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Abstract: - There is a widespread belief in scientific literature on material research that the distribution of 
relaxation and retardation times (DRRT) is a non-measurable quantity. In the presented contribution, we try to 
revise this belief. Based on the recently developed functional filtering approach for DRRT recovery, 
measurement systems are proposed to develop executing an active measurement experiment by exciting 
material with the specific stimulus, measuring material’s responses sampled geometrically in time- or 
frequency-domain and processing them by the appropriate DRRT recovery filters. Design and algorithms of 
DRRT recovery filters are considered and practical implementations of DRRT measurement systems are 
proposed executing measurement experiments by exploiting the standard excitations, such as the Heaviside step 
function, the Dirac delta function and the steady-state multi-harmonic one.        
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1 Introduction 
Distribution of relaxation and retardation times 
(DRRT) or relaxation/retardation spectrum is one of 
the most fundamental quantities in various relaxation 
theories, such as linear theory of viscoelasticity  
[1-3], dielectric relaxation theory [3-5], magnetic 
resonance theory [6], etc. DRRT relates to molecular 
structure of materials [7-9]. Knowledge of DRRT is 
necessary for a wide range studies and applications, 
such as examination of the relationship between the 
molecular weight distribution and properties of a 
material, prediction of the behaviour of materials 
after an arbitrary excitation, interconversion of 
material functions, etc.  
     Historically, a concept of DRRT has been 
introduced to allow interpreting the non-exponential 
behaviour of the stress decay and strain retardation of 
viscoelastic materials, as well as the similar processes 
in dielectrics after abrupt turning on or off the 
electrical field. To ensure agreement with 
experimental data, it has been accepted that the non-
exponential response functions result from a 
superposition of exponential (Debye) processes with 
different relaxation/retardation times. 
Mathematically, this idea has been expressed by 
replacing terms with a single relaxation/retardation 
time by their distributions. 

      DRRT is determined from various experimental 
data either in time- or frequency-domain to solve 
appropriate inverse problems being, as a rule, ill-
posed. It is no exaggeration to say that DRRT 
recovery is one of all the time the most hard ill-posed 
inversion problems. Despite that intense studies of the 
determination of DRRT date back more than a 
century and that there is extensive literature on 
determination of DRRT [10-16], the problem still 
presents a lot of theoretical and practical challenges. 
Most of algorithms, particularly elder ones are based 
on curve fitting techniques and therefore, are 
applicable for limited class of materials to be in 
compliance with the mathematical model involved. 
     In scientific literature on material research, it is a 
widespread belief that DRRT is a non-measurable 
quantity. The two main reasons behind this belief are 
as follows: (i) the lack of effective computational 
resources for DRRT recovery, (ii) necessity to 
determine DRRT from experimental data, being, as a 
rule, incomplete (truncated), discrete and erroneous. 
However, recently [17-20], the problem of 
determination of DRRT has been analysed from the 
up-to-date signal processing perspective and 
computationally efficient DRRT recovery filters 
have been developed allowing to revise the belief of 
non-measurability of DRRT. In the presented 
contribution, a concept and practical 
implementations are considered for developing 
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systems for measuring DRRT by exciting material 
with the standard stimulus, such as the Heaviside step 
function, the Dirac delta function and the steady-state 
multi-harmonic one, and processing of material’s 
responses by the appropriate DRRT recovery filters.  
 
 

2 Determination of DRRT  
 
 
2.1 Input Data 
Theoretically, DRRT can be calculated from various 
monotonic or locally monotonic material functions 
either in the time- of frequency- domain. These 
functions have various names in the specific 
experiments and in special fields [1-6, 10-16], 
however, in most cases, the functions represent the 
characteristic responses of a material to the three 
standard excitations (loadings), such as step (the 
Heaviside step function), impulse (the Dirac delta 
function) and harmonic (the steady-state sinusoidal) 
ones. Due to this, the material functions will be 
conditionally generalized here in two categories as 
compliance and modulus functions depending on the 
force (stress, voltage, etc.) or displacement (strain, 
charge, etc.) excitations in the experiments. Fig. 1 
shows eight material functions traditionally used for 
calculation of DRRT and the excitations exploited to 
generate them. 
 
 
2.2 DRRT Recovery – a Deconvolution 
Problem on the Logarithmic Scale  
Recently [17-19], it has been demonstrated that 
determination of DRRT from the eight material 
functions shown in Fig. 1 represents a deconvolution 
or inverse filtering problem on a logarithmic time or 
frequency scale, which can be solved by the 
deconvolution filters with the following three 
frequency responses defined in the Mellin transform 
domain: 

(i) )(/1)( µΓµ jjH −=   (1) 

to be used for DRRT recovery from the time-domain 
material functions (J(t), J′(t), G(t), G′(t)), 

(ii) ππµµ /)2/sin(2)( jjH ±=  (2)  

– for DRRT recovery from the real parts of 
frequency-domain material functions (J′(ω) and 
G′(ω)), and 

(iii) ππµµ /)2/cos(2)( jjH =  (3) 

– for DRRT recovery from the imaginary parts of 
frequency-domain material functions (J″ (ω) and  

G″ (ω)). In Eqs. (1) – (3), 1−=j , Γ represents the 

Gamma function, and parameter µ, named ‘Mellin 
frequency’, may be interpreted [17-20] as the angular 
frequency for a function (signal) on the logarithmic 
scale. 
 

 
 
Fig. 1. Standard excitations and material functions 
used for calculation of DRRT. 

 

    
Fig. 2. Magnitude responses of ideal deconvolution 
filters recovering DRRT from the time-domain 
material functions (curve 1), real (curve 2) and 
imaginary (curve 3) parts of the frequency-domain 
functions. 
 
     In Fig. 2, the plots of magnitude responses are 
shown for (1) – (3). As it is seen, the magnitude 
responses are similar – extremely rapidly increasing 
functions. 
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2.3 Discrete-time DRRT Recovery Filters 
Formulation of determination of DRRT as a 
deconvolution or inverse filtering problem on the 
logarithmic scale gives a theoretical basis for 
implementation of DRRT recovery by the 
appropriate discrete-time deconvolution filters, 
which, for ensuring operation on the logarithmic scale, 
must process the input data sampled according to a 
geometric progression on the linear scale 

1...,,2,1,0,0 >±±== qnquu n
n  (4) 

where q is progression ratio specifying the sampling 
rate in the sense that qln  defines the distance 
between samples on the logarithmic scale, i.e. plays 
formally a role of sampling period, whereas its 
reciprocal describes the appropriate sampling 
frequency, and u0 is an arbitrary normalization 
constant. 
      It has been found [17-19] that, for DRRT recovery 
from the eight material functions shown in Fig. 1, the 
following algorithms must be used: 
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for the time-domain material functions (J(t) and 
G(t)) representing step responses, 
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for the derivatives of time-domain material functions 
( )(tJ ′  and )(tG′  ) representing impulse responses, 
and 
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for the real and imaginary parts of frequency-domain 
material functions ( )(ωJ ′ , )(ωJ ′′ , )(ωG′  and 

)(ωG ′′ ). In Eqs. (5)-(10), F(.) is a function of DRRT, 
N is filter length, x(.) is a response function. 
   Fig. 3 summarizes DRRT recovery by the discrete-
time deconvolution filters. Since a unique relation 
exists between both the time- and frequency-domain 
representations, the same ideal frequency response 
(1) for all the time-domain functions defines that the 
same filter coefficients (impulse response) h[n] may 
be used for filters (5) and (7), and (6) and (8). In its 
turn, different coefficients h[n] corresponding to 
frequency responses (2) and (3) shall be used in 
algorithms (9) and (10) for recovering DRRT from 
the real and imaginary parts. 
 

 
  
Fig. 3. Summary of DRRT recovery filters. 
 
 
2.4 Design of DRRT Recovery Filters 
It is well known that the determination of DRRT is a 
severely ill-posed problem [10-19], where small 
perturbations of the input signal may lead to large 
perturbations of the output spectra or, in other words, 
the solution is extremely sensitive to noise of 
measurement. To overcome this problem, various 
stabilization or regularization methods are employed 
to minimize the sensitivity to noise to acceptable for 
practice levels. Despite that a substantial body of 
regularization methods have been proposed, there is 
the lack of the techniques, which can work without 
human (operator) involvement necessary for 
implementing measurement systems.   
     Recently, this problem has been solved by 
developing a methodology for designing 
deconvolution filters [21-24], which integrates signal 
acquisition, regularization and discrete-time algorithm 
implementation. According to the methodology, a 
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deconvolution filter is regularized by searching a 
combination of progression ratio q (sampling rate) and 
filter length N, which ensures the desired noise 
amplification and, for the found combination of q and 
N, it is designed by the identification method [25] 
performing a learning algorithm. In such way, the 
DRRT recovery filters are obtained with the 
guaranteed desired noise amplification producing 
maximum accurate waveforms of DRRT for available 
(limited) time or frequency ranges of input data. 
 
 

3 DRRT Measurement Systems 
We propose to develop DRRT measurement 
systems, which execute active measurement 
experiments by exciting material under test (MUT) 
with the specific excitations, measure MUT 
responses and process them by the appropriate 
DRRT recovery filters. A general block diagram for a 
DRRT measurement system is shown in Fig. 4. 
 

 
 
Fig. 4. General block diagram a DRRT measurement 
system.  
 
     An electrical excitation signal x(t) from an 
excitation generator is transmitted to a sensory 
system, which produces an appropriate physical 
(electrical, mechanical, magnetic, thermal, etc.) 
excitation to MUT and detects and converts MUT 
response back into electrical response signal y(t). 
This electrical response signal is measured and 
converted into discrete-time signal by a measuring 
subsystem. To calculate DRRT, discrete samples of 
the response signal are processed by DRRT recovery 
filter. Due to monotonicity of material responses  
[1-6], signal y(t) is measured at the uniformly 
distributed instants on a logarithmic time or 
frequency scale manifesting as the instants 
distributed according to geometric progression (4) on 
the linear time or frequency scale. Such geometric 
(logarithmic) sampling is provided by a logarithmic 
clock. To ensure regularized solutions, i.e. the 

distributions with minimized sensitivity to noise, 
noise amplification of DRRT recovery filter is 
minimized to the  desired value by finding the 
appropriate sampling rate (progression ratio q) [21-
24] (see Subsection 2.4). The found value of q from 
DRRT recovery filter is transmitted to the 
logarithmic clock to ensure sampling of a response 
function with the needed sampling rate. 
     Implementation of a specific DRRT measurement 
system depends on a material response function (see 
Fig. 1) exploited for recovering the distributions, and 
so on the excitation used in the measurement 
experiment.  DRRT measurement systems may be 
classified into two basic classes as time-domain and 
frequency-domain systems (Fig. 5). Further, 
formally, the time-domain systems may be divided 
into systems with the step or impulse excitations, while 
the frequency-domain systems employing harmonic 
excitations – as ones where DRRT is recovered 
through the real or imaginary part of a complex 
frequency-domain material function. 
 

 
   
Fig. 5. Classification of DRRT measurement 
systems. 
 
 
3.1 DRRT Measurement Systems in Time 

Domain 
For time-domain DRRT measurement systems, the 
general block diagram (see Fig. 4) modifies into one 
shown in Fig. 6. In this case, MUT is excited by step 

)(1)( 0 tXtx =   (11) 

or impulse stimulus 

)()( 0 tXtx δ=   (12) 

with amplitude X0, where 1(t) is unit step or 
Heaviside step function, and δ(t) is Dirac delta 
function.  
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Fig. 6. Implementation of a DRRT measurement 
system in the time domain. 
 

 
 
Fig. 7. Illustration of geometric sampling for a step-
response function. 
 
     For excitations (11) and (12), MUT responds 
respectively as 





=
)(

)(
)(

0

0
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ty   (13)  

or 
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
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′

′
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)(

)(
)(

0

0

tGX

tJX
ty .  (14)  

     By an analog-to-digital converter (ADC), 
response signal (13) or (14) is measured and 
converted into geometrically sampled discrete-time 
samples at instants (Fig. 7)  

m
m qtt 0= . 

     To obtain DRRT, the recorded samples of the 
response function are processed by DRRT recovery 
filter, which performs algorithms (5) or (6) for the 
step responses (13) and algorithms (7) or (8) for the 
impulse responses (14). 
 
 

3.2 DRRT Measurement System in 
Frequency Domain 

For frequency-domain DRRT measurement systems, 
the general block diagram (see Fig. 4) modifies into 
the scheme shown in Fig. 8. In this case, MUT is 
excited by harmonic excitations 

tXtx mmm ωsin)( =   (15) 

at discrete  frequencies ωm altering according to 
geometric progression 

1
1

−= m
m qωω . 

     For excitations (15), MUT responds by harmonic 
responses of the same frequencies ωm but with a 
different amplitudes Ym and phases φm 

)sin()( mmmm tYty ϕω −= .   

     The system measures the amplitudes and phase 
differences between the excitations and responses by 
an amplitude meter and phase difference meter, from 
which the real or imaginary part of a complex 
frequency-domain material function is calculated. 
Further, similarly as for time-domain DRRT 
recovery systems (see Fig. 6), DRRT is calculated 
from the discrete – geometrically sampled in 
frequency domain samples of the real or imaginary 
part by DRRT recovery filters performing algorithms 
(9) or (10).  
 

 
 
Fig. 8. Implementation of a measurement system in 
the frequency domain recovering DRRT from the 
real parts.  
 
 

4 Conclusions 
A widespread in scientific literature belief of non-
measurability of distribution of relaxation and 
retardation times (DRRT) is revised. Practical 
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implementation is considered for systems measuring 
DRRT by exciting a material with standard stimulus, 
such as the Heaviside step function, the Dirac delta 
function and the steady-state sinusoidal ones, 
measuring material’s responses sampled 
geometrically in time- or frequency-domain and 
processing them by DRRT recovery filters. 
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