
QDI Decomposed DIMS Method Featuring
Homogeneous/Heterogeneous Data Encoding

PADMANABHAN BALASUBRAMANIAN¶, and NIKOS E. MASTORAKIS§

¶ School of Computer Science
The University of Manchester

Oxford Road, Manchester M13 9PL
UNITED KINGDOM

padmanab@cs.man.ac.uk
§ Division of Electrical Engineering and Computer Science

Military Institutions of University Education, Hellenic Naval Academy
Piraeus 18539

GREECE
mastor@hna.gr

Abstract: - The delay-insensitive minterm synthesis (DIMS) method facilitates a robust two-level asynchronous
implementation of dual-rail encoded arbitrary combinational logic. However for multilevel realization, logic
decomposition becomes indispensable. In this context, this paper describes an elegant technique of performing
quasi-delay-insensitive logic decomposition based on set theoretic principles. This includes consideration of
generic homogeneous and heterogeneous delay-insensitive data encoding schemes within the purview of the
DIMS approach. Through the proposed set theory based logic decomposition rules, it is shown how any
combinational logic specification that comprises any number of concurrent inputs can be synthesized in a
multilevel fashion on the basis of the DIMS method without compromising on circuit robustness.

Key-Words: - Asynchronous logic design, Delay-insensitive codes, DIMS method, Quasi-delay-insensitivity,
Combinational logic, Logic decomposition.

1 Introduction to DIMS Method
he delay-insensitive minterm synthesis (DIMS) technique [1], in its conventional format, is used for the
robust two-level asynchronous realization of a combinational logic function. To achieve this, the DIMS

approach requires enumeration of 2n canonical products1 of a combinational logic function, which is composed
of ‘n’ distinct primary inputs, with the literals comprising the unique canonical products replaced by their dual-
rail encoded data equivalents. The products are then logically summed to synthesize the desired functionality.
Due to an imminent input space explosion associated with the DIMS approach, this method is often preferred
for robust asynchronous synthesis of small functionality such as discrete logic gates and arithmetic circuit
blocks. The problem of input state-space explosion is compounded by the difficulty with logic decomposition.
The NCL_D design method [2], asynchronous circuit synthesis based on partial acknowledgement [3], and
asynchronous circuit optimization by local input completeness relaxation [4] are some of the popular
asynchronous logic design methods that utilize the DIMS technique as part of their synthesis strategy. The
DIMS approach differs from Seitz’s method [5] in that logical conjunctions are perceived as achieved using
Muller C-elements2 rather than using simple AND gates. Hence the resulting physical realizations tend to
properly indicate (acknowledge) the arrival of primary inputs on their primary outputs. Moreover, the primary
outputs properly indicate completion of computation and attainment of steady-state within the 'function block',
which represents the asynchronous equivalent of a synchronous combinational logic circuit.

T

1 A product signifies a logical conjunction of distinct literals.
2 The C-element outputs a 1(0) if all its inputs are 1(0); in other scenarios it retains its existing steady-state.

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 93

mailto:mastor@hna.gr
mailto:padmanab@cs.man.ac.uk

 A typical DIMS solution consists of C-elements in the first level and OR gates in the next level(s) which are
used for disjunction of the appropriate product terms. The C-elements are assumed to have unbounded fan-in,
while the OR gates can be decomposed arbitrarily as at this stage there is a one-hot code data representation.
This is because for every function input only one C-element that synthesizes a unique canonical product term
would be activated during the set phase. For physical realization of the DIMS based solution, the C-elements
often have to be decomposed. The naive decomposition of a C-element based on the associative axiom could
result in the generation of gate orphans (hazards) as illustrated in figure 1(a), while on the contrary merging
could eliminate hazards as depicted by figure 1(b). Referring to figure 1(a), given the low-to-high going input
transitions (a↑, b↑), only X↑ results while the steady-state of Y is maintained. Therefore, the transition on the
intermediate node X is not reflected on the output Y, which is construed as a gate orphan. Considering figure
1(b), given the input sequence (a↑, b↑), the steady-state of Y is maintained and unless c↑ occurs, Y↑ does not
occur thereby avoiding the creation of gate orphans.

C

a

b C

c

X

Y

(a)

Y

a

b

c

C

(b)

Fig. 1. Hazards due to naive decomposition of a C-element and elimination of hazards by merging

 In general, reduction of Boolean equations is not allowed as part of the DIMS approach as it might violate the
monotonic cover constraint [6], which implies that the product terms comprising a sum-of-products expression
are mutually orthogonal. The function block constructed with its outputs expressed in disjunctive normal form
by utilizing all the canonical products is termed strongly indicating, as none of the outputs would become
defined/undefined until all the inputs have become defined/undefined. The DIMS approach is similar to an
earlier work by Anantharaman [7], but has been subsequently extended into a standard technique for
implementation of arbitrary multiple output function blocks in [1]. Let us consider a dual-rail full adder
synthesized on the basis of DIMS method for an illustration. The fundamental equations governing the full
adder with dual-rail inputs (a1, a0), (b1, b0), (cin1, cin0) and dual-rail outputs (Sum1, Sum0), (Cout1, Cout0)
are given as follows:

Sum1 = a0b0cin1 + a0b1cin0 + a1b0cin0 + a1b1cin1 (1)

Sum0 = a0b0cin0 + a0b1cin1 + a1b0cin1 + a1b1cin0 (2)

Cout1 = a0b1cin1 + a1b0cin1 + a1b1cin0 + a1b1cin1 (3)

Cout0 = a0b0cin0 + a0b0cin1 + a0b1cin0 + a1b0cin0 (4)

 The dual-rail full adder implementing the above equations is shown in figure 2. The C-element is represented
by the AND gate symbol with the marking 'C' on its periphery. A delay-insensitive (DI) circuit is designed to
operate correctly irrespective of component (gate) delays and delays encountered with the communicating
signal wires i.e. unbounded (arbitrary, but positive and finite) gate delay and wire delay models are assumed.
DI circuits feature the most robust unbounded delay model and such circuits are guaranteed to be correct by
construction meaning they require no timing verification and can tolerate fluctuations in process parameters,
temperature and noise and can also be ported between different technologies with ease, thus featuring excellent
design modularity. It was shown in [8] and [9] that C-elements and inverters are the only DI elements and so
unfortunately, the class of pure DI circuits would be very limited comprising these two elements. Since the
class of pure DI circuits is highly restricted, a weakest compromise to delay-insensitivity was introduced known
as the 'isochronic fork' assumption [8] [9]. The isochronic fork timing assumption has been defined by Martin
in [9] as: “In an isochronic fork, when a transition on one output is acknowledged, and thus completed, the
transitions on all outputs are acknowledged, and thus completed”. A fork refers to a node or junction from

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 94

where signal wires branch out and an isochronic fork assumption implies that the signal value (say '0' or '1') on
all the branching-out wires from the fork is similar at any time instant. Technically, the difference between the
delays in the branches of the fork is considered to be negligible in comparison with the delays encountered in
the gate elements, and also the switching thresholds in the different gates to which the fork is an input are
nearly the same. Though both these assumptions appear to be difficult to realize in smaller geometries, the
isochronic fork assumption is usually confined to very small circuit areas. A recent work by Martin et al. [10]
shows that practical realization of the isochronicity assumption is feasible even in nano-CMOS technologies
where stricter design rules and large parameter variations are commonplace. DI circuits with isochronic fork
assumptions are referred to as quasi-delay-insensitive (QDI) circuits, but it is not necessary that every fork be
named an isochronic fork in a QDI circuit [9]. In figure 2, isochronic fork assumptions are made with respect to
dual-rail primary inputs as they feed many C-gates while forks which feed the OR gates are non-isochronic.
Hence it is to be noted that DIMS based solutions are inherently QDI.

cin0

Sum1

a0
b0

Cout0

C

cin1

a0
b0 C

cin0

a0
b1 C

cin1

a0
b1 C

cin0

a1
b0 C

cin1

a1
b0 C

cin0

a1
b1 C

cin1

a1
b1 C

Cout1

Sum0

Fig. 2. Full adder realization based on DIMS approach

2 Set Theory Based Terminologies and Definitions
Terminologies governing set theory based logic operations are defined in this section, which are subsequently
used to explain the process of QDI logic decomposition in Section 3. These are helpful in the development of
multilevel synthesis models for robust asynchronous circuit designs. Unless otherwise stated, the following
discussions pertain to dual-rail encoded data paths.

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 95

2.1 Support Set and Dependency Set
The support3 set of a product term P, denoted by S(P), enumerates the input variables that are a constituent of
the product. On the other hand, a product's dependency set D(P) entails the listing of all the input literals that
are a function of the product for its evaluation to logic ‘high’. For a product term P specified by a1b0c1d1, its
S(P) and D(P) are:

S(P) = {a,b,c,d} (5)
D(P) = {a1,b0,c1,d1} (6)

2.2 Products Support Intersection Set and Products Dependency Intersection Set
The products support (dependency) intersection set viz. PSI (PDI) set marks the intersection of the support
(dependency) set of two product terms, characterized by the variables (literals) that are common to/shared
between the support (dependency) set of both product terms. For example, with D(P1) and D(P2) specified by
{a0,b0,c0,d0} and {a0,b0,c0,d1} respectively, their corresponding PSI and PDI sets are given by,

PSI [S(P1), S(P2)] = {a,b,c,d} (7)
PDI [D(P1), D(P2)] = {a0,b0,c0} (8)

2.3 Products Relativity Set
The products relativity (PR) set characterizing a product term with respect to another product term identifies or
isolates the unique literals in the former compared to the latter. The PR set of product P 1 relative to product P2

is obtained by computing the set-theoretic difference of the dependency set of product P 1 and the PDI set of
both the product terms. It basically amounts to finding the relative complement of PDI set of both products in
the dependency set of product term P1.

PR [P1, P2] = D(P1) \ PDI [D(P1), D(P2)] (9)
 Similarly, PR set of P2 with respect to P1 is given by,

PR [P2, P1] = D(P2) \ PDI [D(P1), D(P2)] (10)
 For example, with D(P1) = {a1,b1,c0,d1,e0,g1} and D(P2) = {b1,c1,d1,e0,g0},

PR [P1, P2] = {a1,c0,g1}, PR [P2, P1] = {c1,g0} (11)

2.4 Variables Identification
Variables identification (VI) is an operation that is typically performed on the PR set yielding a set of variables
as elements. It is equivalent to characterizing the support of a PR set. With respect to (11),

PR_VI [P1, P2] = {a,c,g}, PR_VI [P2, P1] = {c,g} (12)

3 Orthogonality and QDI Logic Decomposition
In this section, relationships that govern orthogonal products4, sum-of-products expression, orthogonal sum-of-
products expression, and QDI logic decomposition based on extraction of suitably shared logic functionality
and substitution operation are described.

3.1 Mutual Orthogonality Set and Degree of Mutual Orthogonality
The essential relations to be satisfied in order that two product terms P1 and P2 may be said to be orthogonal to
each other are given below.

|S(P1)| ≥ 1, |S(P2)| ≥ 1 (13)
|PR [P1, P2]| ≥ 1, |PR [P2, P1]| ≥ 1 (14)

 The support set of any product term should consist of at least a single variable, which is specified by (13).
According to (14), there should be at least one distinct element in D(P1) relative to D(P2) and vice-versa;
otherwise there would not exist a possibility for P1 and P2 to exhibit mutual orthogonality. But the satisfying of

3 In general, the term ‘support’ signifies a set. But the term ‘set’ has been additionally used as a suffix to ensure
compatibility with the other set definitions to be introduced in this work. The support of a function (product term) is the set
of variables appearing in the function (product term).
4 Two product terms are said to be orthogonal to each other if their logical conjunction results in a null. For example, x0y0
and x1y1 are mutually orthogonal.

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 96

conditions (13) and (14) alone cannot guarantee the existence of an orthogonal relationship between P1 and P2,
since PR [P1, P2] and PR [P2, P1] may contain literals associated with different variable indices. For example,
product terms Pi and Pj specified by dependency set elements {a1,b0,c1} and {d1,e0} respectively satisfy the
inequalities given in (13) and (14) but are not orthogonal. Hence, if and only if the inequality mentioned in (15)
is additionally satisfied, then can the two product terms P1 and P2 be labeled as mutually orthogonal, for it shall
then be guaranteed that two different instances (literals) of the same support variable would be present in either
of the sets being intersected.

PR_VI [P1, P2]  PR_VI [P2, P1] ≠ Ø (15)
 The integer measure of the number of variables responsible for establishing the orthogonal relationship
between two product terms is called the degree of mutual orthogonality (DMO). Given that (13) – (15) hold
good for product terms P1 and P2, the mutual orthogonality (MO) set that comprises orthogonal variables and
the DMO between P1 and P2 are given by,

MO = PR_VI [P1, P2]  PR_VI [P2, P1] (16)
DMO = |PR_VI [P1, P2]  PR_VI [P2, P1]| (17)

3.2 Sum-of-Products and Orthogonal Sum-of-Products Forms
A sum-of-products (SOP) expression represents a disjunction of product terms, each of which involves a
conjunction of literals. An orthogonal sum-of-products (OSOP) form [11] consists of product terms that are all
orthogonal to each other, i.e. the product terms do not overlap. Every product is mutually orthogonal to every
other product in an OSOP form and therefore the OSOP implicitly satisfies the monotonic cover constraint. The
SOP and OSOP expressions for the carry output of a dual-rail full adder are given by (18) – (21) below, where
(a1,a0), (b1,b0) and (cin1,cin0) are the dual-rail inputs and (Cout1,Cout0) is the dual-rail output.

Cout1SOP = a1b1 + b1cin1 + a1cin1 (18)
Cout0SOP = a0b0 + b0cin0 + a0cin0 (19)
Cout1OSOP = a1b1 + a0b1cin1 + a1b0cin1 (20)
Cout0OSOP = a0b0 + a1b0cin0 + a0b1cin0 (21)

3.3 Criteria for QDI Logic Decomposition
The necessary criteria for performing QDI logic decomposition by way of extracting shared logic between two
mutually orthogonal products P1 and P2 are listed below. These are also useful to effect decomposition up to a
finer granularity in accordance with the elements specified in the base-function set (cell library).

|S(P1)| > 1, |S(P2)| > 1 (22)
S(P1) = S(P2) (23)
|PR [P1, P2]| = |PR [P2, P1]| = 1 (24)

 The first constraint implies that there should be at least two elements in the support set of both product terms,
which is obviously mandatory for decomposition, as a product with a singleton support set reduces to a wire.
 The second relation ensures that variables of both product terms are identical, which is an essential criterion
for considering extraction of logic shared between them as products with disjoint supports cannot feature any
commonality. Assuming that a function consists of a number of product terms, where the support set elements
corresponding to all the products are distinct, the function could then be classified as purely read-once5 and it
would be implicitly expressed in its reduced SOP format [12]. In terms of dependency sets, the condition given
by (23) conveys that |D(P1)| = |D(P2)|, i.e. P1 and P2 are said to be equipollent.
 The third condition is vital as its fulfillment would point to an opportunity for performing QDI logic
decomposition involving equipollent products which satisfy relations (22) and (23). It essentially means that
there is only one unique literal in P1 relative to P2 and vice-versa. Given that the above conditions are upheld, it
should be obvious that the equality relation |PDI [D(P1), D(P2)]| = |D(P1)|-1 = |D(P2)|-1 would hold good.
 If two product terms Pa and Pb are not mutually orthogonal, and if they satisfy (22) with |S(Pa)| > |S(Pb)|, then
a possibility for QDI logic decomposition could exist even though product terms Pa and Pb are not equipollent,
provided D(Pb) ⊆ D(Pa). To explain this, let us assume that Pa and Pb are given by a1b0c0d0e1 and b0d0
5 A function is said to be 'read-once', if each variable appears only once in its factored form. For example, the Boolean
function F = x(y+z) is read-once.

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 97

respectively. Provided the activation of Pb would be certainly acknowledged by the next level logic, Pa can be
expressed as the conjunction of products a1c0e1 and Pb. Indeed, Pb should belong to the cover of a function
output different from that of the cover comprising Pa. However, both Pa and Pb cannot be present in the same
function cover as Pb would be said to contain Pa, where Pa becomes the covered product term and Pb is the
covering product term that can absorb Pa. Also, Pa and Pb cannot be present in different rails (of the dual-rail) of
the same encoded function block output as then the system could enter into an illegal state (both ‘set’ and
‘reset’ functions would be asserted ‘high’ simultaneously). Nevertheless, this scenario of logic decomposition
does not normally occur in case of indicating circuit synthesis models which consider the entire input space,
and it is mentioned here only as a supplementary information addressing special situations.

3.4 Primary and Secondary Product Terms
The need for logic decomposition arises whenever larger product terms are present in a function which cannot
be physically implemented due to fan-in restrictions of the cell library and therefore they have to be realized via
smaller products. With the conditions mentioned in the above sections satisfied between mutually orthogonal
products, say P1 and P2, a common product term can be extracted from among them, which shall be referred to
as P3. In this case, the following properties hold good: D(P3) ⊆ D(P1) and D(P3) ⊆ D(P2). In a similar fashion,
S(P3) ⊆ S(P1) and S(P3) ⊆ S(P2). The size of the product term P3 would be governed by (25), while its literals
are specified by (26).

|S(P3)| = |S(P1)|-1 = |S(P2)|-1 (25)
D(P3) = PDI [D(P1), D(P2)] (26)

 After the process of QDI logic decomposition, the variables and literals of the parent product terms P 1 and P2

can be enumerated using (27) and (28), (29) respectively.
S(P1) = S(P2) = S(P3) ∪ PR_VI [P1, P2] = S(P3) ∪ PR_VI [P2, P1] (27)
D(P1) = D(P3) ∪ PR [P1, P2] (28)
D(P2) = D(P3) ∪ PR [P2, P1] (29)

 Product terms P1 and P2 can be called 'primary product terms' if their support sets are found to be a function of
the primary input variables. Given this, P3 can be referred to as the 'secondary product term' and it is usually
substituted into the primary product terms P1 and P2 as an intermediate node. The primary product is basically a
canonical product term comprising the primary input variables of the function block, while the secondary
product is a standard product term formed from a subset of the support set variables of the function. From the
preceding discussions, it can be intuitively observed that whenever two product terms qualify as candidates for
QDI logic decomposition, they are certainly orthogonal but not vice-versa. For example, Pm and Pn represented
by their dependency sets D(Pm) = {a0,b1,c1,d0} and D(Pn) = {a0,b1,c0,d1} are mutually orthogonal, yet no
common logic can be extracted in a QDI fashion as (24) is not satisfied between them. This observation holds
good for asynchronous data paths adopting any DI data encoding scheme.

3.5 Data Paths Employing 1-of-n DI Codes
The concepts described previously serve as a basis for the following discussion on QDI asynchronous data
paths incorporating arbitrary one-hot codes. We shall first discuss this on the basis of 1-of-4 code to provide a
specific illustration. Two single-rail inputs can be represented using a 1-of-4 code symbolically as shown in
Table 1. It is to be noted that the 1-of-4 encoding shown represents only one of many possible assignments and
an arbitrary data mapping is chosen here.

Table 1. Data representation in dual-rail and 1-of-4 encoding schemes

Single-rail inputs Dual-rail encoded data 1-of-4 encoded data
A B (A1 A0) (B1 B0) E0 E1 E2 E3
0 0 (0 1) (0 1) 0 0 0 1
0 1 (0 1) (1 0) 0 0 1 0
1 0 (1 0) (0 1) 0 1 0 0
1 1 (1 0) (1 0) 1 0 0 0

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 98

 To avoid the confusion that could result from similar symbolic variable assignments, a condition is imposed
whereby the representation of each unique pair of single-rail inputs by a 1-of-4 code equivalent should be
distinct in terms of the symbol variables used for corresponding mapping. Notwithstanding, the set definitions
mentioned above would not be adequate to address QDI data paths that employ arbitrary combinations of
generic 1-of-n codes. For example, four single-rail inputs (m,n,o,p) are converted into two-pairs and are
mapped as highlighted in (30) and (31), which constitutes a valid representation. On the contrary, the mapping
(m,n) ↔ (q0,q1,q2,q3) and (o,p) ↔ (q4,q5,q6,q7) is classified as non-permissible because the VI operation
would yield the same element.

(m,n) ↔ (q0,q1,q2,q3) (30)
(o,p) ↔ (r0,r1,r2,r3) (31)

 Let us assume that a function F is dependent on six input variables (a,b,c,d,e,f), and expressed by the
disjunction of two product terms X and Y, which are specified as a’bcd’e’f and a’b’c’d’ef in single-rail format.
With the pairs of input variables (a,b), (c,d) and (e,f) mapped to symbolic notations (i0,i1,i2,i3), (j0,j1,j2,j3) and
(k0,k1,k2,k3) respectively, and assuming a similar encoding assignment as shown in Table 1, we have the
dependency sets of products X and Y described as thus:

D(X) = {i2,j1,k2} (32)
D(Y) = {i3,j3,k0} (33)

 Referring to relations (13) – (15), it can be seen that product terms X and Y jointly satisfy these and hence
they are categorized as orthogonal product terms. But as they do not mutually satisfy (24), QDI decomposition
is not feasible.
 Let us now consider a data path of odd width and let (a,b,c,d,e,f,g,h,i) be the single-rail inputs. Let us have the
following permissible mappings utilizing 1-of-2, 1-of-4 and 1-of-8 DI codes for a QDI data path.

a ↔ (a0,a1) (34)
(b,c,d) ↔ (m0,m1,m2,m3,m4,m5,m6,m7,m8) (35)
(e,f) ↔ (n0,n1,n2,n3) (36)
g ↔ (g0,g1) (37)
(h,i) ↔ (p0,p1,p2,p3) (38)

 The mapped representation b’c’d’ ↔ m8 and bcd ↔ m0 is used. Let two product terms Z1 and Z2 be specified
as a’b’c’d’e’fgh’i’ and a’bcde’fgh’i’ respectively in their single-rail format. Referring to Table 1 again for the
1-of-4 coded value assignments corresponding to a pair of single-rail data inputs, the dependency sets of the
encoded product terms are given as,

D(Z1) = {a0,m8,n2,g1,p3} (39)
D(Z2) = {a0,m0,n2,g1,p3} (40)

 It can be seen that after encoding the product terms Z1 and Z2 satisfy (13) – (15). Also, (24) is satisfied
between them as their MO set is singleton. Hence, it can be inferred that product terms Z1 and Z2 are not only
orthogonal to each other but also qualify as potential candidates for QDI decomposition, thus paving the way
for logic extraction between them.

4 Example Problem
QDI decomposed DIMS implementations of a combinational benchmark function, check, which consists of
four single-rail inputs (a,b,c,d) and produces a single output (F) are shown in figures 3 and 4 for the case of
homogeneous encoding (only dual-rail) and heterogeneous encoding (dual-rail and 1-of-4). The encoding and
decoding circuitry is shown in figure 5 that is used to translate data between dual-rail and 1-of-4 encoding
protocols. It is assumed for this case study that the base-function set is merely composed of 2-input and 3-input
C-elements (CE2s and CE3s respectively). Secondary products correspond to the outputs of first-level C-gates,
while primary product terms are obtained as outputs of the second-level C-gates. The conventional DIMS
method would require sixteen 4-input C-elements for the homogeneous data encoding convention, which
eventually renders the solution not physically realizable given the library constraints. Isochronicity assumption
is imposed on primary inputs and intermediate output forks of the first level logic of both QDI circuits.

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 99

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

d0

d1

a0
b0
c0

d0

d1

d0

d1

d0

d1

d0

d1

d0

d1

d0

d1

d0

d1

a0
b0
c1

a0
b1
c0

a0
b1
c1

a1
b0
c0

a1
b0
c1

a1
b1
c0

a1
b1
c1

F1

F0

Fig. 3. QDI decomposed realization of check function block employing homogeneous data encoding

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

d0

d1

i3

c0

d0

d1

d0

d1

d0

d1

d0

d1

d0

d1

d0

d1

d0

d1

i3

c1

i2
c0

i2

c1

i1

c0

i1

c1

i0

c0

i0

c1

F1

F0

Fig. 4. QDI decomposed synthesis of check function block incorporating heterogeneous data encoding

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 100

C

C

C

C

a0

b0

a1

b1

i3

i2

i1

i0

i2

i3

i0

i1

a0

a1

b1

b0

(a) (b)

Fig. 5. (a) Dual-rail to 1-of-4 encoder, and (b) 1-of-4 to dual-rail decoder

4 Conclusion
A technique to introduce QDI logic decomposition into the standard DIMS method was discussed in this paper.
The proposed technique is based upon set theoretic principles and considers generic homogeneous and
heterogeneous delay-insensitive data encoding schemes. The problem associated with physical implementation
of a traditional DIMS based solution grows by O(2n) for increase in inputs by O(n). The proposed QDI logic
decomposition procedure has provided a solution to this problem by suggesting a feasible logic optimization
strategy as an extension to the DIMS asynchronous logic synthesis method.

References:
1. J. Sparso, and J. Staunstrup, “Delay-insensitive multi-ring structures,” Integration, the VLSI Journal,
vol. 15, pp. 313-340, 1993.
2. Ligthart, K. Fant, R. Smith, A. Taubin and A. Kondratyev, “Asynchronous design using commercial HDL
synthesis tools,” Proc. 6th International Symp. on Advanced Research in Asynchronous Circuits and Systems,
pp. 114-125, 2000.
3. Y. Zhou, D. Sokolov and A. Yakovlev, “Cost-aware synthesis of asynchronous circuits based on partial
acknowledgement,” Proc. IEEE/ACM International Conf. on Computer-Aided Design, pp. 158-163, 2006.
4. Jeong and S.M. Nowick, “Optimization of robust asynchronous circuits by local input completeness
relaxation,” Proc. Asia and South Pacific Design Automation Conference, pp. 622-627, 2007.
5. C.L Seitz, “System Timing,” in Introduction to VLSI Systems, C. Mead and L. Conway (Eds.), pp. 218-
262, Addison-Wesley, Reading, MA, 1980.
6. A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen and A. Yakovlev, “Basic gate
implementation of speed-independent circuits,” Proc. 31st ACM/IEEE Design Automation Conference, pp. 56-
62, 1994.
7. T.S. Anantharaman, “A delay insensitive regular expression recognizer,” IEEE VLSI Technical
Bulletin, vol. 1, no. 2, pp. 3-15, 1986.
8. A.J. Martin, “Compiling communicating processes into delay-insensitive VLSI circuits,” Distributed
Computing, vol. 1, no. 4, pp. 226-234, December 1986.
9. A.J. Martin, “The limitation to delay-insensitivity in asynchronous circuits,” Proc. 6th MIT Conf. on
Advanced Research in VLSI, pp. 263-278, MIT Press, 1990.
10. A.J. Martin and P. Prakash, “Asynchronous nano-electronics: preliminary investigation,” Proc. 14th
IEEE International Symp. on Asynchronous Circuits and Systems, pp. 58-68, 2008.
11. V.I. Varshavsky (Ed.), Self-Timed Control of Concurrent Processes: The Design of Aperiodic Logical
Circuits in Computers and Discrete Systems, Chapter 4: Aperiodic Circuits, pp. 77-85, (Translated from the
Russian by Alexandre V. Yakovlev), Kluwer Academic Publishers, 1990.
12. I. Newman, “On read-once Boolean functions,” in M.S. Paterson (Ed.), Boolean Function Complexity,
pp. 25-34, London Mathematical Society Lecture Note Series 169, Cambridge University Press, 1992.

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

ISBN: 978-1-61804-030-5 101

