
Automated Verification of Pattern-based Interaction
Invariants in Ajax Applications

Yuta Maezawa
The University of Tokyo

Tokyo, Japan
maezawa@nii.ac.jp

Hironori Washizaki
Waseda University

Tokyo, Japan
washizaki@waseda.jp

Yoshinori Tanabe
National Institute of Informatics

Tokyo, Japan
y-tanabe@nii.ac.jp

Shinichi Honiden
The University of Tokyo

National Institute of Informatics
Tokyo, Japan

honiden@nii.ac.jp

Abstract—When developing asynchronous JavaScript and
XML (Ajax) applications, developers implement Ajax design
patterns for increasing the usability of the applications. However,
unpredictable contexts of running applications might conceal
faults that will break the design patterns, which decreases
usability. We propose a support tool called JSVerifier that auto-
matically verifies interaction invariants; the applications handle
their interactions in invariant occurrence and order. We also
present a selective set of interaction invariants derived from Ajax
design patterns, as input. If the application behavior breaks the
design patterns, JSVerifier automatically outputs faulty execution
paths for debugging. The results of our case studies show that
JSVerifier can verify the interaction invariants in a feasible
amount of time, and we conclude that it can help developers
increase the usability of Ajax applications.

Index Terms—Ajax; Reverse Engineering; Model Checking;
Design Pattern;

I. INTRODUCTION

Asynchronous JavaScript and XML (Ajax) applications
have become essential platforms for daily life [1] and are an
integral part of Google services, Facebook, and Twitter. Asyn-
chronous technologies, such as Ajax, make Web applications
responsive [2] and are credited with the 500% increase in Web
users compared to a decade ago [3].

A key factor in attracting Web users is usability of Web
applications [4]; the ease of using Websites corresponds to
well designed navigation [5]. When developing Ajax appli-
cations, developers can implement Ajax design patterns [6]
for increasing the usability of the applications. Although
developers intend to correctly implement the design patterns,
unpredictable contexts while running applications might con-
ceal faults that will break the design patterns. We claim
that such faults decrease usability; therefore, a technique for
verifying whether the application correctly runs according to
the implemented design patterns is required.

Several studies have been conducted on state-based analysis
and testing of Ajax applications. Some have succeeded in
leveraging dynamic analysis techniques because Ajax appli-
cations can interactively manipulate an interface by using the
document object model (DOM)1 [7], [8], [9], [10]. Although
these dynamic techniques can leverage actual DOMs as the
states, DOM-based testing does not help verify the correctness

1http://www.w3.org/DOM/

in execution paths that are not part of the scenarios and envi-
ronments given by the developers. As a static approach, Guha
et al. presented a technique for extracting the behavior relevant
to asynchronous communications using a control-flow analysis
[11]. This technique can be used for detecting runtime server
requests that do not match the extracted behavior; however,
it is presumed that developers can correctly understand and
implement this behavior.

Since developers might incorrectly implement their require-
ments such as Ajax design patterns (Implementing), we
previously presented a method for extracting state machines
focusing on interactions with applications in order to sup-
port program understanding [12]. We assume the interactions
as triggers that can change the states of the applications,
as described in Section III. However, developers needed to
manually determine whether the extracted state machines
satisfy interaction invariants, which does not enable them to
exhaustively find faulty execution paths.

For this study, we propose a support tool called JSVerifier,
which automatically verifies interaction invariants in Ajax
applications using the Spin2 model checker. The verification
method of JSVerifier is mainly divided into the following three
steps:

Step1: JSVerifier translates the extracted state machines
into an application model that Spin can interpret. To simulate
the application behavior, JSVerifier also generates an interac-
tion model (Extractor). Step2: When developing appli-
cations, developers can store information about implemented
Ajax design patterns (IADP information) into a reposi-
tory. By obtaining the information via the repository, JSVerifier
determines interaction invariants based on Ajax design pat-
terns and property patterns and generates verification formulas
(Formulator). Step3: JSVerifier runs Spin for verifying
the correctness of the application behavior with the invariants.
If the application behavior does not satisfy the invariants,
JSVerifier suggests faulty execution paths (Verifier). We
assume that developers can debug the applications using these
suggestions (Debugging). Figure 1 gives an overview of this
verification method.

We address the following research questions.

2http://spinroot.com/

Fig. 1. Overview of verification method used in JSVerifier

RQ1 Can JSVerifier automatically verify interaction in-
variants with given IADP information?

RQ2 Can JSVerifier output verification results in a feasible
time?

Our contributions are as follows:
• An automated verification of interaction invariants in

Ajax applications.
• A selective set of interaction invariants based on Ajax

design patterns and property patterns.
• Implementation of the verification method of JSVerifier.
• An evaluation experiment with case studies that shows

that JSVerifier can verify the invariants in a feasible
amount of time.

• Actual faults that JSVerifier can expose in real-world Ajax
applications. Some of the faults are difficult to be exposed
using testing techniques.

The remainder of this paper is organized as follows. First,
we provide background on Ajax application development and
give a brief example to explain our work in Section II. In
Section III, we describe our proposed tool, JSVerifier. We then
discuss our evaluation in Section IV and discuss related work
in Section V. Finally, we conclude our work in Section VI.

II. BACKGROUND

In this section, we note how developers develop Ajax
applications focusing on interactions and increase usability of
the applications based on Ajax design patterns. We then give a
brief example that illustrates an issue of interaction invariants
in Ajax applications.

A. Ajax applications developments

Asynchronous JavaScript and XML (Ajax) are breed ap-
proaches in Web applications [13]. Our research target is the
interactions with Ajax applications as shown in Figure 2. By
leveraging an Ajax engine on the client side, the applications
can asynchronously receive necessary data from servers and
partially update a Web page without page transitions, so that

Fig. 2. Interactions with Ajax applications

it can continuously process user requests on the client side.
Thus, this approach makes Web applications responsive [2].

When developing and maintaining rich Internet applications
containing Ajax applications, interactions with the applications
need to be considered in order to improve user experience
[14]. Since the applications are primarily aimed at providing
rich user experience [15], developers are concerned with the
following.

• Interactions that the application can handle. We argue that
interactions can be classified into user, server, and self
interactions corresponding to nondeterministic elements
such as user events, asynchronous server responses, and
timeouts, as shown in Figure 2.

• Application behavior when handling interactions.
Developers can also control whether the application will
handle certain interactions. For determining the application
behavior, developers need to recognize the effects of enabling
and disabling these interactions [11]. Hence, we can argue that
the following is also a concern for developers.

• Application behavior when enabling and disabling inter-
actions.

Unfortunately, developers have difficulties in correctly im-
plementing interactions while considering all possible exe-
cution paths because an interaction-based behavior depends
on unpredictable contexts at runtime. Despite their greatest
efforts, developers may miss certain paths to be executed,
which can result in unexpected behavior. Therefore, a support
tool is helpful to extract state machines from applications
and to determine whether the extracted model contains any
unexpected behavior.

B. Ajax design patterns

The success of Ajax applications lies in their asynchronous
technologies in e-commerce, social networking services, and
enterprise systems [16]. These applications can provide rich
user experience derived from their asynchronous nature. To
attract an increasing number of Web users, Web usability is a
key factor in Web applications [4]. Fortunately, Ajax design
patterns [6] contain seventy comprehensive findings in term
of usability by surveying many real-world Ajax applications.
Thus, developers can leverage the Ajax design patterns for
increasing usability of applications. For this study, we leverage
the findings relevant to an interaction-based behavior in Ajax
applications.

1 <html><head>
2 < s c r i p t t y p e =” t e x t / j a v a s c r i p t ”
3 s r c = ” . / j s / p r o t o t y p e . j s ”></ s c r i p t >
4 < s c r i p t t y p e =” t e x t / j a v a s c r i p t ”><!−−//
5 window . o n l oa d = s e t E v e n t H a n d l e r ;
6 f u n c t i o n s e t E v e n t H a n d l e r () {
7 $ (” r e g t y p e ”) . onchange = c a l c P r i c e ;
8 $ (” r e g a t t e n d e e ”) . onchange = c a l c P r i c e ;
9 $ (” reg payment ”) . onchange = c a l c P r i c e ;

10 $ (” r e g a d d c a r t ”) . o n c l i c k = a d d C a r t ; } ;
11 f u n c t i o n c a l c P r i c e () {
12 /∗ c a l c u l a t e and d i s p l a y t o t a l p r i c e ∗ / } ;
13 f u n c t i o n a d d C a r t () {
14 /∗ d i s a b l e A d d C a r d () ; / / p r o p e r c o n t r o l ∗ /
15 i f (i s V a l i d I n p u t ()) {
16 reqRunTrans () ;
17 } e l s e {
18 a l e r t (” I n v a l i d u s e r i n p u t s ”) ;
19 /∗ en a b l eAd dC a r t () ; / / p r o p e r c o n t r o l ∗ / }} ;
20 f u n c t i o n reqRunTrans () {
21 new Ajax . Reques t (” r u n T r a n s . php ” , {
22 method : ”GET” , p a r a m e t e r s : ge tPa rams () ,
23 onSucces s : s u c c e e d e d }) ; } ;

24 f u n c t i o n enab l eAddCar t () {
25 $ (” a d d c a r t ”) . d i s a b l e d = f a l s e ; } ;
26 f u n c t i o n d i s a b l e A d d C a r t () {
27 $ (” a d d c a r t ”) . d i s a b l e d = t rue ; } ;
28 f u n c t i o n s u c c e e d e d () {
29 d i s a b l e A l l () ;
30 jumpToConfirm () ; } ;
31 //−−></ s c r i p t >
32 </head><body > . . .
33 P r i c e : $500</ span>
34 <div>Type </ d iv>
35 <s e l e c t i d =” r e g t y p e ”>
36 <o p t i o n i d =” a l l ” v a l u e =”350”> A l l days </ o p t i o n >
37 <o p t i o n i d =” c n f ” v a l u e =”250”> Conference </ o p t i o n >
38 <o p t i o n i d =”wsp” v a l u e =”100”>Workshop </ o p t i o n >
39 </ s e l e c t >
40 <div>A t t e n d e e . . . < / s e l e c t >
41 <div>Payment . . . < / s e l e c t >
42 Q u a n t i t y : </ span>
43 <i n p u t i d =” q u a n t i t y ” t y p e =” t e x t ” v a l u e =”1” />
44 <i n p u t i d =” a d d c a r t ”
45 t y p e =” s ubm i t ” v a l u e =”Add t o C a r t ” />
46 </body></html>

Fig. 3. Source code of our brief example: Shopping Website.

Fig. 4. Screenshots of our brief example shown in Figure 3

However, unpredictable contexts of running applications
might conceal faults that will break the design patterns.
Although developers test whether the application expectedly
runs according to the design patterns, testing techniques do
not help verify the correctness of all execution paths. For
example, the User Action design pattern suggests that
applications should register user events at page load; we
call such property as a “user event registration” in
Section III-C. This is because executing user event callback
functions before displaying Web page elements might cause
erroneous behavior. The current implementation immediately
completes the loading of all page elements; however, iterative
and incremental development might lengthen the loading time,
causing unexpected behavior. Since such software evolution
over time might break design patterns [17], we address a
challenging issue of automatically verifying whether Ajax ap-
plication behavior contains faults that are currently concealed
but will be exposed.

C. Brief example

We give the source code and screenshots of an Ajax
application as a brief example3 in Figures 3 and 4. This is a

3Running examples are available from http://goo.gl/JE9Vd

typical Ajax application for shopping on a website where users
(i, ii) select item options and (iii, iv) add the item to their cart.
This application has a fault that may cause duplicate orders
on e-commerce websites such as Amazon4 and eBay5. We
illustrate how developers implement and test this application
using Ajax design patterns.

First, developers implement the option selection function-
ality based on the user event registration property. (i) Page
load: An onload event is first evaluated when users visit the
Website (line 5). Then, the application calls back a function
setEventHandler (lines 6-10). (ii) Option select: When
users select options of an item, the browser evaluates an
onchange event corresponding to the option widget (lines
7-9). In the interface, users can see the total price according
to their selections which is calculated at a callback function
calcPrice of the events (lines 11-12). Then, developers
visit the Website and select the options for testing whether
this functionality satisfies the property. Since the application
displays the correct price, this test is successful.

Next, developers iteratively implement the item addition
functionality. To avoid the duplicate order problem, developers

4Amazon Help: http://goo.gl/Mkbfc
5eBay Answer Center: http://goo.gl/WVXqO

require the application of handling the add-to-cart click only
once. The User Action design pattern also suggests that
Ajax applications can prevent multiple calls of specific user
event handlers; we call such property as a “user event
handler singleton” in Section III-C. (iii) Add to cart:
Users can also add the item to their cart by clicking a submit
button labeled Add to Cart. When the button is clicked, an
onclick event occurs (line 10) and the application processes
an addCart function (lines 13-19). If the selections are valid
(line 15), the application sends an asynchronous request to
run a transaction for taking inventories on the server side
(lines 16 and 20-23). Otherwise, an alert box appears for
users to give valid inputs (lines 17-18). Finally, the application
asynchronously receives a server response (lines 23 and 30-
32) and jumps to a confirmation page (line 32). To test
this property, developers click the button with valid inputs
and see that the application cannot handle the click due to
the immediate jump. Since a previous test case also passed,
developers finally confirm that the application expectedly runs
according to two properties derived from the User Action
design pattern.

However, the duplicate order problem arises when users
unexpectedly double-click the add-to-cart button. As we men-
tioned in the previous section, it is difficult to expose this du-
plicate order problem using a testing technique that leverages
execution results. This is because the current implementation
does not execute such faulty paths in a reliable network and
quickly processes the lightweight transaction. Otherwise, the
duplicate order problem will be revealed. (iv) Disabled add to
cart: To avoid the duplicate order problem, developers need
to implement the appropriate enabling and disabling of the
click so that users cannot interact with the button while the
transaction is running (lines 14 and 19).

In summary, an interaction-based behavior in Ajax applica-
tions is important but difficult for developers to figure out
due to unpredictable contexts. Hence, if developers intend
to implement and test Ajax design patterns for increasing
usability, unpredictable contexts might conceal faults, result-
ing in an erroneous behavior. Therefore, we investigated the
automated verification of interaction invariants based on Ajax
design patterns in Ajax applications for revealing faults that
are currently concealed but will be exposed.

III. APPROACH AND IMPLEMENTATION

JSVerifier automatically 1) extracts state machines from
Ajax applications, as shown in Figure 5, and 2) verifies the
correctness and suggests faulty execution paths of interaction
invariants, as shown in Figure 6. We present a selective set of
interaction invariants based on Ajax design patterns.

A. Extracting state machines from Ajax applications

JSVerifier extracts interaction-based state machines from
Ajax applications using a rule-based static analysis technique.
To show that JSVerifier deals with nondeterministic behavior
of Ajax applications, we explain how it works, although this
technique has been proposed in our previous study [12].

Fig. 5. Flowchart for extracting state machines

Fig. 6. Flowchart for verifying interaction invariants

Fig. 7. Partial example of extending, abstracting, and refining call graph of
our brief example in Figure 3

We assume the interactions shown in Figure 2 act as triggers
that can change the states of applications. The interaction
that we focus on in this study corresponds to a function call
in response to an event firing. Hence, states and transitions
in the extracted state machines represent function calls and
the relationships between them. Our analysis technique for
extracting state machines consists of three steps, as shown in
Figure 5 (E1, E2, and E3).

First, developers input a URL of an Ajax application and
rules for distinguishing interaction-related code fragments
(distinguishing rules) into JSVerifier, and then it analyzes
the source code of the application. Since HTML, CSS, and
JavaScript parsers cannot distinguish event attributes, callback
objects, event handling functions, and control attributes (for
example, onchange, onSuccess, Ajax.Request, and
disabled) from other syntax elements, developers need to
define these elements relevant to the interactions (interaction
elements) in the distinguishing rules. However, state machines
constructed by combining the interactions might contain many
impossible execution paths, resulting in a state space explo-
sion.

TABLE I
DEFINITIONS OF ELEMENTS IN OUR PROMELA MODEL

Element of Promela model Definition

active proctype App An application process that expresses behavior of an Ajax application
active proctype Interaction An interaction process that interacts with App

App_state A state in which an application process is
App_event An event that an application process handles
Int_event An event that an interaction process randomly occurs
App_ch A channel for passing messages of interactions between application and interaction processes
flg_exit An application process that is set to true when it transitions to an exit state
goto_App state A goto label expressing an App state of an application
d_step An atomic process for simultaneously setting the state of an application and making events empty

Rule-based extending call graph (E1): To obtain possible
relationships among the interactions (interaction relationships),
JSVerifier leverages a call graph that represents caller-callee
relationships. The call graph does not contain the interaction
relationships (e.g., event firing and callback), but JSVerifier
extends the call graph in terms of interactions. By parsing
the source code and finding event attributes and callback
objects, JSVerifier creates relationships between invoked func-
tions (setEventHandler) and their corresponding call-
back functions (addCart) and assigns the corresponding
event types (onclick) to the relationships (lines 6 and
10 in Figure 3 and (i) in Figure 7). In cases of event
handling functions, JSVerifier makes connections from the
functions (Ajax.Request) to the corresponding callback
functions (succeeded) with the corresponding event types
(onSuccess) (lines 21 and 23 in Figure 3 and (ii) in Figure
7). Thus, by statically analyzing the source code with the
distinguishing rules, it can extend the call graph to contain
interaction relationships.

Abstracting extended call graph (E2): Since the extended
call graph might have many relationships irrelevant to the
interactions, JSVerifier then abstracts the extended call graph
focusing on the interaction elements. For example, our brief
example runs from reqRunTrans to Ajax.Request with-
out any interactions ((iii) in Figure 7). In this case, our tool
abstracts this caller-callee relationship into the corresponding
invoked function of reqRunTrans ((iv) in Figure 7). Thus, it
can obtain possible interaction relationships from the extended
call graph.

Refining relationships among interactions (E3): Addi-
tionally, developers can implement the enabling and disabling
of interactions in Ajax applications. For example, in Figure
3, the add-to-cart button is enabled by line 27 and disabled
by line 29. These statements in the application that set
parameters on control attributes of DOM elements (en/dis-
abling statements) can be distinguished with the distinguishing
rules, similar to the interaction elements. By analyzing the
en/disabling statements, JSVerifier adds possible interaction
relationships and removes impossible ones. For example, in
Figure 7(c), JSVerifier adds an onclick relationship from
reqRunTrans to addCart ((v) in Figure 7). However,

it does not add any relationship at succeeded ((vi) in
Figure 7), because all interactions are disabled there (line
31 in Figure 3). As for branch nodes such as addCart,
JSVerifier skips this analysis because the relationships from the
branch nodes are irrelevant to the interactions. By constructing
state machines based on the refined interaction relationships,
JSVerifier automatically extracts real stateful behavior from
Ajax applications, as shown in Figure 9.

In addition to reading the source code, developers can lever-
age the extracted state machines to understand the stateful be-
havior of Ajax applications. Although developers may be able
to find faults relevant to the interactions using the extracted
state machines, the cost may not be negligible for developers to
manually and carefully check the behavior when they modify
the source code. Additionally, the more interactions developers
implement in the applications, the larger the scale of the state
machines JSVerifier extracts. Therefore, we can argue that a
model checking technique is helpful for revealing erroneous
behavior because it can automatically verify the behavior of
the applications with given flexible invariants.

B. Verifying interaction invariants in Ajax applications

JSVerifier leverages a widely known model checker, Spin,
for verifying interaction invariants in the extracted state ma-
chines. Given flexible invariants expressed as linear temporal
logic (LTL) formulas, Spin verifies the correctness of non-
deterministic automata described in Process Meta Language
(Promela). Accordingly, the model checker is suitable for
verifying the extracted state machines that model nondetermin-
istic elements of Ajax applications. Our verification technique
consists of three steps, as shown in Figure 6 (V1, V2, and
V3).

Translating into Promela model (V1): JSVerifier first
translates the extracted state machines into a Promela model.
Figure 8 shows the code of a Promela model translated from
part of the extracted state machines in Figure 7. Table I
lists the definitions of the elements in the Promela model.
In this model, JSVerifier outputs an active proctype
named App (lines 5-45) for representing application behavior
extracted in the state machines. The active proctype
is a process that Spin initially instantiates. App_state,

1 mtype = { /∗ d e f i n e a l l l a b e l s ∗ / } ;
2 mtype App s t a t e , App event , I n t e v e n t ;
3 chan App ch = [0] o f { mtype } ;
4 bool f l g e x i t = f a l s e ;
5 a c t i v e p r o c t y p e App () {
6 d step {
7 A p p s t a t e = i n i t ;
8 App event = empty ; /∗ two s t a t e m e n t s a r e ∗ /
9 I n t e v e n t = empty ; /∗ ” s e t empty ” ∗ / }

10 g o t o i n i t :
11 do / / s t a r t o f i n i t i a l do l oop
12 : : App ch ? I n t e v e n t −>
13 i f : : I n t e v e n t == o n l oa d −>
14 App event = on l oa d ;
15 d step {
16 A p p s t a t e = s e t E v e n t H a n d l e r ;
17 /∗ s e t empty ∗ / }
18 g o t o s e t E v e n t H a n d l e r :
19 do
20 : : App ch ? I n t e v e n t −>
21 i f : : I n t e v e n t == o n c l i c k −>
22 App event = o n c l i c k ;
23 d step {
24 A p p s t a t e = a d d C a r t ;
25 /∗ s e t empty ∗ / }
26 g o t o a d d C a r t :
27 do
28 : : App ch ? I n t e v e n t −>
29 i f : : I n t e v e n t == onSucces s −>
30 App event = onSucess ;
31 d step {
32 A p p s t a t e = e x i t ;
33 /∗ s e t empty ∗ / }
34 goto g o t o e x i t ;
35 : : I n t e v e n t == o n c l i c k −>
36 App event = o n c l i c k ;
37 d step {
38 A p p s t a t e = a d d C a r t ;
39 /∗ s e t empty ∗ / }
40 goto g o t o a d d C a r t ;
41 . . .
42 od ; / / end of i n i t i a l do l oop
43 g o t o e x i t :
44 f l g e x i t = t r u e ;
45 } ;
46 a c t i v e p r o c t y p e I n t e r a c t i o n () {
47 do : :
48 i f : : f l g e x i t −> b r e a k ;
49 : : e l s e −>
50 i f
51 : : s k i p −> App ch ! o n l oa d ;
52 : : s k i p −> App ch ! o n c l i c k ;
53 : : s k i p −> App ch ! onSucces s ;
54 . . . } ;

Fig. 8. Partial example of application and interaction models in Promela

App_event, and Int_event variables are defined for re-
quirement descriptions (line 2). Additionally, the App process
nondeterministically receives messages via App_ch (line 3),
and flg_exit is set to true when the process exits (lines 4
and 43-44).

States in the state machines are represented in assignment
statements to the App_state variable (lines 7, 16, 24, 32,
and 38). To represent transitions in the state machines, JSVer-
ifier leverages goto functionalities, because Promela unfortu-
nately does not allow describing function calls. By searching
all states from an initial one in the state machines, JSVerifier
creates goto labels if the states initially appear (lines 10, 18,
and 26). Otherwise, it assigns goto statements to corresponding

labels (line 40). JSVerifier is exceptionally designed to deals
with an exit state in such a way that Spin makes the application
process exit (lines 34 and 43-44).

The application model alone is not sufficient to verify the
application behavior because the application changes its state
as it handles interactions. Therefore, JSVerifier also outputs an
active proctype named Interaction as an interac-
tion model that represents interactions of the application with
the user, server, and the application itself (lines 46-54). This
process randomly selects an interaction that the application
can handle and sends the message of the interaction to the
App process (lines 47, 51-53). When the App process reaches
the exit state, Spin also makes the Interaction process
exit (line 48). Thus, JSVerifier can apply Spin to simulate the
stateful behavior of the Ajax application with the application
and interaction models.

To verify whether the application model correctly behaves
according to implemented Ajax design patterns, it is difficult
for developers to define properties to be verified and to cor-
rectly express them in verification formulas. Since developers
have information about the implemented Ajax design patterns,
JSVerifier supports the difficult task by generating correct
verification formulas using the information.

C. Mapping interaction invariants using property patterns

We show a selective set of interaction invariants in Table II.
JSVerifier leverages the interaction invariants for generating
correct verification formulas so that developers only input
information about implemented Ajax design patterns.

Generating LTL formulas (V2): Since Ajax design
patterns contain comprehensive findings for increasing us-
ability of Ajax applications, we first define properties in
terms of the interactions from the findings (Ajax design
properties). These Ajax design properties consist of a
property name and description; for example, the user event
registration (name) property explains that Ajax applications
should register user events at an onload callback (description).

To express these properties in correct verification formulas,
we also leverage the property pattern mappings for LTL
[18], which classifies raw property specifications of a GUI,
concurrency logic, and communication protocol, into occur-
rence and order patterns. These property patterns contain
template verification formulas with given states and events of
running applications. By relating these property patterns to the
Ajax design properties, we can describe LTL templates using
App_state, App_event, and Int_event in Table I for
JSVerifier. Note that Spin requires a negative property against
the expected application behavior. For example, a negative
property of the user event registration property means that a
user event occurrence (Var 2) precedes that of a page load (Var
1). Therefore, we relate the Precedence property pattern in
the order pattern to the user event registration (P1 in Table II).
For the user event handler singleton property, the Existence
property pattern in the occurrence pattern is related because
the existence of multiple calls (Var 1) of the user event (Var 2)
negates the design property (P2 in Table II). Thus, developers

TABLE II
A SELECTIVE SET OF INTERACTION INVARIANTS OF AJAX DESIGN PROPERTIES

P# Property Ajax design pattern Prop. pattern LTL template with Var 1 and Var 2 used in Table III

1 User event registration User Action Precedence App event != PageLoadEv U App event == UserEv
2 User event handler singleton User Action Existence <>(A p p s t a t e == PreventFunc && App event == UserEv)
3 Sever response before activation On-Demand JavaScript Precedence App event != SvrResp U A p p s t a t e == Act ivateFunc
4 User event before submission Explicit Submission Precedence App event != UserEv U A p p s t a t e == SubmitFunc
5 Process before submission Live Form Precedence A p p s t a t e != ProcFunc U A p p s t a t e == SubmitFunc

i) select Ajax design properties and ii) input variables in the
LTL templates, and then JSVerifier can generate correct LTL
formulas using the relationships listed in Table II..

Here, we explain Ajax design properties leveraged in our
case studies in Section IV. An On-Demand JavaScript
Ajax design pattern suggests that Ajax applications should
activate specific functionalities (Var 2) using results of the
asynchronous data retrieval after the server responses (Var
1) (a server response before activation prop-
erty). Additionally, Explicit Submission and Live
Form Ajax design patterns suggest that Ajax applica-
tions should require an explicit users operation (Var 1
in the former) and should process form data (Var1 in
the latter) before data submission (Var 2 in both) (user
event before submission and process before
submission properties). These properties are related to
the Precedence property pattern similar to the user event
registration property (P3, P4, and P5 in Table II).

Running Spin (V3): When developers implement and
test Ajax applications based on Ajax design patterns, they
can input information about implemented Ajax design patterns
(IADP information) into a repository of JSVerifier. Developers
can input function and event names in the source code as
variables for selected Ajax design properties. If the names
do not appear in the extracted state machines, JSVerifier
can find corresponding states because it stores abstraction
information. This information contains to which states the
functions are abstracted. Therefore, developers do not need
to deeply understand how it works.

By obtaining the information via the repository, as input,
JSVerifier automatically generates correct LTL formulas rep-
resenting the design properties. Then, Spin traverses in a state
space of the Promela model and verifies whether the model sat-
isfies the formulas. This verification of correctness can assure
developers that the application correctly behaves according
to their intentions. Otherwise, Spin outputs a counterexample
of the LTL formula as a fault oracle, and then JSVerifier
extracts an execution path containing the fault from the oracle.
Finally, JSVerifier automatically suggests a debugging clue to
the developers as output.

D. Use scenario and results of our brief example

We explain a use scenario of JSVerifier and results of our
brief example in Figure 9. We assume that JSVerifier can
be used in the context of test-driven development, where
developers first give test cases of additional functionalities then

improve the source code to pass the test cases. Developers
first input interaction invariants of implemented Ajax design
patterns into the repository of JSVerifier, then they can debug
until the invariants are verified as correct.

We now illustrate a JSVerifier use scenario with our brief
example. We assume that developers implement functionalities
in Ajax applications based on Ajax design patterns. Developers
first select the user event registration property and input its
variables when implementing the option selection function-
ality (i, ii). Then, JSVerifier verifies the correctness of this
implementation. Next, developers implement the item addition
functionality (iii) and give the information for this additional
functionality. At this time, JSVerifier determines that the
current implementation does not satisfy the additional invariant
and suggests a corresponding faulty execution path on the
extracted state machines. We assume that developers can
debug using the faulty execution path (iv). Finally, developers
confirm that the application correctly runs according to the
invariants.

IV. EVALUATION

To answer the following research questions, we conducted
case studies and evaluated JSVerifier.

RQ1 Can JSVerifier automatically verify interaction in-
variants with given IADP information?

RQ2 Can JSVerifier output verification results in a feasible
time?

A. Case studies

We used two real-world Ajax applications; sForm6 is
an Ajax application for form validation and Login With
Ajax (LWA)7 is an Ajax application plugin on WordPress8

for replacing a login widget. These applications are runnable
and their source codes are available for debugging. Ad-
ditionally, we prepared a sample Ajax application called
FileDLer9. We had implemented this application for mo-
tivating our previous study. Table III shows HTML, CSS,
and JavaScrip lines of codes in these applications (LoC). The
100-1K LoC range represents the small-medium size in Ajax
applications.

6http://www.chains.ch/2008/01/26/ajax-form-validation-sform/
7http://wordpress.org/extend/plugins/login-with-ajax/
8http://wordpress.org/
9http://maezawa.honiden.nii.ac.jp/yuta/research/ex/fd/

Fig. 9. JSVerifier use scenario and results of our brief example

B. Evaluation Methodology

In our case studies, we first determined properties to be
verified and corresponding variables in the three applications,
as shown in Table III. Since we did not know the intent of
the original developers of sForm and LWA, we conducted the
determinations based on the source code fragments. Here, we
explain the representative determinations10. In the source code
of sForm, we found a validateIt function for validating
form data and a submit function for submitting the data.
We inferred that the validation process should be executed
before the form submission, and then we determined the
process before submission property and the functions as the
variables in sForm. As for LWA, we determined the user event
registration property because of a jQuery.ready11 frag-
ment in the source code. The ready is usually implemented
for attaching all other event handlers as an alternative to an
onload event. Therefore, We inferred that the application
should register all user events at the ready. Note that we
had known expected behavior and injected faults in FileDLer,
therefore, we determined appropriate properties and variables
according to our intentions. We stored the properties and the
variables as IADP information into a repository of JSVerifier.

Next, we ran JSVerifier with the repository. JSVerifier
measured the extraction and verification times (Te and Tv).
Additionally, JSVerifier outputted the extracted state machines,
verification results and faulty execution paths. We debugged
the applications using the paths, and then ran JSVerifier again.
Finally, we confirmed whether JSVerifier could verify the
correctness.

10All the determinations are available from http://goo.gl/4fQ0d
11http://api.jquery.com/ready/

C. Results and Discussion

Automated verification (RQ1): JSVerifier could automat-
ically verify the correct and wrong application behavior. We
tested sForm according to the faulty execution path, and then
sForm actually handled the form submission without any user
inputs in the form. Then, we debugged sForm to initially
disable the submit button and confirmed that JSVerifier verified
the correctness. These results represent that JSVerifier can
expose executable faults in Ajax applications. Additionally, we
searched the user events on the faulty execution in LWA, and
then we found them in the HTML source code. These imple-
mentations conformed to undesirable ones shown in the User
Action Ajax design pattern. We debugged them according to a
solution suggested in the design pattern so that JSVerifier could
output the correct results. Note that this faulty execution path
could not be executed in the current implementation. These
results represent that JSVerifier can also expose inexecutable
but concealed faults. As for FileDLer, we had already had
correct and faulty version of the applications. We confirmed
that JSVerifier could suggest the faulty execution paths as
expected. Therefore, we argue that JSVerifier correctly works
for our verification method.

Feasible verification time (RQ2): In our case studies,
JSVerifier could automatically extract state machines from
our case studies and verify pattern-based interaction invariants
within several seconds, as shown in Table III. These extraction
and verification times increase linearly with the number of
implemented interactions in Ajax applications. We confirmed
that the applications contained the sufficient number of the
interactions for using JSVerifier in our case studies. Addition-
ally, JSVerifier could expose the actual faults in the real-world

TABLE III
RESULTS OF OUR CASE STUDIES

LoC P# Property Var 1 Var 2 Te (msec) Tv (msec) Result

sForm 314 1 User event registration onload onblur 3170 1013 Correct
onload onclick 750 Correct

5 Process before submission validateIt submit 992 Fault
4 User event before submission onclick submit 672 Correct

LWA 2084 1 User event registration ready submit 6487 543 Correct
ready click 533 Correct
ready onfocus 752 Fault
ready onblur 686 Fault

FileDLer 251 1 User event registration onload onkeyup 5144 840 Correct
onload onclick 743 Correct

3 Server response before activation onSuccess inputFormText 1035 Fault
4 User event before submission onclick doSubmit 718 Correct
2 User event handler singleton doDownload onkeyup 827 Fault

doDownload onclick 690 Correct

Ajax applications in a feasible amount of time. Therefore, we
argue that JSVerifier can be applicable for real-time use.

Costs for debugging faults: Although JSVerifier can
suggest faulty execution paths on extracted state machines
as clues to debugging, developers need to locate faults in
the source code using the clues. As our future work, we
plan to leverage solutions in Ajax design patterns for fault
localization.

D. Threats to validity

Internal validity threats: We considered two external
factors that might affect results in our case studies. We found
sForm and LWA via the Web, so these applications do not
affect the internal of JSVerifier, and the results from using
these applications represent the usefulness of JSVerifier for
our verification method. However, we implemented FileDLer
ourselves to contain the faults relevant to interaction invariants,
which may be a threat to internal validity. Therefore, we
intend to conduct additional case studies using real-world Ajax
applications such as sForm and LWA.

Additionally, we defined Ajax design properties from Ajax
design patterns and related property patterns to the properties.
Although these definitions and relationships might affect the
internal validity of JSVerifier, results of our case studies
showed that JSVerifier could verify the correct and wrong
behavior of the applications and expose the actual faults in
the real-world applications. As our future work, we intend to
present an exhaustive set of Ajax design properties and to
evaluate the usefulness of JSVerifier for exposing actual faults
in the additional case studies.

External validity threats: With regards to the generality
of our approach, JSVerifier leveraged Spin, so it could only
deal with requirements that were expressed in LTL formulas.
However, there are requirements that are beyond the descrip-
tive capability of LTL, for example, the reachability of certain
states from any other states. To verify such behavior, we con-

sider leveraging SMV12, which can verify the correctness using
computation tree logic (CTL) formulas. CTL formulas allow
developers to express requirements involving the reachability.
Additionally, we are currently working on outputting timed
automata for Uppaal13 using JSVerifier.

Moreover, in our case studies, although we could leverage
LWA that were sufficiently practical, sForm and FileDLer
were simple Ajax applications. We need to obtain more
experimental results from analyzing large-scale and practical
Ajax applications.

E. Limitations

Data-intensive impossible execution paths: JSVerifier
analyzes only enabling and disabling statements to determine
whether an Ajax application can handle the interactions. In
fact, developers can implement such interaction controls also
using data flows. In our brief example in Figure 3, user inputs
for selecting options can never be invalid (line 15), which
means that the application can never proceed to the state
corresponding to invalid user inputs (lines 17-19). Such data-
intensive impossible execution paths can be dealt with by
DOM-based dynamic analysis [7], [8], [9], [10]. Hence, we
will extend JSVerifier to leverage contributions of these related
work in order to construct a hybrid approach.

However, we want to claim that the impossible execution
paths would be executable fault candidates, for example, in
case that other developers modify the source code of open
source Ajax applications or that users install other application
plug-ins. Therefore, we argue that our pessimistic analysis is
valuable to verify the application behavior containing the fault
candidates.

Additional Ajax design patterns: We assume that inter-
action invariants in Ajax applications derive from Ajax design
patterns. In fact, developers have their original Ajax design

12http://www.cs.cmu.edu/˜modelcheck/smv.html
13http://www.uppaal.com/

pattern and flexible requirements. When adding new design
patterns, developers need to define verification properties in
the design patterns and to relate appropriate property patterns
to the properties. Otherwise, developers can use JSVerifier with
raw LTL verification formulas.

V. RELATED WORK

Our approach leverages a reverse engineering technique and
a model checking technique. The former aims to provide alter-
native views of software artifacts, such as for redocumenting
programs and recovering design patterns [19]. Especially, a
view of state machines can improve the code understandability
of developers [20]. The latter is an approach for verifying
finite state machines representing concurrent systems, such as
sequential circuit designs and communication protocols [21].

Ricca et al. introduced state-based analysis and testing of
Web applications [22]. Although they regarded Web pages as
states, an Ajax technology allows the applications to change
their states in a single page. Hence, Marchetto et al. presented
a state-based testing technique for Ajax applications [7], [23].
Their tool called ReAjax could trace execution results of
actual DOMs, extract finite state machines from the trace data,
and generate test cases based on the state machines. However,
developers needed to manually and exhaustively execute Ajax
applications for tracing sufficient execution logs.

Mesbah et al. implemented Crawljax that could simulate
user events by finding fireable DOM elements and extract
finite state machines from Ajax applications [8]. To detect
DOM-based faults such as dead clickable elements, the tool
analyzed invariants of the DOM structure. Additionally, they
ran the tool on multiple browser environments for cross-
browser compatibility testing [24]. Moreover, their extended
tool called Cilla could find faults relevant to the presenta-
tion of the applications during crawling [25]. Although they
mentioned that static analysis techniques had limitations for
revealing faults of Ajax applications due to interactive DOM
manipulations, we can apply a static approach for extracting
and verifying state machines by focusing on the interactions
with the applications.

Amalfitano et al. proposed several Ajax application-
independent state change criteria and an interactive process
for extracting finite state machines [9]. They constructed a tool
called CreRIA that could suggest state changes based on the
criteria and developers could accept or reject the suggestions
during executing Ajax applications. Although CreRIA effec-
tively leveraged the heuristics of developers, this interactive
process were less contribution to the automated.

The above dynamic approaches leveraging execution results
cannot verify the correctness of the application behavior
because these tools may not execute all possible paths in the
applications. Our motivation for constructing JSVerifier is that
Ajax applications may have inexecutable faults to be exposed.

Additionally, Arzti et al. presented a method for prioritizing
event sequences using historical execution results to improve
code coverage [10]. This approach also dealt with DOM-based
faults because HTML, CSS and JavaScript errors are defined

in their language specifications. As for valid event sequences,
there is no general definition of correct or wrong behavior.
Therefore, developers leverage Ajax design patterns to define
Ajax application-independent invariant occurrence and order
among interactions as interaction invariants.

Guha et al. proposed a static approach for testing vulnerabil-
ity of Ajax applications [11]. Their framework could analyze
control flows in the JavaScript code and extract the request
graph containing sequences of asynchronous communica-
tions. Developers can use this framework for detecting runtime
server requests that do not match the sequences. However,
their approach was presumed that developers can correctly
understand and implement the application behavior. Addition-
ally, they addressed existing faults to be detected. Consid-
ering that developers will modify the source code of open
source Ajax applications and that users will install Ajax
application plugins, we claim that developers should debug
fault candidates that will be exposed. JSVerifier can verify
the application behavior containing such the fault candidates.
Furthermore, as a limitation of their approach, they pointed
out that it is necessary to analyze disabling event handlers
to precisely monitor Ajax application behavior. Our analysis
scope covers the application behavior containing such enabling
and disabling interactions.

Blewitt et al. conducted detection of GoF design patterns in
Java using semantic constraints [17]. Their concern was that
software evolution over time would cause breaking properties
of design patterns on the implementations. Additionally, Ghabi
et al. addressed an issue of maintaining requirements-to-
code traces [26] because the software evolution also causes
invalidating a requirements traceability matrix. In this study,
we assume that information about implemented Ajax design
patterns are correct, and it would be interesting to how
JSVerifier works with the invalid information.

VI. CONCLUSIONS AND FUTURE WORK

We presented a support tool, JSVerifier, and a selective
set of interaction invariants based on Ajax design patterns
and property patterns. Our aim was to automatically verify
the correctness of an interaction-based application behavior
in Ajax applications according to implemented Ajax design
patterns. The results of our case studies showed that JSVerifier
could verify the application behavior and exposed actual
faults in real-world Ajax applications. We concluded that
JSVerifier could help developers increase the usability of Ajax
applications.

As our future work, we plan to provide an exhaustive set of
the interaction invariants. We are going to exhaustively define
interaction-related properties from the Ajax design pattern and
relate property patterns to the properties. Additionally, we
intend to support developers to debug Ajax applications using
the suggested faulty execution paths. We are considering using
solutions in the design patterns to suggest debugging methods.
Moreover, we will conduct additional case studies using real-
world, large-scale, and practical Ajax applications.

REFERENCES

[1] B. Stearn, “Xulrunner: A new approach for developing rich internet
applications,” IEEE Internet Computing, vol. 11, no. 3, pp. 67–73, 2007.

[2] L. D. Paulson, “Building rich web applications with ajax,” Computer,
vol. 38, no. 10, pp. 14–17, 2005.

[3] Internet World Stats. (2011, Dec.) World internet usage
statistics news and world population stats. [Online]. Available:
www.internetworldstats.com/stats.htm

[4] J. Nielsen and H. Loranger, Prioritizing Web Usability. Berkeley, CA:
New Riders Press, 2006.

[5] C. E. Downing and C. Liu, “Assessing web site usability in retail
electronic commerce,” in Proc. Computer Software and Applications
Conf. (COMPSAC’11), Jul. 2011, pp. 144–151.

[6] M. Mahemoff, Ajax Design Patterns. O’Reilly Media, Inc., 2006.
[7] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web

applications,” in Proc. Int’l Conf. on Software Testing, Verification and
Validation (ICST’08), Apr. 2008, pp. 121–130.

[8] A. Mesbah and A. van Deursen, “Invariant-based automatic testing
of ajax user interfaces,” in Proc. Int’l Conf. on Software Engineering
(ICSE’09), May 2009, pp. 210–220.

[9] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “An iterative ap-
proach for the reverse engineering of rich internet application user
interfaces,” in Proc. Int’l Conf. on Internet and Web Applications and
Services (ICIW’10), May 2010, pp. 401–410.

[10] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, “A framework for
automated testing of javascript web applications,” in Proc. Int’l Conf.
on Software Engineering (ICSE’11), May 2011, pp. 571–580.

[11] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for ajax
intrusion detection,” in Proc. Int’l World Wide Web Conf. (WWW’09),
Apr. 2009, pp. 561–570.

[12] Y. Maezawa, H. Washizaki, and S. Honiden, “Extracting interaction-
based stateful behavior in rich internet applications,” in Proc. European
Conf. on Software Maintenance and Reengineering (CSMR’12), Mar.
2012, pp. 423–428.

[13] Garrett, Jesse James. (2005, Feb.) Ajax: A new approach to web
applications. [Online]. Available: www.adaptivepath.com/ideas/ajax-
new-approach-web-applications

[14] J. Duhl, “White paper: Rich internet applicationb,” IDC, Tech. Rep.,
Nov. 2003.

[15] M. Driver, R. Valdes, and G. Phifer, “Rich internet application are the
next evolution of the web,” Gartner, Inc., Tech. Rep., May 2005.

[16] J. Farrell and G. S. Nezlek, “Rich internet applications the next stage of
application development,” in Proc. Int’l Conf. on Information Technology
Interfaces (ITI’07), Jun. 2007, pp. 413–418.

[17] A. Blewitt, A. Bundy, and I. Stark, “Automatic verification of design
pattern in java,” in Proc. Int’l Conf. on Automated Software Engineering
(ASE’05), Nov. 2005, pp. 224–232.

[18] Alavi, Hamid and Avrunin, George and Corbett, James and
Dillon, Laura and Dwyer, Matt and Pasareanu, Corina. (2013,
May) Property pattern mappings for ltl. [Online]. Available:
patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

[19] G. Canfora and M. D. Penta, “New frontiers of reverse engineering,”
in Proc. Future of Software Engineering (FOSE’07), May 2007, pp.
326–341.

[20] S. S. Somé and T. C. Lethbridge, “Enhancing program comprehension
with recovered state models,” in Proc. Int’l Workshop on Program
Comprehension (IWPC’02), Jun. 2002, pp. 85–93.

[21] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[22] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in
Proc. Int’l Conf. on Software Engineering (ICSE’01), May 2001, pp.
25–34.

[23] A. Marchetto, P. Tonella, and F. Ricca, “Reajax: a reverse engineering
tool for ajax web applications,” Software, IET, vol. 6, no. 1, pp. 33–49,
2012.

[24] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in Proc. Int’l Conf. on Software Engineering (ICSE’11), May
2011, pp. 561–570.

[25] A. Mesbah and S. Mirshokraie, “Automated analysis of css rules to
support style maintenance,” in Proc. Int’l Conf. on Software Engineering
(ICSE’12), May 2012, pp. 408–418.

[26] A. Ghabi and A. Egyed, “Code patterns for automatically validating
requirements-to-code traces,” in Proc. Int’l Conf. on Automated Software
Engineering (ASE’12), Sep. 2012, pp. 200–209.

