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ABSTRACT
Large-scale machine learning (ML) algorithms are often
iterative, using repeated read-only data access and I/O-
bound matrix-vector multiplications to converge to an opti-
mal model. It is crucial for performance to fit the data into
single-node or distributed main memory. General-purpose,
heavy- and lightweight compression techniques struggle to
achieve both good compression ratios and fast decompres-
sion speed to enable block-wise uncompressed operations.
Hence, we initiate work on compressed linear algebra (CLA),
in which lightweight database compression techniques are
applied to matrices and then linear algebra operations such
as matrix-vector multiplication are executed directly on the
compressed representations. We contribute effective column
compression schemes, cache-conscious operations, and an ef-
ficient sampling-based compression algorithm. Our experi-
ments show that CLA achieves in-memory operations perfor-
mance close to the uncompressed case and good compression
ratios that allow us to fit larger datasets into available mem-
ory. We thereby obtain significant end-to-end performance
improvements up to 26x or reduced memory requirements.

1. INTRODUCTION
Data has become a ubiquitous resource [16]. Large-scale

machine learning (ML) leverages these large data collections
in order to find interesting patterns and build robust pre-
dictive models [16, 19]. Applications range from traditional
regression analysis and customer classification to recommen-
dations. In this context, often data-parallel frameworks such
as MapReduce [20], Spark [51], or Flink [2] are used for cost-
effective parallelization on commodity hardware.

Declarative ML: State-of-the-art, large-scale ML aims
at declarative ML algorithms [12], expressed in high-level
languages, which are often based on linear algebra, i.e., ma-
trix multiplications, aggregations, element-wise and statisti-
cal operations. Examples—at different abstraction levels—
are SystemML [21], SciDB [44], Cumulon [27], DMac [50],
and TensorFlow [1]. The high level of abstraction gives
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Figure 1: Goals of Compressed Linear Algebra.

data scientists the flexibility to create and customize ML
algorithms independent of data and cluster characteristics,
without worrying about the underlying data representations
(e.g., sparse/dense format) and execution plan generation.

Problem of Memory-Centric Performance: Many
ML algorithms are iterative, with repeated read-only access
to the data. These algorithms often rely on matrix-vector
multiplications to converge to an optimal model. Matrix-
vector multiplications are I/O-bound because they require
one complete scan of the matrix, but only two floating point
operations per matrix element. Hence, it is crucial for perfor-
mance to fit the matrix into available memory because mem-
ory bandwidth is usually 10x-100x higher than disk band-
width (but, for matrix-vector, still 10x-40x smaller than
peak floating point performance, and thus, matrix-vector re-
mains I/O-bound). This challenge applies to single-node in-
memory computations [28], data-parallel frameworks with
distributed caching such as Spark [51], and hardware accel-
erators like GPUs, with limited device memory [1, 4, 7].

Goals of Compressed Linear Algebra: Declarative
ML provides data independence, which allows for auto-
matic compression to fit larger datasets into memory. A
baseline solution would be to employ general-purpose com-
pression techniques and decompress matrices block-wise
for each operation. However, heavyweight techniques like
Gzip are not applicable because decompression is too slow,
while lightweight methods like Snappy only achieve moder-
ate compression ratios. Existing special-purpose compressed
matrix formats with good performance like CSR-VI [34] sim-
ilarly show only modest compression ratios. Our approach
builds upon research on lightweight database compression,
such as compressed bitmaps, and sparse matrix representa-
tions. Specifically, we initiate the study of compressed linear
algebra (CLA), in which database compression techniques
are applied to matrices and then linear algebra operations
are executed directly on the compressed representations.
Figure 1 shows the goals of this approach: we want to widen
the sweet spot for compression by achieving both (1) perfor-
mance close to uncompressed in-memory operations and (2)
good compression ratios to fit larger datasets into memory.
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Table 1: Compression Ratios of Real Datasets.
Dataset Size Gzip Snappy CLA
Higgs [37] 11M×28, 0.92: 2.5 GB 1.93 1.38 2.03

Census [37] 2.5M×68, 0.43: 1.3 GB 17.11 6.04 27.46
Covtype [37] 600K×54, 0.22: .14 GB 10.40 6.13 12.73

ImageNet [15] 1.2M×900, 0.31: 4.4 GB 5.54 3.35 7.38
Mnist8m [13] 8.1M×784, 0.25: 19 GB 4.12 2.60 6.14

Compression Potential: Our focus is on floating-point
matrices (with 53/11 bits mantissa/exponent), so the poten-
tial for compression may not be obvious. Table 1 shows com-
pression ratios for the general-purpose, heavyweight Gzip
and lightweight Snappy algorithms and for our CLA method
on real-world datasets (sizes given as rows, columns, spar-
sity, and in-memory size). We see compression ratios of 2x-
27x, due to the presence of a mix of floating point and integer
data, and due to features with relatively few distinct values.
Thus, unlike in scientific computing [10], enterprise machine-
learning datasets are indeed amenable to compression. The
decompression bandwidth (including time for matrix deseri-
alization) of Gzip ranges from 88 MB/s to 291 MB/s which
is slower than for uncompressed I/O. Snappy achieves a de-
compression bandwidth between 232 MB/s and 638 MB/s
but only moderate compression ratios. In contrast, CLA
achieves good compression ratios and avoids decompression.

Contributions: Our major contribution is to make a
case for compressed linear algebra, where linear algebra op-
erations are directly executed over compressed matrices. We
leverage ideas from database compression techniques and
sparse matrix representations. The novelty of our approach
is a combination of both, leading towards a generalization of
sparse matrix representations and operations. The structure
of the paper reflects our detailed technical contributions:

• Workload Characterization: We provide the back-
ground and motivation for CLA in Section 2 by giving
an overview of Apache SystemML, and describing typ-
ical linear algebra operations and data characteristics.

• Compression Schemes: We adapt several column-
based compression schemes to numeric matrices in Sec-
tion 3 and describe efficient, cache-conscious core lin-
ear algebra operations over compressed matrices.

• Compression Planning: In Section 4, we further pro-
vide an efficient sampling-based algorithm for select-
ing a good compression plan, including techniques for
compressed-size estimation and column grouping.

• Experiments: Finally, we integrated CLA into Apache
SystemML. In Section 5, we study a variety of full-
fledged ML algorithms and real-world datasets in both
single-node and distributed settings. We also compare
CLA against alternative compression schemes.

2. BACKGROUND AND MOTIVATION
In this section, we provide the background and motivation

for compressed linear algebra. After giving an overview of
SystemML as a representative platform for declarative ML,
we discuss common workload and data characteristics. We
also provide further evidence of compression potential.

2.1 SystemML Architecture
SystemML [21] aims at declarative ML [12], where algo-

rithms are expressed in a high level scripting language hav-
ing an R-like syntax and compiled to hybrid runtime plans
that combine both single-node, in-memory operations and

distributed operations on MapReduce or Spark [28]. We
outline the features of SystemML relevant to CLA.

ML Program Compilation: An ML script is first
parsed into a hierarchy of statement blocks and statements,
where blocks are delineated by control structures such as
loops and branches. Each statement block is translated to a
DAG of high-level operators, and the system then applies
various rewrites, such as common subexpression elimina-
tion, optimization of matrix-multiplication chains, algebraic
simplification, and rewrites for dataflow properties such as
caching and partitioning. Information about data size and
sparsity are propagated from the inputs through the entire
program to enable worst-case memory estimates per opera-
tion. These estimates are used during an operator-selection
step, yielding a DAG of low-level operators, which is then
compiled into a runtime program of executable instructions.

Distributed Matrix Representations: SystemML
supports various input formats, all of which are internally
converted into a binary block matrix format with fixed-size
blocks. Similar structures, called tiles [27], chunks [44], or
blocks [21], are widely used in existing large-scale ML sys-
tems. Each block is represented either in dense or sparse for-
mat in order to allow for block-local decisions and efficiency
on datasets with non-uniform sparsity. SystemML uses a
modified CSR (compressed sparse row) format for sparse
matrix blocks. For single-node, in-memory operations, the
entire matrix is often represented as a single block [28],
which allows reuse of block operations across runtime back-
ends. CLA can be seamlessly integrated by adding a new
derived block representation and operations. We provide
further details of CLA in SystemML in Section 5.1.

2.2 Workload Characteristics
We now describe common ML workload characteristics in

terms of linear algebra operations and properties of matrices.
An Example: Consider the task of fitting a simple linear

regression model via the conjugate gradient (CG) method [4,
21, 50]. The LinregCG algorithm reads matrix X and vector
y, including metadata from HDFS, and iterates CG steps
until the error—as measured by an appropriate norm—falls
below a target value. The ML script looks as follows:

1: X = read($1); # n x m feature matrix
2: y = read($2); # n x 1 label vector
3: maxi = 50; lambda = 0.001; ...
4: r = -(t(X) %*% y); # %*%..matrix multiply
5: norm_r2 = sum(r * r); p = -r; # initial gradient
6: w = matrix(0, ncol(X), 1); i = 0;
7: while(i < maxi & norm_r2 > norm_r2_trgt) {
8: # compute conjugate gradient
9: q = ((t(X) %*% (X %*% p)) + lambda * p);

10: # compute step size
11: alpha = norm_r2 / sum(p * q);
12: # update model and residuals
13: w = w + alpha * p;
14: r = r + alpha * q;
15: old_norm_r2 = norm_r2;
16: norm_r2 = sum(r^2); i = i + 1;
17: p = -r + norm_r2/old_norm_r2 * p; }
18: write(w, $3, format="text");

Common Operation Characteristics: Two important
classes of ML algorithms are (1) iterative algorithms with
matrix-vector multiplications as above, and (2) closed-form
algorithms with transpose-self matrix multiplication. For
both classes, a small number of matrix operations domi-
nate the overall algorithm runtime (apart from initial read
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Table 2: Overview ML Algorithm Core Operations
(see http://systemml.apache.org/algorithms for details).

Algorithm M-V V-M MVChain TSMM
Xv v>X X>

(
w � (Xv)

)
X>X

LinregCG X X X (w/o w�)
LinregDS X X

Logreg / GLM X X X (w/ w�)
L2SVM X X

PCA X X

costs). This is especially true with hybrid runtime plans
(see Section 2.1), where single-node operations over small
data incur no latency for distributed computation. In Lin-
regCG, for example, only lines 4 and 9 access matrix X; all
other computations are inexpensive operations over small
vectors or scalars. Table 2 summarizes the core operations
of important ML algorithms. Besides matrix-vector multi-
plication (e.g., line 9), we have vector-matrix multiplication,
often caused by the rewrite X>v→ (v>X)> to avoid trans-
posing X (e.g., lines 4 and 9) because X> is very expen-
sive, while dense vector transpositions are realized as pure
metadata operations per block. In addition, many systems
also implement physical operators for matrix-vector chains,
with optional element-wise weighting w� (e.g., line 9), and
transpose-self matrix multiplication (TSMM) X>X [4, 28].
All of these operations are I/O-bound, except for TSMM
with m � 1 features because its compute workload grows
as O(m2). Beside these operations, append, unary aggre-
gates like colSums, and matrix-scalar operations access X
for intercept computation, scaling and shifting.

Common Data Characteristics: Despite signifi-
cant differences in data sizes—ranging from kilobytes to
terabytes—we and others have observed common data char-
acteristics for the aforementioned algorithm classes:

• Tall and Skinny Matrices: Matrices usually have sig-
nificantly more rows (observations) than columns (fea-
tures), especially in enterprise machine learning [4, 52],
where data often originates from data warehouses.

• Non-Uniform Sparsity: Sparse datasets usually have
many features, often created via feature pre-processing
like dummy coding. Sparsity, however, is rarely uni-
form, but varies among features. For example, Figure 2
shows the sparsity skew of three sparse datasets.

• Low Column Cardinalities: Many datasets exhibit fea-
tures with few distinct values, e.g., encoded categori-
cal, binned or dummy-coded (0/1) features.

The foregoing three data characteristics directly motivate
the use of column-based compression schemes.

2.3 Compression Potential and Strategy
Examination of the datasets from Table 1 shows that

column cardinality and column correlation should be key
drivers of a column-based compression strategy.

Column Cardinality: The ratio of column cardinality
(number of distinct values) to the number of rows is a good
indicator of compression potential because it quantifies re-
dundancy, independently of the actual values. Figures 3(a)
and 3(b) show the ratio of column cardinality to the number
of rows (in %) per column in the datasets Higgs and Census.
All columns of Census have a cardinality ratio below .0008%
and the majority of columns of Higgs have a cardinality ra-
tio below 1%. There is also skew in the column cardinalities;
for example, Higgs contains several columns having millions
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of distinct values. These observations motivate value-centric
compression with fallbacks for high cardinality columns.

Column Correlation: Another indicator of compres-
sion potential is the correlation between columns with re-
spect to the number of distinct value-pairs. With value-
based offset lists, a column i with di distinct values requires
≈ 8di +4nB, where n is the number of rows, and each value
is encoded with 8 B and a list of 4 B row indexes. Co-coding
two columns i and j as a single group of value-pairs and off-
sets requires 16dij+4nB, where dij is the number of distinct
value-pairs. The larger the correlation, the larger the size
reduction by co-coding. Figures 3(c) and 3(d) show the size
reductions (in MB) by co-coding all pairs of columns of Higgs
and Census. For Higgs, co-coding any of the columns 8, 12,
16, and 20 with one of most of the other columns reduces
sizes by at least 25 MB. Moreover, co-coding any column
pair of Census reduces sizes by at least 9.3 MB. Overall,
co-coding column groups of Census (not limited to pairs)
improves the compression ratio from 10.1x to 27.4x. We
therefore endeavor to discover and co-code column groups.

3. COMPRESSION SCHEMES
We now describe our novel matrix compression frame-

work, including two effective encoding formats for com-
pressed column groups, as well as efficient, cache-conscious
core linear algebra operations over compressed matrices.

3.1 Matrix Compression Framework
As motivated in Sections 2.2 and 2.3, we represent a

compressed matrix block as a set of compressed columns.
Column-wise compression leverages two key characteristics:
few distinct values per column and high cross-column corre-
lations. Taking advantage of few distinct values, we encode
a column as a list of distinct values together with a list of
offsets per value, i.e., a list of row indexes in which the value
appears. We shall show that, similar to sparse matrix for-
mats, offset lists allow for efficient linear algebra operations.
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Figure 4: Example Compressed Matrix Block.

Column Co-Coding: We exploit column correlation—
as discussed in Section 2.3—by partitioning columns into
column groups such that columns within each group are
highly correlated. Columns within the same group are then
co-coded as a single unit. Conceptually, each row of a col-
umn group comprisingm columns is anm-tuple t of floating-
point values, representing reals or integers.

Column Encoding Formats: Conceptually, the offset
list associated with each distinct tuple is stored as a com-
pressed sequence of bytes. The efficiency of executing linear
algebra operations over compressed matrices strongly de-
pends on how fast we can iterate over this compressed rep-
resentation. We adapt two well-known effective offset-list
encoding formats: Offset-List Encoding (OLE) and Run-
Length Encoding (RLE), as well as uncompressed columns
(UC) as a fallback if compression is not beneficial. These de-
cisions on column encoding formats as well as co-coding are
strongly data-dependent and hence require automatic opti-
mization. We discuss compression planning in Section 4.

Example Compressed Matrix: Figure 4 shows our
running example of a compressed matrix block. The 10× 5
input matrix is represented as four column groups, where we
use 1-based indexing. Columns 2, 4, and 5 are represented
as single-column groups and encoded with RLE, OLE, and
UC, respectively. For column 4, we have two distinct non-
zero values and hence two offset lists. Finally, there is a
co-coded column group for the correlated columns 1 and 3,
which encodes offset lists for all distinct value-pairs.

Notation: For the ith column group, denote by Ti =
{ ti1, ti2, . . . , tidi } the set of di distinct non-zero tuples, by
Gi the set of column indexes, and by Oij the set of offsets as-
sociated with tij (1 ≤ j ≤ di). We focus on the “sparse” case
in which zero values are not stored (0-suppressing). Also,
denote by α the size in bytes of each floating point value,
where α = 8 for the double-precision IEEE-754 standard.

3.2 Column Encoding Formats
Our framework relies on the complementary OLE, RLE,

and UC representations. We now describe the compressed
data layout of these formats and give formulas for the in-
memory compressed size SOLE

i and SRLE
i . The total matrix

size is then computed as the sum of group size estimates.
Data Layout: Figure 5 shows—as an extension to our

running example from Figure 4 (with more rows)—the data
layout of OLE/RLE column groups composed of four lin-
earized arrays. Both encoding schemes use a common header
of three arrays for column indexes, fixed-length value tuples,
and pointers to the data per tuple as well as a data array Di.
The physical data length per tuple in Di can be computed
as the difference of adjacent pointers (e.g., for ti1 = {7, 6}
as 13-1). The data array is then used in an encoding-specific
manner. Tuples are stored in order of decreasing physical
data length to improve branch prediction and pre-fetching.
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Figure 5: Data Layout OLE/RLE Column Groups.

Offset-List Encoding (OLE): Our OLE scheme divides
the offset range into segments of fixed length ∆s = 216 (two
bytes per offset). Each offset is mapped to its corresponding
segment and encoded as the difference to the beginning of its
segment. For example, the offset 155,762 lies in segment 3
(= 1 + b(155,762 − 1)/∆sc) and is encoded as 24,690 (=
155,762 − 2∆s). Each segment then encodes the number
of offsets with two bytes, followed by two bytes for each
offset, resulting in a variable physical length in Di. Empty
segments are represented as two bytes indicating zero length.
Iterating over an OLE group entails scanning the segmented
offset list and reconstructing global offsets as needed. The
size SOLE

i of column group Gi is calculated as

SOLE
i = 4|Gi|+ di

(
4 + α|Gi|

)
+ 2

di∑
j=1

bij + 2zi, (1)

where bij denotes the number of segments of tuple tij , |Oij |
denotes the number of offsets for tij , and zi =

∑di
j=1|Oij |

denotes the total number of offsets in the column group.
The common header has a size of 4|Gi|+ di

(
4 + α|Gi|

)
.

Run-Length Encoding (RLE): In RLE, a sorted list of
offsets is encoded as a sequence of runs. Each run represents
a consecutive sequence of offsets, via two bytes for the start-
ing offset and two bytes for the run length. We store starting
offsets as the difference between the offset and the ending
offset of the preceding run. Empty runs are used when a
relative starting offset is larger than the maximum length
of 216. Similarly, runs exceeding the maximum length are
partitioned into smaller runs. Iterating over an RLE group
entails scanning the runs and enumerating offsets per run.
The size SRLE

i of column group Gi is computed by

SRLE
i = 4|Gi|+ di

(
4 + α|Gi|

)
+ 4

di∑
j=1

rij , (2)

where rij is the number of runs for tuple tij . Again, the
common header has a size of 4|Gi|+ di

(
4 + α|Gi|

)
.

3.3 Operations over Compressed Matrices
We now introduce efficient linear algebra operations over

a set X of column groups. Matrix block operations are then
composed of operations over column groups, facilitating sim-
plicity and extensibility with regard to different encoding
formats. We write cv to denote element-wise scalar-vector
multiplication as well as u ·v and u�v to denote the inner
and element-wise products of vectors, respectively.

Matrix-Vector Multiplication: The product q = Xv
of X and a column vector v can be represented with respect

to column groups as q =
∑|X|

i=1

∑di
j=1(tij · vGi)1Oij , where

vGi is the subvector of v corresponding to the indexes Gi and
1Oij is the 0/1-indicator vector of offset list Oij . A straight-
forward way to implement this computation iterates over tij
tuples in each group, scanning Oij and adding tij · vGi at
reconstructed offsets to q. However, pure column-wise pro-
cessing would scan the n×1 output vector q once per tuple,
resulting in cache-unfriendly behavior for the typical case of
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Algorithm 1 Cache-Conscious OLE Matrix-Vector

Input: OLE column group Gi, vectors v, q, row range [rl, ru)
Output: Modified vector q (in row range [rl, ru))
1: for j in [1, di] do // distinct tuples
2: πij ← skipScan(Gi, j, rl) // find position of rl in Di

3: uij ← tij · vGi // pre-aggregate value
4: for bk in [rl, ru) by ∆c do // cache buckets in [rl, ru)
5: for j in [1, di] do // distinct tuples
6: for k in [bk,min(bk + ∆c, ru)) by ∆s do // segments
7: if πij ≤ bij + |Oij | then // physical data length
8: addSegment(Gi, πij ,uij , k,q) // update q, πij

large n. We therefore use cache-conscious schemes for OLE
and RLE groups based on horizontal, segment-aligned scans
(with benefits of up to 2.1x/5.4x for M-V/V-M in our experi-
ments); see Algorithm 1 and Figure 6(a) for the case of OLE.
Multi-threaded operations parallelize over segment-aligned
partitions of rows [rl, ru), which guarantees disjoint results
and thus avoids partial results per thread. We find πij , the
starting position of each tij in Di via a skip scan that ag-
gregates segment lengths until we reach rl (line 2). To min-
imize the overhead of finding πij , we use static scheduling
(task partitioning). We further pre-compute uij = tij · vGi
once for all tuples (line 3). For each cache-bucket of size
∆c (such that ∆c ·#cores · 8 B fits in L3 cache, by default
∆c = 2∆s), we then iterate over all distinct tuples (lines 5-
8) but maintain the current positions πij as well. The inner
loop (lines 6-8) then scans segments and adds uij via scat-
tered writes at reconstructed offsets to the output q (line 8).
RLE is similarly realized except for sequential writes to q
per run, special handling of partition boundaries, and addi-
tional state for the reconstructed start offsets per tuple.

Vector-Matrix Multiplication: Column-wise com-
pression allows for efficient vector-matrix products q = v>X
because individual column groups update disjoint entries of
the output vector q. Each entry qi can be expressed over
columns as qi = v>X:i. We rewrite this multiplication in
terms of a column group Gi as scalar-vector multiplications:
qGi =

∑di
j=1

∑
l∈Oij

vltij . However, a purely column-wise

processing would again suffer from cache-unfriendly behav-
ior because we scan the input vector v once for each distinct
tuple. Our cache-conscious OLE/RLE group operations
again use horizontal, segment-aligned scans as shown in Fig-
ure 6(b). The OLE/RLE algorithms are similar to matrix-
vector but in the inner loop we sum up input-vector values
according to the given offset list; finally, we scale the aggre-
gated value once with the values in tij . For multi-threaded
operations, we parallelize over column groups, where disjoint
results per column allow for simple dynamic task schedul-
ing. The cache bucket size is equivalent to matrix-vector
(by default 2∆s) except that RLE runs are allowed to cross
cache bucket boundaries due to column-wise parallelization.

Special Matrix Multiplications: We also aim at
matrix-vector multiplication chains p = X>(w�(Xv)), and
transpose-self matrix multiplication R = X>X. We effect
the former via a matrix-vector multiply q = Xv, an un-
compressed element-wise multiply u = q�w, and a vector-
matrix multiply p = (u>X)> using the previously described
column group operations. This block-level, composite oper-
ation scans each block twice but still avoids a second full
pass over a distributed X. Transpose-self matrix multipli-
cation is effected via repeated vector-matrix multiplications.
For each column group Gi, we decompress {vk : k ∈ Gi },
one column vk at a time, and compute p = v>k Xj≥k. Each
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Figure 6: Cache-Conscious OLE Operations.

non-zero pl is written to both Rk,l and Rl,k. Multi-threaded
operations dynamically parallelize over column groups.

Other Operations: Various common operations can be
executed very efficiently over compressed matrices without
scanning the offset lists. Sparse-safe matrix-scalar opera-
tions such as X2 or 2X are carried out with a single pass
over the set of tuples Ti for each column group Gi. Append
operations such as adding a column of 1’s or another matrix
to X is done via simple concatenation of column groups.
Finally, unary aggregates like sum (or similarly colSums)

are efficiently computed via counts by
∑|X|

i=1

∑di
j=1|Oij |tij .

For each value, we aggregate the RLE run lengths or OLE
lengths per segment, respectively. Row aggregates (e.g.,
rowSums) are computed in a cache-conscious manner.

4. COMPRESSION PLANNING
Given an uncompressed n×m matrix block X, we auto-

matically choose a compression plan, that is, a partitioning
of compressible columns into column groups and a compres-
sion scheme per group. To keep the planning costs low, we
provide novel sampling-based techniques for estimating the
compressed size of an OLE/RLE column group Gi. The size
estimates are used for finding the initial set of compress-
ible columns and a good column-group partitioning. Since
exhaustive (O(mm)) and brute-force greedy (O(m3)) parti-
tioning are infeasible, we further provide a new bin-packing-
based technique that drastically reduces the number of can-
didate groups. Finally, we describe the overall compression
algorithm including corrections for estimation errors.

4.1 Estimating Compressed Size
We present our estimators for distinct tuples di, non-zero

tuples zi, segments bij , and runs rij that are needed to calcu-
late the compressed size of a column group Gi with formulas
(1) and (2). The estimators are based on a small sample of
rows S drawn randomly and uniformly from X with |S| � n.
In our setting, compression of an incompressible group is
a worse mistake than a failure to compress a compressible
group. We therefore prefer to err on the side of overesti-
mating compressed sizes—in analogy with traditional query
optimization, the key goal is to avoid disastrously bad plans.

Number of Distinct Tuples: Sampling-based estima-
tion of the number of distinct tuples di is a well studied but
challenging problem [14, 24, 46]. We have found that the
hybrid estimator [24] is satisfactory for our purposes, com-
pared to more expensive estimators like KMV [8] or Valiants’
estimator [46]. The idea is to estimate the degree of variabil-
ity in the frequencies of the tuples in Ti as low, medium, or
high, based on the estimated squared coefficient of variation.
Then we apply a “generalized jackknife” estimator that per-
forms well for that regime to obtain an estimate d̂i [24]. Such
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an estimator has the general form d̂ = dS + K(N (1)/|S|),
where dS is the number of distinct tuples in the sample, K
is a data-based constant, and N (1) is the number of tuples
that appear exactly once in S (“singletons”).

Number of OLE Segments: In general, not all ele-
ments of Ti will appear in the sample. Denote by T o

i and
T u
i the sets of tuples observed and unobserved in the sam-

ple, and by doi and dui their cardinalities. The latter can be
estimated as d̂ui = d̂i−doi , where d̂i is obtained as described
above. We also need to estimate the population frequencies
of both observed and unobserved tuples. Let fij be the pop-
ulation frequency of tuple tij and Fij the sample frequency.
A näıve estimate scales up Fij to obtain fnäıve

ij = (n/|S|)Fij .

Note that
∑

tij∈T o
i
fnäıve
ij = n implies a zero population fre-

quency for each unobserved tuple. We adopt a standard way
of dealing with this issue and scale down the näıve frequency
estimates by the estimated “coverage” Ci of the sample, de-
fined as Ci =

∑
tij∈T o

i
fij/n. The usual estimator of cover-

age, originally due to Turing (see [22]), is

Ĉi = max
(
1−N (1)

i /|S|, |S|/n
)
. (3)

This estimator assumes a frequency of one for unseen tuples,
computing the coverage as one minus the fraction of single-
tons in the sample. We add the lower sanity bound |S|/n
to handle the case N

(1)
i = |S|. For simplicity, we assume

equal frequencies for all unobserved tuples. The resulting
frequency estimation formula for tuple tij is

f̂ij =

{
(n/|S|)ĈiFij if tij ∈ T o

i

n(1− Ĉi)/d̂
u
i if tij ∈ T u

i .
(4)

We can now estimate the number of segments bij in which
tuple tij appears at least once (this modified definition of
bij ignores empty segments for simplicity with negligible er-
ror in our experiments). There are l = n − |S| unobserved

offsets and estimated f̂u
iq = f̂iq − Fiq unobserved instances

of tuple tiq for each tiq ∈ Ti. We adopt a maximum-entropy
(maxEnt) approach and assume that all assignments of un-
observed tuple instances to unobserved offsets are equally
likely. Denote by B the set of segment indexes and by Bij

the subset of indexes corresponding to segments with at least
one observation of tij . Also, for k ∈ B, let lk be the num-
ber of unobserved offsets in the kth segment and Nijk the
random number of unobserved instances of tij assigned to
the kth segment (Nijk ≤ lk). Then we estimate bij by its
expected value under our maxEnt model:

b̂ij = E[bij ] = |Bij |+
∑

k∈B\Bij

P (Nijk > 0)

= |Bij |+
∑

k∈B\Bij

[1− h(lk, f̂
u
ij , l)],

(5)

where h(a, b, c) =
(
c−b
a

)/(
c
a

)
is a hypergeometric probability.

Note that b̂ij ≡ b̂ui for tij ∈ T u
i , where b̂ui is the value of b̂ij

when f̂u
ij = (1 − Ĉi)n/d̂

u
i and |Bij | = 0. Thus our estimate

of the sum
∑di

j=1 bij in (1) is
∑

tij∈T o
i
b̂ij + d̂ui b̂

u
i .

Number of Non-Zero Tuples: We estimate the num-
ber of non-zero tuples as ẑi = n − f̂i0, where f̂i0 is an esti-
mate of the number of zero tuples in X:Gi . Denote by Fi0

the number of zero tuples in the sample. If Fi0 > 0, we can
proceed as above and set f̂i0 = (n/|S|)ĈiFi0, where Ĉi is

(3). If Fi0 = 0, then we set f̂i0 = 0; this estimate maximizes

ẑi and hence ŜOLE
i per our conservative estimation strategy.
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Figure 7: Estimating the Number of RLE Runs r̂ij.

Number of RLE Runs: The number of RLE runs rij for
tuple tij is estimated as expected value of rij under the max-
Ent model. Because this expected value is very hard to com-
pute exactly and Monte Carlo approaches are too expensive,
we approximate E[rij ] by considering one interval of con-
secutive unobserved offsets at a time as shown in Figure 7.
Adjacent intervals are separated by a “border” comprising
one or more observed offsets. As with the OLE estimates,
we ignore the effects of empty and very long runs. Denote
by ηk the length of the kth interval and set η =

∑
k ηk.

Under the maxEnt model, the number fu
ijk of unobserved

tij instances assigned to the kth interval is hypergeometric,

and we estimate fu
ijk by its mean value: f̂u

ijk = (ηk/η)f̂u
ij ,

where we ignore random fluctuations about the mean. Given
that f̂u

ijk instances of tij are assigned randomly and uni-
formly among the ηk possible positions in the interval, the
number of runs rijk within the interval (ignoring the bor-
ders) is known to follow a so-called “Ising-Stevens” distri-
bution [30, pp. 422-423] and we estimate rijk by its mean:

r̂ijk = f̂u
ijk(ηk − f̂u

ijk + 1)/ηk. To estimate the contribution
from the borders, assume that each border comprises a sin-
gle observed offset. For a small sampling fraction this is the
likely scenario but we handle borders of arbitrary width. If
the border offset that separates intervals k and k + 1 is an
instance of tiq for some q 6= j, then Aijk = 0, where Aijk is
the contribution to rij from the border; in this case our es-

timate is simply Âijk = 0. If the border offset is an instance
of tij , then Aijk depends on the values of the unseen offsets
on either side. If both of these adjacent offsets are instances
of tij , then Aijk = −1, because the run that spans the bor-
der has been double counted. If neither of these adjacent
offsets are instances of tij , then Aijk = 1, because the in-
stance of tij at the border constitutes a run of length 1. We
estimate Aijk by its approximate expected value, treating
the intervals as statistically independent:

Âijk = E[Aijk] ≈

(
ηk − f̂u

ijk

ηk

)(
ηk+1 − f̂u

ij(k+1)

ηk+1

)
(1)

+

(
f̂u
ijk

ηk

)(
f̂u
ij(k+1)

ηk+1

)
(−1)

= 1− (2f̂u
ijk/ηk) = 1− (2f̂u

ij/η).

(6)

We modify this formula appropriately for borders at the first
or last offset. Our final estimate is r̂ij =

∑
k r̂ijk +

∑
k Âijk.

4.2 Partitioning Columns into Groups
A greedy brute-force method for partitioning a set of com-

pressible columns into groups starts with singleton groups
and executes merging iterations. At each iteration, we merge
the two groups having maximum compression ratio (sum of
their compressed sizes divided by the compressed size of the
merged group). We terminate when no further space reduc-
tions are possible, i.e., no compression ratio exceeds 1. Al-
though compression ratios are estimated from a sample, the
cost of the brute-force scheme is O(m3), which is infeasible.

Bin Packing: We observed empirically that the brute-
force method usually generates groups of no more than five
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Algorithm 2 Matrix Block Compression

Input: Matrix block X of size n×m
Output: A set of compressed column groups X
1: CC ← ∅, CUC ← ∅, G ← ∅, X ← ∅
2: // Planning phase – – – – – – – – – – – – – – – – – – –
3: S ← sampleRowsUniform(X, sample size)
4: for all column k in X do // classify

5: cmp ratio← ẑiα/min(ŜRLE
k , ŜOLE

k )
6: if cmp ratio > 1 then
7: CC ← CC ∪ k
8: else
9: CUC ← CUC ∪ k

10: bins← runBinPacking(CC) // group
11: for all bin b in bins do
12: G ← G ∪ groupBruteForce(b)
13: // Compression phase – – – – – – – – – – – – – – – – –
14: for all column group Gi in G do // compress
15: do
16: biglist← extractBigList(X,Gi)
17: cmp ratio← getExactCmpRatio(biglist)
18: if cmp ratio > 1 then
19: X ← X ∪ compressBigList(biglist), break
20: k ← removeLargestColumn(Gi)
21: CUC ← CUC ∪ k
22: while |Gi| > 0
23: return X ← X ∪ createUCGroup(CUC)

columns. Further, we noticed that the time needed to esti-
mate a group size increases as the sample size, the number of
distinct tuples, or the matrix density increases. These two
observations motivate a heuristic strategy where we parti-
tion the columns into a set of small bins and then apply
the brute-force method within each bin to form the column
groups. We use a bin-packing algorithm to assign columns
to bins. The weight of each column indicates its estimated
contribution to the overall runtime of the brute-force par-
titioning. The capacity of a bin is chosen to ensure mod-
erate brute-force runtime per bin. Intuitively, bin packing
minimizes the number of bins, which should maximize the
number of columns within each bin and hence grouping po-
tential, while controlling the processing costs.

Bin Weights: We set each bin capacity to w = βγ and
the weight of the ith column to d̂i/n (i.e., the ratio of dis-
tinct tuples to rows), where β is a tuning parameter and γ

also constrains grouping decisions: d̂i/n ≤ γ. If this con-
straint does not hold, we consider column i as ineligible for
grouping to prune high cardinality columns. We made the
design choice of a constant bin capacity—independent of the
number of non-zeros—to ensure constant compression ratios
and throughput irrespective of blocking configurations. We
use the first-fit heuristic to solve the bin-packing problem.

4.3 Compression Algorithm
We now describe the overall algorithm for creating com-

pressed matrix blocks (Algorithm 2). Note that we trans-
pose the input in case of row-major dense or sparse formats
to avoid performance issues due to column-wise processing.

Planning Phase (lines 2-12): Planning starts by draw-
ing a sample of rows from X. For each column i, the sam-
ple is first used to estimate the compressed column size SC

i

by ŜC
i = min(ŜRLE

i , ŜOLE
i ), where ŜRLE

i and ŜOLE
i are ob-

tained by substituting the estimated d̂i, ẑi, r̂ij , and b̂ij into
formulas (1) and (2). We conservatively estimate the un-

compressed column size as ŜUC
i = ẑiα, which covers both

dense and sparse with moderate underestimation and allows
column-wise decisions independent of |CUC| (where sparse-

row overheads might be amortized in case of many columns).

Columns whose estimated compression ratio ŜUC
i /ŜC

i exceed
1 are added to a compressible set CC. In a last step, we di-
vide the columns in CC into bins and apply the greedy brute-
force algorithm within each bin to form column groups.

Compression Phase (lines 13-23): The compression
phase first obtains exact information about the parameters
of each column group and uses this information in order to
adjust the groups, correcting for any errors induced by sam-
pling during planning. The exact information is also used to
make the final decision on encoding formats for each group.
In detail, for each column group Gi, we extract the “big”
(i.e., uncompressed) list that comprises the set Ti of dis-
tinct tuples together with the uncompressed lists of offsets
for the tuples. The big lists for all of the column groups are
extracted during a single column-wise pass through X using
hashing. During this extraction operation, the parameters
di, zi, rij , and bij for each group Gi are computed exactly,
with negligible additional cost. These parameters are used
in turn to calculate the exact compressed sizes SRLE

i and
SOLE
i and exact compression ratio SUC

i /SC
i for each group.

Corrections: Because the column groups are originally
formed using compression ratios that are estimated from a
sample, there may be false positives, i.e., purportedly com-
pressible groups that are in fact incompressible. Instead of
simply storing false-positive OLE/RLE groups as UC group,
we attempt to correct the group by removing the column
with largest estimated compressed size. The correction pro-
cess is repeated until the remaining group is either com-
pressible or empty. After each group has been corrected, we
choose the optimal encoding scheme for each compressible
group Gi using the exact parameter values di, zi, bij , and rij
together with the formulas (1) and (2). The incompressible
columns are collected into a single UC column group.

5. EXPERIMENTS
We study CLA in SystemML over a variety of ML pro-

grams and real-world datasets. The major insights are:
Operations Performance: CLA achieves in-memory

matrix-vector multiply performance close to uncompressed.
Sparse-safe scalar and aggregate operations show huge im-
provements due to value-based computation.

Compression Ratio: CLA yields substantially better
compression ratios than lightweight general-purpose com-
pression. Hence, CLA provides large end-to-end perfor-
mance improvements, of up to 26x, when uncompressed or
lightweight-compressed matrices do not fit in memory.

Effective Compression Planning: Sampling-based
compression planning yields both reasonable compression
time and good compression plans, i.e., good choices of en-
coding formats and co-coding schemes. We thus obtain good
compression ratios at costs that are easily amortized.

5.1 Experimental Setting
Cluster Setup: We ran all experiments on a 1+6 node

cluster, i.e., one head node of 2x4 Intel E5530 @ 2.40 GHz-
2.66 GHz with hyper-threading and 64 GB RAM @800 MHz,
as well as 6 nodes of 2x6 Intel E5-2440 @ 2.40 GHz-2.90 GHz
with hyper-threading, 96 GB RAM @1.33 GHz (ECC, reg-
istered), 12x2 TB disks, 10Gb Ethernet, and Red Hat En-
terprise Linux Server 6.5. The nominal peak performance
per node for memory bandwidth and floating point op-
erations are 2x32 GB/s from local memory (we measured
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Figure 8: Compression Time.

47.9 GB/s), 2x12.8 GB/s over QPI (Quick Path Intercon-
nect), and 2x115.2 GFLOP/s. We used OpenJDK 1.7.0 95,
and Apache Hadoop 2.2.0, configured with 11 disks for
HDFS and local working directories. We ran Apache Spark
1.4, in yarn-client mode, with 6 executors, 25 GB driver
memory, 60 GB executor memory, and 24 cores per execu-
tor. Finally, we used Apache SystemML 0.9 with default
configuration, except for a larger block size of 16K rows.

Implementation Details: We integrated CLA into Sys-
temML; if enabled, the system automatically injects—for
any multi-column input matrix—a so-called compress oper-
ator via new rewrites, after initial read or text conversion
but before checkpoints. This applies to both single-node
and distributed Spark operations, where the execution type
is chosen based on memory estimates. The compress oper-
ator transforms an uncompressed into a compressed matrix
including compression planning. For distributed Spark oper-
ations, we compress individual matrix blocks independently.
Making our compressed matrix block a subclass of the un-
compressed matrix block yielded seamless integration of all
operations, serialization, and buffer pool interactions.

ML Programs and Datasets: For end-to-end experi-
ments, we used several common algorithms: LinregCG (lin-
ear regression conjugate gradient), LinregDS (linear regres-
sion direct solve), MLogreg (multinomial logistic regression),
GLM (generalized linear models, poisson log), L2SVM (L2
regularized support vector machines), and PCA (principal
component analysis) as described in Table 2. We configured
these algorithms as follows: max outer iterations moi = 10,
max inner iterations mii = 5, intercept icp = 0, conver-
gence tolerance ε = 10−9, regularization λ = 10−3. Note
that LinregDS/PCA are non-iterative and LinregCG is the
only iterative algorithm without nested loops. We ran all
experiments over real-world and scaled real-world datasets,
introduced in Table 1. For our large-scale experiments, we
used (1) the InfiMNIST data generator [13] to create an
Mnist480m dataset of 480 million observations with 784 fea-
tures and binomial class labels (1.1 TB in binary format), as
well as (2) replicated versions of the ImageNet dataset.

Baseline Comparisons: In order to isolate the effects
of compression, we compare against Apache SystemML 0.9
(Feb 2016) with (1) uncompressed linear algebra (ULA), (2)
heavyweight compression: Gzip, and (3) lightweight com-
pression: Snappy, where we use native compression libraries
and ULA. Finally, we also compare with (4) CSR-VI [34], a
sparse format with dictionary encoding.

5.2 Compression and Operations
To provide a deeper understanding of both compression

and operations performance, we discuss several micro bench-
marks. Recall that our overall goal is to achieve excellent
compression while maintaining operations performance close

Table 3: Compression Plans of Individual Datasets.
Dataset m |X | #OLE #RLE #UC #Vals

Higgs 28 17 16 0 1 218,738
Census 68 11 11 0 0 40,202

13 13 0 0 56,413
Covtype 54 35 10 25 0 15,957

43 10 33 0 15,957
ImageNet 900 502 502 0 0 159,161

510 510 0 0 167,123
Mnist8m 784 709 610 94 0 308,544

724 625 111 0 387,425
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Figure 9: Matrix-Vector Multiplication Time.

to other methods, in order to achieve significant end-to-
end performance benefits. We conducted these micro bench-
marks on a single worker node with 80 GB Java heap size.
We used 5 warmup runs for just-in-time compilation, and
report the average execution time over 20 subsequent runs.

Compression: Figure 8 shows the time of creating a
single compressed matrix block. Figure 8(a) shows the ab-
solute compression times in log scale, where we see rea-
sonable performance with an average bandwidth across all
datasets of roughly 100 MB/s, single-threaded. In com-
parison, the single-threaded compression throughput of the
general-purpose Gzip and Snappy, ranged from 6.9 MB/s to
35.6 MB/s and 156.8 MB/s to 353 MB/s, respectively. Fig-
ure 8(b) further shows the time breakdown of individual
compression steps, where our planning phase comprises both
classification and grouping. Bar heights below 100% are due
to the final extraction of uncompressed column groups. De-
pending on the dataset, any of the three compression steps
(sampling-based classification and column grouping, or the
offset list extraction) can turn into bottlenecks.

Summary of Compression Plans: As a precondition
for understanding the micro benchmarks on operations per-
formance, we first summarize the compression layouts for
our datasets. Due to sample-based compression planning,
there are moderate variations between layouts for different
runs. However, the differences of compressed sizes were less
than 2.5% in all cases. Table 3 shows the layouts observed
over 20 runs, where we report min and max counts as two
rows if they show differences. We see that (1) OLE is more
common than RLE, (2) Higgs is the only dataset with an
uncompressed column group, (3) co-coding was applied on
all datasets, and (4) Higgs, Mnist8m and to some extent Im-
ageNet, show a large number of values, although we already
excluded the uncompressed column group of Higgs.

Matrix-Vector Multiplication: Figure 9(a) and 9(b)
show the single- and multi-threaded matrix-vector multipli-
cation time. Despite row-wise updates of the target vector
(in favor of uncompressed row-major layout), CLA shows
performance close to ULA, with two exceptions of Higgs
and Mnist8m, where CLA performs significantly worse. This
behavior is mostly caused by (1) a large number of values
which require multiple passes over the output vector, and
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(2) the size of the output vector. For Higgs (11M rows)
and Mnist8m (8M rows), the target vector does not entirely
fit into the L3 cache (15 MB). Accordingly, we see sub-
stantial improvements by cache-conscious CLA operations,
especially for multi-threaded due to cache thrashing effects.
Multi-threaded operations show a speedup similar to ULA
due to parallelization over logical row partitions, in some
cases even better as explained later. ULA constitutes a com-
petitive baseline because its multi-threaded implementation
achieves peak remote memory bandwidth of ≈ 25 GB/s.

Vector-Matrix Multiplication: Figures 10(a) and
10(b) further show the single- and multi-threaded vector-
matrix multiplication time. The column-wise updates favor
CLA’s column-wise layout and hence we see generally better
performance. CLA is again slower for Higgs and Mnist8m,
due to large input vectors that exceed the L3 cache size as
well as repeated scattered scans of these vectors for many
values. However, cache-conscious CLA operations mitigate
this effect almost entirely. ULA is again a strong baseline
at peak remote memory bandwidth. Interestingly, multi-
threaded CLA operations show a better speedup because
ULA becomes memory-bandwidth bound, whereas CLA has
less bandwidth requirements due to smaller compressed size,
and multi-threading mitigates additional overheads. For ex-
ample, Figure 11(e) shows the effective bandwidth on Ima-
geNet, with varying number of threads, where CLA exceeds
the peak remote memory bandwidth of 25 GB/s by 2.5x.

Matrix-Scalar Operations: We also investigate sparse-
safe and -unsafe matrix-scalar operations, where the former
only processes non-zero values. Figure 11(a) shows results
for the sparse-safe X^2. CLA performs X^2 on the distinct
value tuples with a shallow (by-reference) copy of existing
offset lists, whereas ULA has to compute every non-zero en-
try. We see improvements of three to four orders of magni-
tude, except for Higgs which contains a large uncompressed
group. Figure 11(b) shows the results for the sparse-unsafe
X+7, where CLA and ULA perform similar because CLA has
to materialize modified offset lists that include added and
removed values. For Census, we see better performance due
to very small offset lists. Finally, Mnist8m is not applicable
here because dense matrix blocks are limited to 16 GB.

Unary Aggregate Operations: Figures 11(c) and
11(d) compare the single- and multi-threaded aggregation
time for sum(X). Due to efficient counting per value—via
scanning of OLE segment lengths and RLE run lengths—we
see improvements of one to two orders of magnitude com-
pared to ULA (at peak memory bandwidth). The only ex-
ception is again Higgs due its uncompressed column group.

Decompression: In the rare case of unsupported op-
erations, we decompress and perform ULA operations. Fig-
ure 11(f) shows the decompression time. In contrast, Gzip or
Snappy need to decompress block-wise for every operation.
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Figure 11: Additional Detailed Micro Benchmarks.

5.3 Comparison to CSR-VI
We are aware of a single existing work on lossless matrix

value compression: CSR-VI (CSR Value Indexed) [34], via
dictionary encoding. Our comparison includes CSR-VI and
a derived dense format that we call D-VI, both of which use
custom implementations for 1, 2, and 4-byte codes.

Compression Ratio: Table 4 shows the compression ra-
tio of CSR-VI, D-VI, and CLA compared to uncompressed
matrix blocks in Modified-CSR (additional header per row)
or dense format. We see that CLA achieves substantial size
improvements for compressible sparse and dense datasets.
The compression potential for CSR-VI and D-VI is deter-
mined by the given number of distinct values.

Operations Performance: Figure 12 further shows the
single- and multi-threaded (par) matrix-vector and vector-
matrix multiplication performance of CSR-VI and D-VI,
normalized to CLA, where a speedup > 1 indicates improve-
ments over CLA. We see that CSR-VI and D-VI achieve per-
formance close to CLA for matrix-vector because it favors
row-major formats, while for vector-matrix CLA performs

Table 4: Compression Ratio CSR-VI vs. CLA.
Dataset Sparse #Values CSR-VI D-VI CLA

Higgs N 8,083,944 1.04 1.90 2.03
Census N 46 3.62 7.99 27.46

Covtype Y 6,682 3.56 2.48 12.73
ImageNet Y 824 2.07 1.93 7.38
Mnist8m Y 255 2.53 N/A 6.14
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Figure 12: Performance CSR-VI vs. CLA.
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Figure 13: Influence of Sample Fraction.

generally better. Mnist8m is an exception where CSR-VI al-
ways performs better due to 1-byte value encoding, whereas
CLA uses many value offset lists as shown in Table 3.

Overall, CLA shows similar operations performance at
significantly better compression ratios which is crucial for
end-to-end performance improvements of large-scale ML.

5.4 Parameter Influence and Accuracy
We now evaluate CLA parameter sensitivity and size es-

timation accuracy, where we report the average of 5 runs.
Sample Fraction: Sampling-based compression plan-

ning is crucial for fast compression. Figure 13 shows the com-
pression time and compressed size (min-normalized) with
varying sample fraction. We see huge time improvements
using small fractions. However, very small fractions cause—
due to estimation errors—increasing sizes, which also impact
compression time. Sampling is especially important for Cen-
sus and Covtype, where we spend a substantial fraction of
time on column grouping (compare Figure 8(b)). By default,
we use a conservative, low-risk sample fraction of 0.01.

Bin Weights: Our bin-packing-based column group par-
titioning reduces the number of candidate column groups
with bin capacity w = βγ. The larger β the smaller the
number of groups, but the higher the execution time, es-
pecially, for datasets with many columns like ImageNet or
Mnist8m. Our default of β = 0.05 achieves a good tradeoff
between compression time and compressed size, and yielded
compressed sizes within 23.6% of the observed minimum.

Estimation Accuracy: We compare our CLA size es-
timators with a systematic excerpt [17] (first 0.01n rows),
that allows to observe compression ratios. Table 5 reports
the ARE (absolute ratio error) |Ŝ−S|/S of estimated size Ŝ
(before corrections) to actual CLA compressed size S. CLA
shows significantly better accuracy due to robustness against
skew and effects of value tuples. Datasets with RLE groups
(Covtype, Mnist8m) show generally higher errors since RLE
is difficult to predict. Excerpt also resulted in worse plans
because column grouping mistakes could not be corrected.

Table 5: Size Estimation Accuracy (Average ARE).
Dataset Higgs Census Covtype ImageNet Mnist8m

Excerpt [17] 28.8% 173.8% 111.2% 24.6% 12.1%
CLA Est. 16.0% 13.2% 56.6% 0.6% 39.4%

Conservative default parameters together with compres-
sion corrections and fallbacks for incompressible columns led
to a robust design without the need for tuning per dataset.

5.5 End-to-End Experiments
To study end-to-end CLA benefits, we ran several algo-

rithms over subsets of Mnist480m and ImageNet. We report
end-to-end runtime (average of 3 runs), including read from
HDFS, Spark context creation, and compression. The base-
lines are ULA and Spark’s RDD compression with Snappy.

Table 6: Mnist8m Deserialized RDD Storage Size.
Block Size 1,024 2,048 4,096 8,192 16,384

ULA 18 GB 18 GB 18 GB 18 GB 18GB
Snappy 7.4 GB 7.4 GB 7.4 GB 7.4 GB 7.4GB

CLA 9.9 GB 8.4 GB 6 GB 4.4 GB 3.6GB
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Figure 14: L2SVM End-to-End Performance Mnist.

RDD Storage: ULA and CLA use the deserialized stor-
age level MEM AND DISK, while Snappy uses MEM AND DISK SER

because RDD compression requires serialized data. ULA also
uses MEM AND DISK SER for sparse matrices whose sizes ex-
ceed aggregated memory. Table 6 shows the RDD storage
size of Mnist8m with varying SystemML block size. For 16K,
we observe a compression ratio of 2.5x for Snappy but 5x for
CLA. We obtained similar ratios for larger Mnist subsets.

L2SVM on Mnist: We first investigate L2SVM as a
common classification algorithm. Given the described setup,
we have an aggregated memory of 6 · 60 GB · 0.6 = 216 GB.
SystemML uses hybrid runtime plans, where only opera-
tions that exceed the driver memory are executed as dis-
tributed Spark instructions; all other vector operations are
executed—similarly for all baselines—as single-node opera-
tions at the driver. For L2SVM, we have two scans of X per
outer iteration (matrix-vector and vector-matrix), whereas
all inner-loop operations are purely single-node for the data
at hand. Figure 14 shows the results. In comparison to our
goals from Figure 1, Spark spills data to disk at granular-
ity of partitions (128 MB as read from HDFS), leading to a
graceful performance degradation. As long as the data fits
in aggregated memory (Mnist80m, 180 GB), all runtimes are
almost identical, with Snappy and CLA showing overheads
of up to 25% and 10%, respectively. However, if the ULA
format no longer fits in aggregated memory (Mnist160m,
360 GB), we see significant improvements from compression
because the size reduction avoids spilling, i.e., reads per it-
eration. The larger compression ratio of CLA allows to fit
larger datasets into memory (e.g., Mnist240m). Once even
the CLA format no longer fits in memory, the runtime dif-
ferences converge to the differences in compression ratios.

Other ML Algorithms on Mnist: Finally, we study a
range of algorithms, including algorithms with RDD opera-
tions in nested loops (e.g., GLM, Mlogreg) and non-iterative
algorithms (e.g., LinregDS and PCA). Table 7 shows the re-
sults for the interesting points of Mnist40m (90 GB), where
all datasets fit in memory, and Mnist240m (540 GB), where
neither uncompressed nor Snappy-compressed datasets en-
tirely fit in memory. For Mnist40m and iterative algorithms,
we see similar ULA/CLA performance but a 50% slowdown
with Snappy. This is because RDD compression incurs de-
compression overhead per iteration, whereas CLA’s initial
compression cost is amortized over multiple iterations. For
non-iterative algorithms, CLA is up to 32% slower while
Snappy shows less than 12% overhead. Beside the initial
compression overhead, CLA also shows less efficient TSMM
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Table 7: End-to-End Performance Mnist40m/240m.
Algorithm Mnist40m (90 GB) Mnist240m (540 GB)

ULA Snappy CLA ULA Snappy CLA
Mlogreg 630 s 875 s 622 s 83,153 s 27,626 s 4,379 s

GLM 409 s 647 s 397 s 74,301 s 23,717 s 2,787 s
LinregCG 173 s 220 s 176 s 2,959 s 1,493 s 902 s
LinregDS 187 s 208 s 247 s 1,984 s 1,444 s 1,305 s

PCA 186 s 203 s 242 s 1,203 s 1,020 s 1,287 s

Table 8: End-to-End Performance ImageNet15/150.
Algorithm ImageNet15 (65 GB) ImageNet150 (650 GB)

ULA Snappy CLA ULA Snappy CLA
L2SVM 157 s 199 s 159 s 25,572 s 8,993 s 3,097 s
Mlogreg 255 s 400 s 250 s 100,387 s 31,326 s 4,190 s

GLM 190 s 304 s 186 s 60,363 s 16,002 s 2,453 s
LinregCG 69 s 98 s 71 s 3,829 s 997 s 623 s
LinregDS 207 s 216 s 118 s 3,648 s 2,720 s 1,154 s

PCA 211 s 215 s 119 s 2,765 s 2,431 s 1,107 s

performance, while the RDD decompression overhead, is
mitigated by initial read costs. For Mnist240m, we see sig-
nificant performance improvements by CLA—of up to 26x
and 8x—compared to ULA and RDD compression for Mlo-
greg and GLM. This is due to many inner iterations with
RDD operations in the outer and inner loop. In contrast,
for LinregCG, we see only moderate improvements due to a
single loop with one matrix-vector chain per iteration, where
the CLA runtime was dominated by initial read and com-
pression. Finally, for LinregDS, CLA shows again slightly in-
ferior TSMM performance but moderate improvements com-
pared to ULA. Overall CLA shows positive results with sig-
nificant improvements for iterative algorithms due to smaller
memory bandwidth requirements and reduced I/O.

ML Algorithms on ImageNet: To validate the end-
to-end results, we study the same algorithms over replicated
ImageNet datasets. Due to block-wise compression, replica-
tion did not affect the compression ratio. Table 8 shows the
results for ImangeNet15 (65 GB) that fits in memory, and
ImageNet150 (650 GB). For LinregDS and PCA, CLA per-
forms better than on Mnist due to superior vector-matrix
and thus TSMM performance (see Figure 10). Overall, we
see similar results with improvements of up to 24x and 7x.

6. RELATED WORK
We generalize sparse matrix representations via compres-

sion and accordingly review related work of database com-
pression, sparse linear algebra, and compression planning.

Compressed Databases: The notion of compressing
databases appears in the literature back in the early 1980s [5,
18], although most early work focuses on the use of general-
purpose techniques like Huffman coding. An important ex-
ception is the Model 204 database system, which used com-
pressed bitmap indexes to speed up query processing [38].
More recent systems that use bitmap-based compression in-
clude FastBit [49], Oracle [39], and Sybase IQ [45]. Graefe
and Shapiro’s 1991 paper “Data Compression and Database
Performance” more broadly introduced the idea of compres-
sion to improve query performance by evaluating queries in
the compressed domain [23], primarily with dictionary-based
compression. Westmann et al. explored storage, query pro-
cessing and optimization with regard to lightweight com-
pression techniques [47]. Later, Raman and Swart investi-
gated query processing over heavyweight Huffman coding
schemes [40], where they have also shown the benefit of
column co-coding. Recent examples of relational database

systems that use multiple types of compression to speed up
query processing include C-Store/Vertica [43], SAP HANA
[11], IBM DB2 with BLU Acceleration [41], Microsoft SQL
Server [36], and HyPer [35]. SciDB—as an array database—
also uses compression but decompressed arrays block-wise
for each operation [44]. Further, Kimura et al. made a case
for compression-aware physical design tuning to overcome
suboptimal design choices [33], which requires to estimate
sizes of compressed indexes. Existing estimators focus on
compression schemes such as null suppression and dictionary
encoding [29], where the latter is again related to estimating
the number of distinct values. Other estimators focus on in-
dex layouts such as RID list and prefix key compression [9].

Sparse Matrix Representations: Sparse matrix for-
mats have been studied intensively. Common formats in-
clude CSR (compressed sparse rows), CSC (compressed
sparse columns), COO (coordinate), DIA (diagonal), ELL
(ellpack-itpack generalized diagonal), and BSR (block sparse
row) [42]. These formats share the characteristic of encod-
ing non-zero values along with their positions. Examples of
hybrid formats—that try to combine advantages—are HYB
(hybrid format) [6] that splits a matrix into ELL and COO
areas to mitigate irregular structures, and SLACID [32] that
represents matrices in CSR format with COO deltas for
a seamless integration with SAP HANA’s delta architec-
ture. Especially for sparse matrix-vector multiplication on
GPUs there are also operation and architecture-aware for-
mats like BRC (blocked row-column format) [3] that ap-
plies rearrangement of rows by number of non-zeros and
padding. Williams et al. studied various optimizations and
storage formats for sparse matrix-vector multiplications on
multi-core systems [48]. Finally, Kourtis et al. already in-
troduced compression techniques for sparse matrix formats,
where they applied run-length encoding of column index
deltas [31, 34] and dictionary encoding [34]. In contrast
to existing work, we aim at sparse and dense column value
compression with heterogeneous encodings and co-coding.

Compression Planning: The literature for compression
and deduplication planning is relatively sparse and focuses
on a priori estimation of compression ratios for heavyweight
algorithms on generic data. A common strategy [17] is to ex-
perimentally compress a small segment of the data (excerpt)
and observe the compression ratio. The drawbacks to this
approach [26] are that (1) the segment may not be repre-
sentative of the whole dataset and (2) the compression step
can be very expensive because the runtime of many algo-
rithms varies inversely with the achieved compression. The
authors in [25] propose a procedure for estimating deduplica-
tion compression ratios in large datasets, but the algorithm
requires a complete pass over the data. The first purely
sampling-based approach to compression estimation is pre-
sented in [26] in the context of Huffman coding of generic
data. The idea is to sample different locations in the data
file and compute “local” compression ratios. These local es-
timates are treated as independent and averaged to yield an
overall estimate together with probabilistic error bounds.
This technique does not readily extend to our setting be-
cause our OLE and RLE methods do not have the required
“bounded locality” properties, which assert that the com-
pressibility of a given byte depends on a small number of
nearby bytes. Overall, in contrast to prior work, we propose
a method for estimating the compression when several spe-
cific lightweight methods are applied to numeric matrices.
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7. CONCLUSIONS
We have initiated work on compressed linear algebra

(CLA), in which matrices are compressed with lightweight
techniques and linear algebra operations are performed di-
rectly over the compressed representation. We introduced
effective column encoding schemes, efficient operations over
compressed matrices, and an efficient sampling-based com-
pression algorithm. Our experiments show operations per-
formance close to the uncompressed case and compression
ratios similar to heavyweight formats like Gzip but better
than lightweight formats like Snappy, providing significant
performance benefits when data does not fit into memory.
Thus, we have demonstrated the general feasibility of CLA,
enabled by declarative ML that hides the underlying physi-
cal data representation. CLA generalizes sparse matrix rep-
resentations, encoding both dense and sparse matrices in a
universal compressed form. CLA is also broadly applicable
to any system that provides blocked matrix representations,
linear algebra, and physical data independence. Interesting
future work includes (1) full optimizer integration, (2) global
planning and physical design tuning, (3) alternative com-
pression schemes, and (4) operations beyond matrix-vector.
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