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Abstract: - In this paper, we present a denoising technique that is capable for preserving the fine details and 

edges in the restored image more effectively in blind condition. We also introduce a new edge detection method 

to detect edges effectively in noisy environments. First, the noisy image is denoised by using different weights 

of Wiener filtering to generate two restored images; one with highly reduced noise, and the other with 

preserved fine details and edges. The noise and image power spectra required for the frequency domain Wiener 

filter are estimated with different threshold setting. Then, an edgemap image is generated directly from the 

noisy image. The two Wiener filtered images are utilized for the smooth and non-smooth regions based on the 

constructed edgemap to produce the final restored image. Simulation results show that the proposed method 

outperforms or is comparable to other Wiener filter-based denoising methods and the state-of-the-art denosing 

methods, especially in higher noise environments. 
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1 Introduction 
Although image denoising has been researched quite 
extensively, developing a denoising method that 
could remove noise effectively without eliminating 
the image fine details and edges is still a challenging 
task. Until recent years, many denoising methods 
have been proposed. Some recent non-linear 
methods, such as the adaptive Total Variation (ATV) 
[1] and the non-local means (NLM) [2], suggest 
employing different denoising approaches for the 
smooth and non-smooth regions. Conversely, linear 
methods such as the Wiener filter [3] balance the 
tradeoff between inverse filtering and noise 
smoothing by eliminating additive noise while 
inverting blurring. 
 The Wiener filter is the best-known technique for 
the linear image denoising. It has been implemented 
for image denoising in several transform domains, 
for example the spatial domain [4] and the 
frequency domain [5]. Recently, the wavelet-based 
denoising methods have dominated the latest 
research trend in image processing. The 
implementation of the Wiener filter in the wavelet 
domain has also been introduced, for example the 
lifting-based wavelet domain Wiener filter 
(LBWDWF) [6]. However, to utilize the Wiener 
filter in practical cases, where the information of the 
original image and the noise level are unknown 
(blind condition), noise estimation plays an 

important role to accomplish accurate denoising. 
The ATV derives the idea of the Total Variation 
(TV) [7]. The ATV reduces the total variation of the 
image adaptively. It employs strong denoising in the 
smooth regions and weak denoising in the non-
smooth regions. The NLM measures the similarity 
of the grey level between two pixels and compares 
the geometrical configuration adapted to the local 
and non-local geometry of the whole image. The 
methods such as the LBWDWF, ATV and NLM are 
reported to have superior performance in noise 
removal and preservation of strong edges. They, 
however, share a common drawback: that is, the fine 
details and edges of the original image are not well 
preserved in the restored image, especially in higher 
noise environments. 
 To overcome this problem, a frequency domain 
Wiener filter-based denoising has been proposed in 
[8]. We refer this method to as the frequency domain 
Wiener filter (FDWF). It introduces a noise and 
image power spectra estimation method for the 
implementation of the Wiener filter in blind 
condition. The FDWF provides the preservation of 
the fine details and edges, but a certain level of 
noise still remains in the restored image. 
 In this paper, we propose a denoising technique 
that is based on the FDWF. The image restored by 
using the FDWF with a lower threshold value is 
utilized in the non-smooth regions in the final 
restored image. Conversely, the image restored by 
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using the FDWF with a higher threshold value is 
employed in the smooth regions in the final restored 
image. A new edge detection method is employed to 
distinguish between the smooth and non-smooth 
regions effectively in the presence of noise. The 
edge detection is performed in four directions and 
the results are combined to construct an edgemap. 
The final restored image is constructed by assigning 
the smooth and non-smooth regions based on the 
edgemap. Simulation results verify a significant 
reduction of the noise level in the smooth regions 
relative to that of the FDWF. 
 The paper is organized as follows. We begin with 
the introduction of the FDWF in Section 2, and then 
describe the proposed denoising method in Section 
3. In Section 4, we discuss the simulation results 
and the performance comparison of our method. In 
Section 5, we draw concluding remarks. 
 

 

2 FDWF 
Our procedure for image denoising utilizes the 

FDWF proposed in [8]. We assume that the image is 

corrupted by independent additive zero-mean 

Gaussian white noise. A noisy image, p(u,v), 

corrupted by the noise, n(u,v), can be expressed as 

 

p(u,v) = h(u,v) + n(u,v)                (1) 

 
where h(u,v) represents the original image. The 
FDWF employs a threshold process to estimate the 
image and noise power spectra. The assumption is 
that in general, the noise power spectrum usually 
occupies high frequencies, and conversely the image 
power spectrum is commonly concentrated at low 
frequencies. 

First, we transform the noisy image h(u,v) to the 

frequency domain, ɦ(s,t), by using the FFT. The 

power spectrum of ɦ                is obtained by 

 

            ɦ                               (2) 

 

and the logarithmic power spectrum of 

                is  given by  

                                         (3) 

 

We perform the estimation for the power spectra of 

the image and noise block-by-block.        and 

       are divided into     non-overlapping sub-

blocks.              and              correspond to the 

(i,j)th block of        and         respectively. Next, 

we compute the average of the logarithmic power 

spectrum in each              sub-block, which is 

denoted as              , respectively. We find from all 

the image’s sub-blocks the              that represent 

the median and minimum values of the entire 

              The minimum value,         and the 

maximum value,         are substituted in the 

following global threshold value as  

             
 

   
         

 
                         

 

where   denotes a division ratio of       , and   

corresponds to the threshold used for the power 

spectrum estimation. 

     The utilization of        in (4) is attributed to 

the fact that the median represents where most of 

the power spectrum are concentrated. If the division 

of the high and low frequencies considers the main 

power concentration, the threshold value will be 

more robust to the variation of the power spectrum 

characteristics in different images. The threshold 

value is set to be slightly higher than        to avoid 

the probability of the noise power spectrum being 

incorrectly thresholded into the image power 

spectrum. In (4),   is utilized to adjust the threshold 

range.  

The noise power spectrum is estimated from both 

high and low frequency regions, since we consider 

that the noise occupies both regions. In high 

frequency region, the image power spectrum, 

              and the noise power spectrum,               

in the corresponding sub-block are approximated by 

if                                                                                

then                                                                

In low frequency region,             and              are 

estimated as  

if                                                                                  

then                                                                            

               average                                               

                                                                    

 

 

where the average [] represents the averaging of 

the sub-blocks in the four corners being at the 

highest frequencies. These four blocks are assumed 

to be occupied only by noise. Fig.1 demonstrates the 

described four corners in the case of k=8.  

Finally, we perform the Wiener filtering 

operation. The Wiener filter,           is obtained by 
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In [8], the parameters k and   are set to be 32 and 

5, respectively. This is due to that when  =5, it 

provides a robust and optimal restoration result for 

the FDWF in different image characteristics and 

noise levels. When   is fixed to be lower (for 

example   =5), the threshold range will be larger. 

This setting will include higher frequencies in the 

estimated image power spectrum. This will 

contribute to the preservation of the image fine 

details and edges that usually occupy higher 

frequencies. Fig.2 shows the close-up view of the 

restored Cameraman image and its logarithmic 

power spectrum (corrupted by the white noise with 

the standard deviation, σ, of 25) by using the FDWF 

with  =5. From Fig. 2 we can observe that the 

FWDF has preserved fine details and edges 

successfully, but has not effectively eliminated the 

noise in the restored image. 

 

 

3  Proposed Algorithm  
The method proposed in this paper reduces the noise 

in the image restored by using the FDWF with 

different parameters in the smooth and non-smooth 

regions. From our investigation, narrower threshold 

range setting in the FDWF reduces noise level, and 

larger threshold range setting preserves the fine 

details and edges. We set out to improve the FDWF 

restoration performance by utilizing the advantage 

of both threshold settings. Fig.3 shows a block 

diagram of our method.  

 

 

3.1 Image Restoration for Non-Smooth  

Regions 
The image restored by the FDWF with  =5 is 

inverse-transformed to the spatial domain and 

represented as          hereafter. The          is 

utilized for the non-smooth regions in the final 

restored image, since it preserves the fine details 

and edges effectively. 

 

 

3.2 Image Restoration for Smooth Regions 
Conversely, an image with highly reduced noise, 

which is restored by using the FDWF with higher   

setting, is employed for the smooth regions in the 

final restored image. If   is set to be higher, the 

threshold range of   will be narrower. This will 

allow the FDWF to threshold only the concentrated 

part of the low frequencies, which is assumed to be 

occupied only by the image power spectrum. 
First, the most suitable   setting that provides a 

restored image with considerably low noise level is  

 
Fig.1 Average of four corners (highest frequencies). 

  
(a)                           (b) 

Fig.2 Restored Cameraman and its logarithmic 
power spectrum (σ=25) by using FDWF (  =5). 

  
Fig.3 Block diagram of proposed method. 

  
(a)                           (b) 

Fig.4 Restored Cameraman and its logarithmic 
power spectrum (σ=25) by using FDWF (  =10). 

 
selected by visual effects evaluation. From the 
investigation,   is set to 10. From Fig.4 we can 
observe that the noise level has been effectively 
reduced since noise is mostly cut out. On the other 
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hand, the image is blurred since the edges in higher 
frequencies are cut out as well. Obvious ringing 
effects can be observed in the restored image, which 
is caused by the sharp cutoff of the threshold 

range’s edges in the frequency domain  When the 

image is inverted into the spatial domain, it 

generates decreasing oscillations as it progresses 

outward from the center. Narrower threshold range 

results in stronger oscillations.  

To overcome the ringing effects, we multiply the 

output power spectrum filtered by the Wiener filter 

with a Gaussian lowpass filter,         to soften the 

threshold edges. The restored image is inverse- 

transformed to the spatial domain and denoted as 

           In Fig.5, the ringing effects as seen in 

Fig.4 are successfully suppressed. From our 

investigation, the best parameter settings for the 

Gaussian lowpass filter are fixed to the size of 128  

128 with the standard deviation of 10.  

 

 

3.3 Edgemap Construction 
Next, the decomposition of the smooth and non-

smooth regions is performed pixel-by-pixel based 

on an edgemap. The edgemap is constructed by 

executing edge detection directly from the noisy 

image in the spatial domain. Although there is no 

pre-filtering process, the edges have been 

successfully obtained by using the proposed edge 

detection method. Another advantage of this 

technique is that it requires minimum parameter 

setting, which is only the sub-block size for the 

image division. The process of the edgemap 

construction is as follows.  

First, the noisy image is divided into k  k non-

overlapping sub-blocks (k=32), each of which 

consists of 8  8 pixels. Next, the pixel value range, 

              of each block (i,j:    2  …  k) is calculated 

as 

                    -       2                      

 

where       and       are the maximum and 

minimum values of the pixels in the corresponding 

sub-block, respectively. Then, the               that 

represents the minimum value of the 

entire               denoted as R, is determined by 

  min   
     
                                    

This sub-block is assumed to be homogeneous and 

represents the smooth region. Thus, any pixel 

larger than R is considered as the non-smooth 

region. In order to determine whether a pixel in the  

  
(a)                           (b) 

Fig.5 Result for restored Cameraman (σ=25) by 
using FDWF (  =10) multiplied with Gaussian 

lowpass filter. 

   
   (a) horizontal        (b) vertical              c    ˚ 

   
        d  −  ˚       (e) edgemap(u,v)  (f) noisy Lenna              

Fig.6. Edgemap constructions in four directions and 

combined edgemap for noisy Lenna (σ=25) 

non-smooth region belongs to a line along the 

edges or additive noise, we consider the 

corresponding pixel and its two neighbouring 

pixels. If either difference of the (u,v)th pixel and 

its neighbouring pixels is larger than R, this pixel is 

considered as a part of a line along the edges. If 

both differences are lower than R, the 

corresponding pixel is assumed isolated from other 
non-smooth region’s pixel  and considered as noise. 

The edge detection along a direction can provide a 

more precise distinction between edges and noise 

in noisy environments because isolated pixels can 

be detected easier. The edge detection is performed 

in four  directions; (a) horizontal,           (b) 

vertical,           (c)   ˚            and  d  −  ˚  

          .  

 

         

 
                       or                    
                                                                        

       

 

          

 
                       or                    
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  2  
 

           

 
                         or                      
                                                                                  

      

     
As can be observed from Fig. 6 ((a)-(d)), the edges 

have been successfully detected from different 

directions, regardless of the high noise level (see 

Fig. 6(f)). However, the edge detection from only a 

single direction is not sufficient to represent all the 

edges for the entire image. Thus, we suggest 

combining the edge detections of all four directions 

for better result. The combined edgemap,  

             , is constructed by  

             = 

 
           or         or          or            

                                                                           
   

     
Fig.6(e) shows the edge detection of the 

               Note that the              provides 

relatively better edge detection along the lines in 

comparison with that of the single direction edge 

detection.  

 

 

3.4 Edgemap-Based Image Restoration 
The final restored image,       , is constructed based 

on the edgemap as   

           
                           

                            
 .      (15) 

 

If the                is equal to 0, then the (u,v)th 

pixel of the final restored image         is assumed 

as the smooth region, and assigned with the (u,v)th 

pixel value of              Otherwise,         is 

assigned with those of             
 

 

4 Results and Discussion 
We have tested our method on nine grayscale test 

images (256 256) from the SIDBA database. All 

images are contaminated with additive Gaussian 

white noise (σ=5, 10, and 25). The Airplane, Girl, 

Lenna, Woman and Boat images represent smooth 

natural images. The Barbara, Building, Lighthouse 

and Text images represent natural images that are 

highly rich in both fine details and edges. We 

investigate the performances by using the mean 

measure of structural similarity (MSSIM) [9] since 

it is an image quality metric that well matches the 

human visual perception [9]. We also analyze the 

visual effects of the images. Each denoising method 

processes the test images with the same parameters 

setting (no tuning of parameters was performed for 

different noise level or image type). 

We have compared our method to two Wiener 

filters in different domains: the LBWDWF [6] and 

FDWF [8] in blind condition. In this paper, the 

LBWDWF with 4 vanishing moments (db4) lifting-

based wavelet transform utilizes 3 decomposition 

levels and 3  3 filtering window. The FDWF 

employs the setting as in Section 2. From Fig. 7(b)-

(d) and Tables 1-3, our method clearly outperforms 

the other two methods over the entire range of noise 

levels. Our method is capable to reduce more noise 

compared to the FDWF and provides better 

preservation of the original image features than that 

of the LBWDWF. 

Finally, we have also compared our method to 

two state-of-the-art methods: the ATV [1] and NLM 

[2]. They are reported to have significant 

performance in preserving details while eliminating 

the noise. Both denoising methods are performed in 

ideal condition, where the noise variances are 

known. Conversely, our method estimates the noise 

employing the approach as in Section 3. We 

perform the ATV based on the MATLAB code 

(default setting) as in [1]. In [2], the NLM suggested 

using the search window size of 21   21 and 

similarity window of 7  7 for images with the size 

of 512  512. However, the parameters setting as in 

[2] results in over-smoothed restored images for 

small resolution test image (256  256).  Thus, we 

set the search window and similarity window for the 

NLM to 5  5 and 2  2, respectively for better 

denoising results. From Tables 1-3, note that our 

method is better than the ATV in most cases. Our 

method is also better than the NLM in many images 

that are highly rich in both fine details and edges. In 

higher noise level, as can be seen in Fig. 7(d)-(f), 

the ATV and NLM result in strong noise removal. 

However, they eliminate the fine details and edges 

at the same time. Our method reduces considerable 

amount of noise and furthermore preserves fine 

details and edges better than the NLM and ATV. 

The investigation proves that our method with 

proposed noise estimation technique provides 

comparable performance with the state-of-the-arts 

methods performed in ideal condition. Table 4 

shows the execution time for each denoising method 

implemented in MATLAB computed on a 1.4 GHz 

Intel Core 2 Duo CPU. The execution time of our 

method is slightly higher than that of the 

LBWDWF, but considerably lower if compared to 

that of the ATV and NLM. 
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5 Conclusion 
From the study, it is found that our method is fast 

and more suitable for denoising images that are rich 

in both fine details and edges, especially in higher 

noise environments. The proposed edge detection 

technique is also capable to detect noise directly 

from the noisy image in any noise level, which has 

lead to an accurate decomposition of the smooth and 

non-smooth regions. 

 

   
(a) Original       (b) LBWDWF      (c) FDWF  

    
       (d) Proposed         (e) ATV          (f) NLM 

Fig. 7. Comparison of restored Lighthouse         

(high noise, σ 25). 

 

Table 1.Performance comparison in MSSIM (σ 5) 

Test 

images 

LBW 

DWF 

(blind) 

FD 

WF 

(blind) 

Propo 

-sed 

(blind) 

ATV 

(ideal) 

NLM 

(ideal) 

Barbara 0.67 0.95 0.96 0.94 0.97 

Building 0.62 0.96 0.96 0.96 0.96 

Lighthouse 0.68 0.91 0.94 0.90 0.93 

Text 0.68 0.95 0.96 0.95 0.93 

Airplane 0.81 0.89 0.92 0.95 0.94 

Girl 0.82 0.91 0.92 0.91 0.93 

Lenna 0.83 0.91 0.94 0.96 0.96 

Woman 0.81 0.91 0.94 0.95 0.95 

Boat 0.79 0.93 0.94 0.93 0.96 

Table 2.Performance comparison in MSSIM (σ 10) 

Test 

images 

LBW 

DWF 

(blind) 

FD 

WF 

(blind) 

Propo 

-sed 

(blind) 

ATV 

(ideal) 

NLM 

(ideal) 

Barbara 0.66 0.88 0.90 0.90 0.93 

Building 0.62 0.89 0.91 0.90 0.91 

Lighthouse 0.67 0.80 0.86 0.90 0.89 

Text 0.68 0.88 0.89 0.90 0.88 

Airplane 0.80 0.77 0.85 0.92 0.91 

Girl 0.81 0.83 0.87 0.81 0.89 

Lenna 0.82 0.82 0.88 0.92 0.92 

Woman 0.80 0.82 0.87 0.90 0.91 

Boat 0.78 0.84 0.88 0.86 0.92 

Table 3.Performance comparison in MSSIM (σ=25) 

Test images 

LBW 

DWF 

(blind) 

FD 

WF 

(blind) 

Propo -

sed 

(blind) 

ATV 

(ideal) 

NLM 

(ideal) 

Barbara 0.66 0.82 0.85 0.41 0.84 

Building 0.61 0.84 0.84 0.56 0.76 

Lighthouse 0.66 0.72 0.79 0.75 0.79 

Text 0.67 0.82 0.84 0.72 0.80 

Airplane 0.78 0.70 0.78 0.58 0.86 

Girl 0.80 0.77 0.81 0.55 0.82 

Lenna 0.81 0.75 0.84 0.5 0.86 

Woman 0.79 0.75 0.83 0.47 0.84 

Boat 0.76 0.77 0.82 0.52 0.84 

Table 4. Average time execution (s) 

Noise, σ 
LBW 

DWF  

FD 

WF 

Propo 

sed 

ATV 

 

NLM 

 

5 0.60 0.31 0.93 23.33 67.31 

10 0.56 0.31 0.92 66.17 68.60 

25 0.57 0.30 0.93 751.49 67.82 
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