM(T)
operation that executes all the sub-operations simultaneously.

Initialization As for the implementation of the above optimization
algorithm, the runtime of KASEN first conducts a flow-sensitive
dependency analysis [16] on the program. For each statement, the
dependency analysis outputs two kinds of information: 1) always-
dependent statements, which are the statements that the current
statement will always read data from in all cases; and 2) may-
dependent statements, which are the statements that the current
statement may read data from in some cases but we cannot decide
now because some control conditions are not available. For exam-
ple, at the beginning of executing Algorithm 1, the MxV operation
that produces tmp2 is always-dependent on the ZipWith operation
on line 1. In contrast, this ZipWith operation on line 1 is only may-
dependent on the Map operation at line 7, because the value of
not-converged is not yet available.
Sub-DDAG Expansion With these dependency relations, a state-
ment that is ready for execution can be identified by 1) it does
not have any may-dependent statement (i.e., all the control depen-
dencies are available); 2) all the corresponding always-dependent
statements are executed or have already been added to the current
Sub-DDAG; and 3) the storage states of input data match the pos-
sible forms listed in Table 1. The runtime should expand the cur-
rent Sub-DDAG as much as possible by repeatedly adding ready
statements that can be fused. Note that the programming order of
statements does not matter in DDAG, thus the later state can be
added to the current Sub-DDAG even if some of the prior state-
ments are not. Moreover, we allow users to label a condition as
“likely to be true” so that such a condition is assumed as true dur-
ing the expansion. For example, through labeling the coverage con-
dition tested in line 2 of Algorithm 1, the may-dependent relation
that we mention above will be considered as an always-dependent
relation. Hence we are enabled to fuse the operations in line 5-7
with the operation on line 3 of the next iteration.
Inserting Network Primitives After the expansion is finished, the
runtime needs to add storage-state transitions for enabling the ex-
ecution. For example, in Algorithm 1, variables tmp2 and diff are
originally stored in pre-reduced state after the execution of line 4
and line 6 (as defined by rule 6 and rule 4 in Table 1 respectively). If
a lazy transition strategy is used, the synchronization of these vari-
ables can be deferred until line 8 (synchronize diff as required by
rule 3 of Table 1) and line 4 of the next iteration (synchronize tmp1
as required by rule 6 of Table 1). Here, by using the word “syn-
chronize”, we mean that a pair of gather and scatter operations is
inserted to transfer the variable’s storage state from pre-reduced to
consistent. However, this deferring is unfavorable. Since the cost
of operating a pre-reduced/consistent Vector variable is bigger than
a partitioned one, the optimal strategy (as shown in Figure 3) is
inserting a gather operation for tmp2 immediately after line 4 and
a scatter operation of tmp1 before line 4. Although the commu-
nication cost is not reduced by this hybrid strategy, the amount of
memory read/write is decreased.

According to Table 1, at most one Vector variable can be stored
in pre-reduced state before the execution of a primitive. Thus we
can prove that the best transition strategy must be adding storage-
state transitions either at the bottom of a Sub-DDAG (i.e., lazy) or
at the top of a Sub-DDAG (i.e., eager); never in between. For in-
stance, if we only want to know the result of Reduce(F1, MxV(F2,

F1, VC, MP)), a lazy transition is preferred since it only needs to
synchronize the final result and saves the synchronization of the
intermediate Vector generated by MxV. In contrast, in some algo-
rithms (e.g., L-BFGS [19]), there are two or more consistent Vector
variables that depend on one pre-reduced vector. In this case, an
eager transfer can reduce the number of synchronized vectors. As
a result, the optimizer should enumerate all the possible strategies4;
estimate the amount of computation and network traffic; and intel-
ligently choose the less time-consuming one5.
Buffer Preparation In the fourth step, we need to identify vari-
ables that are still needed after finishing all the operations belonged
to this Sub-DDAG. It is achieved by identifying data that are de-
pended (always-dependent or may-dependent) by unexecuted state-
ments. The three examples of needed data are circled in Figure 3.
Since we now know the exact number and size of the needed vari-
ables, we only need to spare enough buffers for them. The buffer
reusing can be resolved by sparing a big buffer pool (a set of vec-
tors) and increasing the number of buffered vectors if needed only
at the beginning of each Sub-DDAG’s execution.
Executing In the fifth step, all the operations in the current Sub-
DDAG are fused and executed simultaneously. For a Sub-DDAG
that consists of vector-only operations, an IterOnVec operation is
executed. Otherwise, an MxM(T) operation is executed.

5.5 Example
Finally, let us take the whole PageRank program given in Algo-

rithm 1 as an example. At the beginning of its execution, all the
variables are stored in consistent state hence the MxVT operation
at line 1 is ready for execution and is added to the current Sub-
DDAG. However, all the other operations cannot be fused with it
and therefore Sub-DDAG 1 consists of only one operation. Simi-
larly, the second and third Sub-DDAGs generated by our optimizer
also contain only one computing primitive. The only difference
between these two Sub-DDAGs and Sub-DDAG 1 is that a storage-
state transition is automatically inserted at the top of them, because
the corresponding variable’s storage state does not satisfy any rule
listed in Table 1 (e.g., a gather operation is inserted for transfer-
ring the degree vector from pre-reduced state to partitioned state,
because F1 does not satisfy the distributed or pushdown law).
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Figure 4: All the generated Sub-DDAGs for Algorithm 1

In contrast with all the above Sub-DDAGs, Sub-DDAG 4 con-
sists of five external operators and is fused into one IterOnVec op-
eration. It should be noted that the gather operation that trans-
fers tmp2 from pre-reduced state to partitioned state can actually

4The number of possible strategies is less than 3, because at most
one input vector is allowed to be stored in pre-reduced state.
5The estimation should be a combination of data size, CPU fre-
quency, and memory/network bandwidth.
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be postponed, because F2 can be split into two parts that satisfy ex-
change law and pushdown law respectively. But, as discussed in
Section 5.4, using such a lazy transition strategy here is not good
for performance. One may also notice that the ZipWith operation
at line 3 of Algorithm 1, which belongs to the next iteration, is
also fused into Sub-DDAG 4 even though that currently the value
of not-converged is not available. This ascribes to the capability
of labeling a condition as “likely to be true”. Finally, the last Sub-
DDAG 5 also contains only one computing operation.

6. MEASURING FORMULAS
The strict model of KASEN not only enables us to do effective

optimizations but also makes us to be able to statically estimate
a program’s performance, which is useful for measuring the per-
formance gain of our optimizer. In this section, we will introduce
the measuring formulas for every external/internal operation, which
can estimate the amount of memory read/write, buffer allocation,
and communication cost for it6. Since results of these formulas
only depend on the partitioning algorithm, they are fixed during the
whole execution.

Specifically, for each Vector variable that has N masters (i.e.,
length of the vector) and S slaves (i.e., number of replicas in con-
sistent state), 1) S elements are transferred for the execution of each
gather/scatter operation; 2) N elements are read/wrote if the vec-
tor is used as an input/output variable and is stored in partitioned
state; 3) N + S elements are read/wrote if the vector is used as an
input/output variable and is stored in consistent/pre-reduced state.
As for each MxV(T) operation “ResV = MxV (FZ , FR, V, M)”,
for each non-zero element (i, j) of M, the system needs to read
sizeof(M[i][j]) + sizeof(V[i]) + sizeof(ResV[j]) bytes and write
sizeof(ResV[j]) bytes.

As for the internal operations described in Section 5.2, the cost
of each IterOnVec or MxM(T) operation can be estimated by count-
ing its input and output variables. The execution of an internal
operation (either IterOnVec or MxM(T)) will only read every input
variable once and write every output variable once (if the cache is
large enough for reserving all the intermediate data used for one
element). Moreover, since we need to allocate a buffer for each
output variable, the amount of buffer allocation is the same as the
sum of output variables. In a data dependency figure like Figure
3, input variables are represented by variable nodes that have no
in-coming edges. In contrast, the output variables are variables
that are still needed later, which include not only variable nodes
that have no out-coming edges. As a result, the output variables are
marked explicitly by adding a circle around their labels. Procedures
for identifying these output variables have already been described
in Section 5.4.

As an illustration of the formulas’ usages, in Sub-DDAG 4 of
Figure 4, a total of two Map operations, two ZipWith operations
and one Reduce operation should be executed before the fusion, and
hence a total of 7N elements are read and 4N elements are written.
However, after these operations are fused into one IterOnVec op-
eration, only three vectors (i.e., tmp2, pr, and degree) are read and
two vectors (i.e., prnew and tmp1) are written. All the other inter-
mediate results are only cached in the cache and will be pipelined
to the next step immediately, thus they do not incur memory write
or buffer allocations. As a result, a total of 4N elements read and

6The computation cost depends on the user-given functions and
hence cannot be estimated. However, since we focus on optimizing
a program in the interface level, the estimation of computation cost
is also unnecessary.

2N elements write are saved. A more detailed analysis of the whole
PageRank algorithm is given in Section 8.1.

7. IMPLEMENTAION
We have repeatedly emphasized that both KASEN and its opti-

mizer work on the interface level, so that they are decoupled with
their implementations. As a result, benefits result from our op-
timization algorithm can be statically calculated by mathematical
formulas (as we will give in Section 8.1), which would not change
with the exact evaluating environment. However, it is still meaning-
ful to present some experimental results, especially the comparison
between KASEN and the other existing frameworks. To this end, we
developed a C++11-based prototype of KASEN on top of MPICH2,
which is a state-of-the-art implementation of the MPI standard.

Our implementation of KASEN is entirely symmetric, hence
there is no single coordinating instance or scheduler. At the begin-
ning of an execution, each worker of the cluster starts by reading a
unique subset of data from an NFS, which is also the destination of
final results7. After loading, the initial data placement usually in-
curs suboptimal synchronization overhead and may not satisfy the
constraints of synergistic partitioning that we have stated in Section
3.1. As a result, there is then a re-dispatching phase of the loaded
data. Specifically, this re-dispatching phase consists of three steps.
First, our system calculates an element assignment for each group
of Vector/Matrix variables that have the same dimension size. For
groups that consist of only dense vectors or matrices, the classical
block-based partitioning algorithm is used. In contrast, the hybrid-
cut partitioning algorithm [10] is used for partitioning sparse matri-
ces. After the assignment, a global shuffling is used for each node
to send data that is loaded by not assigned to it to other workers,
which constitute the masters of every data element. As we have
described in Section 4.1, our system automatically will set up the
corresponding slaves of every data element for enabling local-only
computations. That is to say, after all the above initializing steps,
all the data variables are stored in consistent state.

Finally, the exact computation is carried out by repeatedly gener-
ating a Sub-DDAG and then executing it. Users of KASEN should
write their program with only external operators, in which the user-
given function can be implemented by static functions, functors,
or even lambda functions. More specifically, in contrast of op-
erating the whole vector/matrix, the working place of each user-
given function is related to only one certain index. For example,
the type signature of map operator is “std::function<void(void *in,
void *out)>”. As we can see, both the input and output elements
are passed by their pointers, in which in points to an element from
the input vector and out points to the corresponding output element
that has the same index. The fusion of these user-given functions
is simple: 1) A Sub-DDAG is constructed for each IterOnVec op-
eration, which can be executed by using a two-layer loop. The out
layer of this loop iterates over all the elements and the inner layer
iterates the related user-given function in a topological order.; 2)
As for MxM(T), it is just a standard GEMM operation that can also
be implemented by a two-layer loop (one for data elements and one
for user-given functions, with arbitrary order).

As for the communication primitives, both gather and scatter
are implemented by invoking an MPI_Alltoallv operation over the
MPI_COMM_WORLD communicator that contains all the work-
ers. Each worker will find out “where are the slaves of the mas-
ters assigned to this worker” at the preparing phase and reserves all

7After computation, KASEN will first transfer all the output vari-
ables to consistent state, and then dump them to the NFS.
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these master-slave relations. Thus only one round of MPI_Alltoallv
is used for each gather/scatter operation.

8. EVALUATION
We evaluate our optimizer by comparing it with a prevalent im-

plementation that executes each primitive in isolation and always
synchronizes data lazily. Specifically, we first present the results of
our quantitative analyses on various algorithms, which computes
the exact amount of memory read/write, buffer allocation, and net-
work traffic saved by our optimizer. Then, we implement these
algorithms and evaluate the overall performance improvement. Fi-
nally, we compare the performance of our system with existing
array-based frameworks.

8.1 Quantitative Analyses
PageRank As discussed in Section 5.5, each iteration of the PageR-
ank algorithm can be fused into an MxM operation (Sub-DDAG 2 in
Figure 4) and a single 4-In/3-Out IterOnVec operation (Sub-DDAG
4 in Figure 4). Thus, if we use N and S to designate the number
of masters and slaves of each vector respectively, M to designate
the number of non-zero elements of the matrix, the standard imple-
mentation of PageRank needs to read 60(N +S)+24M bytes data
and write 40(N + S) + 8M bytes data per iteration8. In contrast,
only 20N +24M bytes memory read and 16N +8M bytes memory
write per iteration are needed after the optimization. As for buffer
allocation, a total of 16N bytes of intermediate vectors are saved.

Take the Web graph from Google programming contest[18],
which contains 9 ∗ 105 vertices and 5 ∗ 106 edges, as an example.
When partitioned into 16 nodes with hybrid-cut, there are about
3 ∗ 106 slaves for each vector. Thus we can calculate that about
204MB memory read and 134MB memory write are saved per iter-
ation, which accounts for 68% and 45% of the total memory read
and write, respectively.
Black-Scholes In order to reduce the implementation complexity,
most of the computing frameworks only provide unitary and binary
primitives. Although all the possible computation can be built up
by using these low-level primitives, it is inefficient without opti-
mizations. As an illustration, the Black-Scholes algorithm is often
used in financial applications for pricing put and call options. An
idiomatic implementation of this algorithm usually contains eight
Map and six ZipWith operations. Even if programmers do the op-
timization manually, one Map and six ZipWith operations are still
needed (because of the limitation of supported primitives). How-
ever, both of these two kinds of programs can be fused into a single
2-In/2-Out IterOnVec operation by our optimizer. Thus, a total of
90% and 84% memory read/write can be saved, compared to the
idiomatic and partially-fused implementation respectively.
K-means Another merit of our optimizer is enabling programmers
to write performance-equivalent programs that are more thinkable
and hence it puts less burden on programmers. For example, the
K-means clustering algorithm is a popular unsupervised machine
learning technique. With KASEN, K-means can be straightfor-
wardly implemented by using a for loop that executes one Map
and k− 1 Zipwith operations for finding the nearest mean of each
point, and then use k pairs of Zipwith and Reduce to calculate new
means. Our optimizer will fuse all these 3k operations into one
(k+1)-In/k-Out IterOnVec operation and hence has a performance
that is comparable with manually optimized code; approximately
(8k−3)/(8k−1) of the memory read/write are reduced.

8Each element of the degree vector is 4 bytes, while the other vector
elements are 8 bytes. As for the matrix, since we use the COO
format, each non-zero element has 8 bytes.

L-BFGS Finally, we have also conducted a quantitative analysis on
the L-BFGS algorithm, which is one of the most frequently used
optimization methods in practice [29] and relatively more complex
than the above three examples. Specifically, given an optimization
problem with H samples and W features, L-BFGS only needs to
store m vectors of length W to approximate the Hessian implicitly,
and hence requires much less memory than the traditional BFGS al-
gorithm. According to our evaluation, a total of 2H +(10m+7)W
elements read and H +(4m+4)W elements write can be saved per
iteration by the optimization. Take the Ads CTR prediction task
described by Chen et al [11] as an example, in an industry-level
logistic regression problem, there are about 109 samples (H) and
features (W ); the data matrix is sparse and contains only 23H non-
zero elements; m is set to 10; and all the elements are stored in
8-byte double. In such a case, our optimizer can save about 872GB
memory read and 360GB memory write per iteration, which ac-
counts for 48% and 63% of the total memory read/write respec-
tively. Moreover, our optimizer can also save a pair of gather and
scatter operations of a Vector with length W per iteration by using
the hybrid transition instead of the lazy transition strategy. Since
there are a total of 6 gather/scatter operations per iteration before
the optimization, this is a 33% reduction on network traffic, disre-
garding the exact partitioning method.

8.2 Overall Performance
In order to further validate the results of our quantitative analy-

ses, we implement the corresponding algorithms with our imple-
mentation of KASEN and evaluate them on a cluster of 16 ma-
chines. Each of the machines is outfitted with Intel Xeon 4-core
CPU (@ 2.50GHz), 28 GB memory space, and a Mellanox Con-
nectX 3 InfiniBand NIC (MT27500 @40 Gbps).
PageRank For evaluating the performance of PageRank algorithm,
we use several real-world graphs collected by the SNAP project
[1]. Table 3 presents our evaluation results, which are calculated
by running the algorithm for 30 iterations and calculating the av-
erage speedup between the original version of the program and the
optimized one; about 1.22X − 2.20X speedup is achieved by our
optimizer.

Table 3: The evaluation results of PageRank.
Dataset # of workers Speedup

web-Google [18]
(sparsity ≈ 6)

1 1.22X
4 1.46X
16 1.70X

web-ND [3]
(sparsity ≈ 4)

1 1.42X
4 1.60X
16 1.89X

wiki-Talk [17]
(sparsity ≈ 2)

1 1.56X
4 1.75X
16 2.20X

As we can see from the table, the speedup has a positive corre-
lation with the number of nodes. This is because that the number
of slaves is increased when the graph is partitioned into more sub-
graphs. Moreover, the speedup is bigger if the graph is sparser,
which is also consistent with our quantitative analysis result.
Black-Scholes The Black-Scholes algorithm consists of only one
kind of operation (i.e., iterating over the data) and does not re-
quire any cross-worker communications. Thus, in Table 4, we
only present evaluation results of running the program on one
node. Compared to the idiomatic form of the program, about 1.8X
speedup can be achieved by our optimizer. Even if compared with
the partially-fused version of the program, there is still about 1.5X
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Table 2: Comparison on performance between KASEN, Spartan and PowerGraph. All the experiments are done with 16 workers, i.e., one
worker per machine. The number of nodes used for evaluating K-Means is 160M. Times are given in milliseconds per iteration.

App. PageRank Black-Scholes K-Means
Web-Google Web-ND Wiki-Talk 160M Stocks 480M Stocks 10 Clusters 20 Clusters

KASEN 234 38 31 1904 5201 115 190
SPARTAN 1174 436 217 3234 9023 729 1397
POWERGRAPH 332 237 425 — — 5674 8747

speedup. These numbers of speedup are relatively smaller than the
reduction on memory read/write only. This is because the cumu-
lative distribution function (CDF) calculated in the algorithm is
complex and hence the Black-Scholes algorithm is not memory-
bounded.

Table 4: The evaluation results of Black-Scholes.
# of stocks Idiomatic Partial Optimized Speedup
160M 50.12s 42.08s 29.04s 1.45X−1.72X
480M 160.77s 134.98s 83.24s 1.62X−1.93X

However, besides the performance improvement, our optimizer
of KASEN can also mitigate the memory pressure due to the signif-
icant reduction on temporary vectors. Taking the Black-Scholes al-
gorithm as an example, our optimizer reduces near 71% of the peak
memory consumption compared to the idiomatic program (56% re-
duction for the partially-fused version).
K-means Similar to the Black-Scholes algorithm, since the K-
means algorithm uses Vector and Shared variables only, all the data
elements are equally partitioned (with no slaves) to each machine.
Thus the normalized speedup does not change a lot when testing
with different number of machines and different numbers of data
points. In Figure 5, we only illustrate the results of running the
program on all the 16 machines and with a total of 160M input
data points. As we can see from the figure, about 4.14X − 5.82X
speedup is achieved by our optimizer, and it can be even bigger if a
larger number of clusters (i.e., k) is tested.
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Figure 5: Speedup of the K-means algorithm.

L-BFGS We further evaluate our implementation of the L-BFGS
algorithm with a synthetic dataset that is randomly generated.
Specifically, the dataset contains 1.3∗108 samples and 7∗106 fea-
tures; with sparsity 23. According to our evaluation, our optimizer
can achieve about 1.59X−3.54X speedup.

8.3 Comparison with Other Systems
Our optimizer is independent with the exact implementation of

underlying systems. However, in order to justify that the current
simple implementation of our prototype is already efficient, we
have also compared it with Spartan [15] and PowerGraph [14].

Spartan is a recently proposed array-based framework, which is re-
ported [15] to be faster than similar systems such as Presto [28] and
SciDB [8]. However, as we can see from Table 2, our system is up
to 11× faster than Spartan, especially when the application incurs
considerable network traffic (e.g., PageRank). The main reason of
this speedup is that 1) We use hybrid-cut [10] to partition the sparse
matrices, while Spartan is based on tiling and its matrices can only
be partitioned with block-based partitioners. This will lead to at
most ten times larger network traffic; 2) In our system, data in ma-
trices are ordered in Hilbert order [6], which provides better data
locality; Finally, 3) to the best of our knowledge, Spartan is the
only framework that has tried to improve a program’s performance
by transparently altering user-written programs. But, as we have
discussed in Section 1.2, the method used in Spartan is constrained
in both primitives’ type and the number of their inputs. Hence, it is
less effective than our algorithm. For example, since the optimizer
of Spartan cannot merge Map operation with ZipWith, it can only
fuse the idiomatic program of Black-Scholes into four Map and
six ZipWith operations (even more operations than the partial-fused
version of program we tested). This defect is more apparent when
optimizing K-means, the implementation of K-means provided by
Spartan consists of many Map operations that only part of their in-
puts are overlapped which cannot be fused by Spartan’s optimizer.
As for PowerGraph, it has been shown by recent investigations [25]
that array-based systems can be much faster than vertex-centric sys-
tems, and this result is repeated by our experiments.

9. OTHER RELATED WORK
Distributed array operation Many distributed array libraries [22,
23] have been built for providing highly optimized implementa-
tions of specific operations. Algorithms used by these libraries or
even themselves are building blocks of modern array-based frame-
works. However, although they are very fast for operations that
have been built-in, they do not provide optimization that considers
multiple operations.
Distributed array frameworks For retaining the expressive power
of array operations on large datasets, many systems have been pro-
posed to provide an array interface over modern data-parallel com-
puting frameworks. However, these tools are usually reported to
be inefficient [28, 24], because they are not build on a specific
underlying infrastructure that originally designed for arrays (e.g.,
MLib/SystemML are based on Spark [30, 7] and SciDB [8] re-
quires frequent disk I/O). As a result, there is currently a rising
trend of building computing frameworks that are directly based
on distributed array operations (e.g., Presto [28], MadLINQ [24],
CombBLAS/KDT [9, 20], TensorFlow [2]). However, since static
analysis deals poorly with ambiguities in source code [4], most of
these frameworks adopt a naive implementation of executing each
operation in isolation and in the exact order written by program-
mers, which is suboptimal. In contrast, KASEN defines a restricted
programming model and hence enables us to design an optimizer
that is both automatic and effective.
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Local array optimizer Besides the researches on distributed array
programs, there is a long tradition of developing domain-specific
compilers that optimize local array programs. For example, MaJIC
and FALCOM compilers for MATLAB optimize matrix expres-
sions according to algebraic laws [21, 12], but they do not perform
any fusion-based optimization. Among these technologies, BTO
[5] is the most closely related work of KASEN, which also pro-
poses a fusion-based technique for optimizing sequences of BLAS
operations. However, it is only a local array optimizer and hence is
ignorant of data synchronizations that are required in a distributed
environment. As a result, if it is directly used on a distributed pro-
gram, the outputted program may incur suboptimal amount of net-
work traffic or even produce incorrect results.

10. CONCLUSION
In this paper, we present an array-based programming model

KASEN, which defines a strict data, communication and compu-
tation model and hence enables us to measure and optimize pro-
grams automatically. According to our investigation, KASEN is
sufficient for implementing many important machine learning and
graph algorithms, and more importantly, the optimizer shipped with
KASEN can achieve significant reduction on both memory read-
/write, buffer allocation and network traffic. Evaluation based on
our implementation of KASEN shows that the optimizer of KASEN
can achieve 1.22X−5.83X speedup for various algorithms.
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