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Abstract:  Multi-objective genetic algorithm (GAs) (non–dominated sorting genetic algorithm, NSGA-II) with a 
new diversity preserving mechanism is used for Pareto optimization of axial compressor. The conflicting design 
objectives of axial compressor are, total efficiency ( ttη ), and pressure ratio ( sπ ) and the input parameters are 
stage inlet angle ( ), inlet Mach number (M1α 1), and the diffusion factor (D). Optimal Pareto front of the axial 
compressor is obtained which exhibit the trade-off between the corresponding conflicting objectives and, thus, 
provides different non-dominated optimal choices of axial compressors for designer. 
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1   Introduction 
Optimization in engineering design has always been 
of great importance and interest particularly in 
solving complex real-world design problems. 
Basically, the optimization process is defined as to 
find a set of values for a vector of design variables so 
that it leads to an optimum value of an objective or 
cost function. There are many calculus-based 
methods including gradient approaches to single 
objective optimization and are well documented in 
[1-2]. However, some basic difficulties in the 
gradient methods, such as their strong dependence on 
the initial guess, cause them to find local optima 
rather than global ones. Consequently, some other 
heuristic optimization methods, more importantly 
Genetic Algorithms (GAs) have been used 
extensively during the last decade. Such 
nature-inspired evolutionary algorithms [3-4] differ 
from other traditional calculus based techniques. The 
main difference is that GAs work with a population 
of candidate solutions not a single point in search 
space. This helps significantly to avoid being trapped 
in local optima [5] as long as the diversity of the 
population is well preserved. Such an advantage of 
evolutionary algorithms is very fruitful to solve many 
real-world optimal design or decision making 
problems which are indeed multi-objective. In these 
problems, there are several objective or cost 
functions (a vector of objectives) to be optimized 
(minimized or maximized) simultaneously. These 
objectives often conflict with each other so that 
improving one of them will deteriorate another. 
Therefore, there is no single optimal solution as the 

best with respect to all the objective functions. 
Instead, there is a set of optimal solutions, known as 
Pareto optimal solutions or Pareto front [6-9] for 
multi-objective optimization problems. The concept 
of Pareto front or set of optimal solutions in the space 
of objective functions in multi-objective optimization 
problems (MOPs) stands for a set of solutions that are 
non-dominated to each other but are superior to the 
rest of solutions in the search space. This means that 
it is not possible to find a single solution to be 
superior to all other solutions with respect to all 
objectives so that changing the vector of design 
variables in such a Pareto front consisting of these 
non-dominated solutions could not lead to the 
improvement of all objectives simultaneously. 
Consequently, such a change will lead to 
deteriorating of at least one objective. Thus, each 
solution of the Pareto set includes at least one 
objective inferior to that of another solution in that 
Pareto set, although both are superior to others in the 
rest of search space. 
Axial-flow compressors are one of the most 
common compressor is in use today. They find their 
major application in large turbojet engines like, 
today's jet aircraft [10]. Some of main design 
requirements of axial compressor for use in a gas 
turbine engine involve an acceptable level of 
thermodynamic efficiency, adequate surge margin, 
and weight reduction [11]. Another complex 
optimization problem in gas turbine design is 
aerodynamic optimization which is multi-objective 
in nature. Recently, there has been a growing 
interest in single objective optimization and MOPs 
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used in compressible systems. The major reason for 
most of these computations is optimization of 
efficiency at design point but off-design 
performance analysis also has been considered by 
Junior et al. [11]. A single objective optimization 
has been studied by Oyama et al [12] to improve the 
efficiency of a transonic compressor in which 
entropy production is considered as the objective 
function. Another point of view which was 
investigated is optimization the of stator shape of an 
axial compressor, in order to maximize the global 
efficiency of the machine, fixing the rotor shape 
[13]. A multi objective optimization has been 
achieved by Chander et al. [14] using weighted 
method which the selected variables were mean 
diameter of stage, flow coefficient, axial velocity 
ratio for the rotor, axial velocity ratio for the stator, 
and rotational speed of the shaft to optimize 
efficiency, stall margin and inlet stage specific area. 
Multi-objective algorithm is also adopted for the 
design process to minimize the total pressure loss 
and the deviation angle at the design point at low 
Reynolds number condition [15]. A Pareto-
optimality-based has been performed to 
aerodynamic optimization design of an axial 
compressor blade [16]. A similar point of view 
using Pareto also has been considered in which the 
radial distributions of total pressure and solidities at 
rotor trailing edges and flow angles and solidities at 
stator trailing edges are chosen as design variables 
to maximize the overall isentropic efficiency and the 
total pressure ratio [17]. Also similar investigation 
using Pareto is performed by Lian to maximize the 
stage pressure ratio as well as to minimize the 
compressor weight [18]. 
In this paper, an optimal set of design variables 
adapted in compressors of gas turbine engines, 
namely, pressure ratio ( sπ ) and total efficiency 
( ttη ) are found using a Pareto approach to multi-
objective optimization. The design variables 
considered in this paper are stage inlet angle ( 1α ), 
inlet Mach number (M1), and diffusion factor (D). 
 
 
2   Multi-objective optimization 
Multi-objective optimization which is also called 
multicriteria optimization or vector optimization has 
been defined as finding a vector of decision 
variables satisfying constraints to give acceptable 
values to all objective functions [8]. In general, it 
can be mathematically defined as: 
find the vector [ ]T

nxxxX **
2

*
1

* ,...,,= to optimize 
[ ]T

k XfXfXfXF )(),...,(),()( 21=                         (1) 

subject to m inequality constraints 
mtoiXgi 1,0)( =≤                                       (2) 

and p equality constraints 
p    to1j     ,     0)( ==Xhj                                  (3) 

Where  is the vector of decision or design 
variables, and  is the vector of objective 
functions which each of them be either minimized or 
maximized. However, without loss of generality, it 
is assumed that all objective functions are to be 
minimized. Such multi-objective minimization 
based on Pareto approach can be conducted using 
some definitions: 

nX ℜ∈*
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2.1 Definition of Pareto dominance 
A vector [ ] k

kuuuU ℜ∈= ,...,, 21  is dominance to vector 
[ ] k
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2.2 Definition of Pareto optimality 
A point Ω∈*X  ( Ω  is a feasible region in  
satisfying equations (2) and (3)) is said to be Pareto 
optimal (minimal) with respect to the all 

nℜ

Ω∈X  if 
and only if . Alternatively, it can be 
readily restated as  

)()( * XFXF <

}{ ki ,...,2,1∈∀ ,   ∧ }{ *XX −Ω∈∀ )()( * XfXf ii ≤

}{ kj ,...,2,1∈∃  : . In other words, the 
solution *

)()( * XfXf jj <

X  is said to be Pareto optimal (minimal) if 
no other solution can be found to dominate *X  
using the definition of Pareto dominance. 
 
 
2.3 Definition of Pareto set 
For a given MOP, a Pareto set Ƥ٭ is a set in the 
decision variable space consisting of all the Pareto 
optimal vectors Ƥ٭ |{ Ω∈= X ∄ )}()(: XFXFX <′Ω∈′ . 
In other words, there is no other X ′  as a vector of 
decision variables in Ω that dominates any X ∈Ƥ٭.  
 
 
2.4 Definition of Pareto front 
For a given MOP, the Pareto front ƤŦ٭ is a set of 
vector of objective functions which are obtained 
using the vectors of decision variables in the Pareto 

Proceedings of the 10th WSEAS International Conference on COMPUTERS, Vouliagmeni, Athens, Greece, July 13-15, 2006 (pp878-883)



setƤ٭, that is 
ƤŦ٭ Ƥ٭}.  ∈== XXfXfXfXF k :))(....,),(),(()({ 21

In other words, the Pareto front ƤŦ٭ is a set of the 
vectors of objective functions mapped from Ƥ٭.  
Evolutionary algorithms have been widely used for 
multi-objective optimization because of their natural 
properties suited for these types of problems. This is 
mostly because of their parallel or population-based 
search approach. However, it is very important that 
the genetic diversity within the population be 
preserved sufficiently [19]. This main issue in 
MOPs has been addressed by many related research 
works. Consequently, the premature convergence of 
MOEAs is prevented and the solutions are directed 
and distributed along the true Pareto front if such 
genetic diversity is well provided. The Pareto-based 
approach of NSGA-II [20] has been recently used in 
a wide area of engineering MOPs because of its 
simple yet efficient non-dominance ranking 
procedure in yielding different level of Pareto 
frontiers. However, the crowding approach in such 
state-of-the-art MOEA is not efficient as a diversity-
preserving operator, particularly in problems with 
more than two objective functions. In fact, the 
crowding distance computed by routine in NSGA-II 
[20] may return an ambiguous value in such 
problems. The reason for such drawback is that 
sorting procedure of individuals based on each 
objective in this algorithm will cause different 
enclosing hyper-box. Thus, the overall crowding 
distance of an individual computed in this way may 
not exactly reflect the true measure of diversity or 
crowding property. 
 
 
2.5 є-elimination diversity algorithm 
In the є-elimination diversity approach that is used 
to replace the crowding distance assignment 
approach in NSGA-II [20], all the clones and є-
similar individuals are recognized and simply 
eliminated from the current population. Therefore, 
based on a pre-defined value of є as the elimination 
threshold (є=0.001 has been used in this paper), all 
the individuals in a front within this limit of a 
particular individual are eliminated. It should be 
noted that such є-similarity must exist both in the 
space of objectives and in the space of the 
associated design variables. This will ensure that 
very different individuals in the space of design 
variables having є-similarity in the space of 
objectives will not be eliminated from the 

population. The pseudo-code of the є-elimination 
approach is depicted in Fig. 1. Evidently, the clones 
and є-similar individuals are replaced from the 
population by the same number of new randomly 
generated individuals. Meanwhile, this will 
additionally help to explore the search space of the 
given MOP more effectively.  
 

 
 

Fig. 1  Pseudo-code of є-elimination for preserving 
genetic diversity 

 
 
3 Multi-Objective Aerodynamic Opti- 
mization of axial compressors  
The analysis and design of an axial-flow compressor 
is complex by many design choice. To simplify the 
design procedure, we considered a repeating stage 
whose exit velocity and flow angle equal those at its 
inlet and also is made up repeating rows of airfoils. 
Also it is assumed that the design procedure is based 
on the behavior of the flow at the average radius, 
known as the mean radius [10]. Detailed description 
of the design equations is given in appendix A.  
 

Stage inlet 
angle 

Inlet Mach 
number 

Diffusion 
factor    

°≤≤° 7010 1α  7.0M45.0 1 ≤≤  55.05.0 ≤≤ D

 
Table 1  Range of variation for input parameters 

 
The input parameters involved in this analysis are 
stage inlet angle ( 1α ), inlet Mach number (M1), and 
diffusion factor (D) and the output parameters 
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consisted of pressure ratio ( sπ ) and total efficiency 
( ttη ). The range of variation for input parameters are 
given in table 1. However, in this multi-objective 
analysis, some input parameters are already known or 
assumed as, 1=σ  and 33.1=γ  in which σ  and 
γ  are solidity and ratio of specific heat for air as the 
working fluid of gas turbine engines, respectively. 
In the optimization process it is desired that both 
pressure ratio and total efficiency to be maximized. 
In this way, a population size of 80 has been chosen 
with crossover probability Pc and mutation 
probability Pm as 0.85 and 0.1 respectively using 
multi-objective genetic algorithm.  
The Pareto front, of the two-objective optimization 
have been shown in Fig. 2. It can be observed that to 
obtain a better value of each objective would 
normally cause a worse value of another objective. 
In this figure, there are important regions which 
would be discussed as follows. 
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Fig. 2  Pareto front of total efficiency and pressure 

ratio 
 
It is clear from this figure that by moving from point 
A to pint B, there is a slight reduction in total 
efficiency whilst the increase in the pressure ratio is 
significant. Thus the design point B can be simply 
preferred to that of point A using the Pareto front. 
However, since there are not special advantages 
between the Pareto points, each point can be 
individually used by designers for special purpose.  
There are also some important and interesting 
optimal relationships in aerodynamic investigation of 
axial compressor blades that may not been known 
without a multi-objective optimization approach, 
thus, to obtain a better view to the effect of important 
parameters, some optimum values are plotted and 
discussed. Domains of variation for optimum points 
are also mentioned in table 2. 
 

 
1M  D  1α  ttη  sπ  

Max 0.7 0.54922 69.942 0.91921 1.87298
Min 0.53554 0.5 14.810 0.78247 1.29599
Table 2  Range of variation for optimum parameters 
 
Fig. 3 depicts the relations between optimized values 
of inlet Mach number as one of the inputs and 
pressure ratio and total efficiency respectively. It is 
clear that most of non-dominated individuals are 
occurred at inlet Mach number near 0.7.  

 
 

 
Fig. 3   Variation of pressure ratio and total efficiency 

with respect to the inlet Mach number 
 
Fig. 4 shows that in order to achieve a high pressure 
ratio, diffusion factor must be increased. In this case, 
the total efficiency is however decreased to establish 
the conflicting behavior of these objectives. It must 
be noted that higher value for diffusion factor directly 
represents the undesirable situation of viscous 
boundary layer separation which, in tern, could 
possibly cause instabilities in compressor [10].  
Alternatively, the relations of both objectives versus 
stage inlet angle are shown in Fig. 5. It can be readily 
seen that the maximum value of total efficiency 
(point H) occurs at the minimum value of stage inlet 
angle. Design point G exhibit a design that has a 
value of 86.0=ttη  whilst the corresponding value 
of pressure ratio is near its maximum value 
of 8.1=sπ . 
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Fig. 4   Variation of pressure ratio and total efficiency 

with respect to the diffusion factor 
 
 

 
Fig. 5   Variation of pressure ratio and total efficiency 

with respect to the diffusion factor 
 

 
4   Conclusion 
Multi-objective Pareto based optimization of axial 
compressors used in gas turbine engines have been 
successfully used. Optimum Pareto front of such 

axial compressor was obtained which exhibited the 
trade-off between the corresponding conflicting 
objectives and, thus, provide different 
non-dominated optimal choices of design values for 
axial compressor. It is shown that Pareto approach of 
optimization in compressor design points which 
demonstrate the important trade-offs which would 
have not been achieved without such optimization 
process.  
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Appendix A 
An axial-flow compressor stage consist of a rotor 
followed by a stator can be viewed in figure 6. 
 
Equations: 

1

1

cos
sin2
α
ασ +

≡Γ     (7) 

1
)1(41)1(2

2

222

2 +Γ
−−+Γ+Γ−

=
DD

ArcCos
σσ

α (8) 

21 tantan
1

αα +
=Φ     (9) 

21

12

tantan
tantan

αα
αα

+
−

=Ψ                (10) 

( )
⎥
⎦

⎤
⎢
⎣

⎡
+Φ
Ψ−+Φ

⎟
⎠
⎞

⎜
⎝
⎛
Ψ

×⎟
⎠
⎞

⎜
⎝
⎛=

1
11

2
1

2

222
1

U
W

ec
               (11) 

)tan)(tan(cos
1

212

11

αααω +
=

⋅
=

r
V

U
W R              (12) 

[ ]
1)1

cos
cos

(
2)1(1

)1(

2
2

1
2

2
1

2
1

1

3 +−
−+
−

==
α
α

γ
γ

τ
M

M
T
T

t

t
s

        (13) 

)1/(

1

3 )( −== γγτπ ce
s

T

t
s P

P                (14) 

1
1/)1(

−
−

=
−

s

s
tt τ

π
η

γγ

               (15) 

 
 

 
 

Fig. 6   Blade rows of an axial compressor 
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