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1 Introduction 
2-D (Two-Dimensional)  filter design  is not a 
simple  task due to the heavy computational load 
and to the non-existence of stability conditions in an 
explicit form.   Roughly speaking,  the  design of 2-
D FIR filters includes a Fourier method that uses 
Fourier analysis, where appropriate window 
Functions can also eliminate the so called  Gibbs’ 
oscillations as in 1-D case, a Transformations’ 
method which is based on McClellan 
Transformations from appropriate 1-D filters [1],[2] 
and an optimization method i.e. the minimization of 
an appropriate norm, [1],[2]. 
      On the other hand,  the  design of 2-D filters IIR 
includes also transformations, Mirror Image 
Polynomials, SVD (Singular Value Decomposition) 
and Optimization, [1],[2]. Several Authors have 
published works on optimization-based 2-D filter 
design while a great number of papers are dedicated 
to transformations and mainly to McClellan 
Transforms. 
 

McClellan Transformations were introduced in [3] 
and have been used for the last forty years in many 
theoretical topics and engineering applications. A 
brief overview of the various extensions of 
McClellan Transformations can be found in 
[1],[2],[4],[8],[9]. In general, a McClellan 
Transformation  is described by the equation  
 

1 2
1 1

cos( ) cos( ) cos( )
N M

kl

k l

Cω ω ω
= =

=∑∑  

 
ω  is the frequency of the original 1-D filter, 
whereas    1 2,ω ω  the frequencies of the 2-D filter in 
design. 
As Harn and Shenoi pointed out in [5] and as 
Nguyen and Swamy reported in [6], till now a 
transformation for IIR filter design analogous to 
McClellan transformation does not exist due to the 
requirements of 2-D stability.  
Nguyen and  Swamy  in [7]  use the usual 
McClellan transformation in the special case of 
separable denominator. Fundamental results on 
McClellan transformation can be found in [8] and 
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[9] while remarkable studies are given [10]÷[18]. 
Various useful results for 2-D IIR Filters’ design are 
presented in [19]÷[26].  
As McClellan Transformations can be used only for 
FIR filters, it would be useful to find 
transformations when our prototype is IIR filter. 
Moreover, if such transformations could also be 
used for both FIR and IIR filters, these 
transformations could be really useful for 2-D filter 
design. The purpose of this paper is to find such 
transformations and an attempt is made in section II.  
This paper examines this transformation as well as 
its generalization to the general 2-D filters design. 
The usefulness of the proposed transforms is 
verified through two examples in section III. 
Finally, there is a conclusion. 
 

2 The Transformation and its 

Generalizations 

Instead of the classic McClellan Transformation 

1 2
1 1

cos( ) cos( ) cos( )
N M

kl

k l

Cω ω ω
= =

=∑∑  where ω  is the 

frequency of the original 1-D filter, whereas  1 2,ω ω  
the frequencies of the 2-D filter in design, we 

propose here the transformation 
1 1

1 1 1 2 2

1 2

z z
z

λ λ
λ λ

− −
− +
=

+
  

with 1 2,λ λ   real numbers or simply 
1 1 1

1 1 2 2z C z C z− − −= +  with 1 2 1C C+ =  
    
As a simple generalization of this transformation we 
propose the following transformation not only for 
FIR 1-D prototype Filters, but for every 2-D filter 
(either IIR or FIR): 
 

1 1 1
1 1 2 2z C z C z− − −= +  

 
where 1 2,C C are real numbers with 1 2 1C C+ =  and 

1 2 0C C >  
 
Unlike the original McClellan Transform 

1 1 2 2cos cos cosC Cω ω ω= +  where we demand only 

1 2 1C C+ = , in our transformation 1 1 1
1 1 2 2z C z C z− − −= +  

we demand not only 1 2 1C C+ = ,but also 1 2 0C C > . 
The disadvantage of the McClellan Transform is 
that it can be applied in FIR filters i.e. in a filter 

with transfer function  ( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=  with 

( )1
B z

− =1. In this paper, the new proposed 

transformation can be applied in every 1-D 
prototype filter with ( )1

B z
− to be in general 

polynomial of 1z− . The following Theorem is stated 
and proved. 
 
Theorem 1. Consider a prototype 1-D BIBO 

(Bounded Inputer Bounded Output) stable filter with 

transfer function    

                          ( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=                                           

(1) 
Under the transformation 

 
                                                                   (                        (2) 

 
with 1 2 1C C+ =  and 1 2 0C C > , the prototype 1-D 
BIBO of (1) gives  

                   ( ) ( )
( )

1 1
1 1 21 1

2 1 2 1 1
2 1 2

,
,

,

A z z
H z z

B z z

− −

− −

− −
=                                 

(3) 
with ( )1 1

2 1 2,H z z
− − also stable and the origin of the 

axes  ( 0)ω = is depicted to the point  1 2( , ) (0,0)ω ω =  
 
 
Proof .  One can easily see that the origin of the 
axes  ( 0)ω = is depicted to the 
point 1 2( , ) (0,0)ω ω = which is obvious because from 
(2) one has 1 2

1 2
j jje C e C eω ωω = +  or equivalently 

1 1 2 2cos cos cosC Cω ω ω= + . Therefore because  

1 2 1C C+ = , the solution of the equation 

1 1 2 21 cos cosC Cω ω= +  (i.e. ( 0)ω =  must be 

1 2( , ) (0,0)ω ω = . Hence, the origin of the axes  
( 0)ω = is depicted to the point  1 2( , ) (0,0)ω ω = . 
For Stability, we have to prove that 

( )1 1
2 1 2, 0B z z

− − ≠ for every 1
1z
− and 1

2z
−  inside the unit 

bi-disk, i.e. for every 1
1z
− and 1

2z
−   with 1

1 1z
− <   and 

1
2 1z
− < . 

Assume first that there are some  1
1ζ
− and 1

2ζ
−   

with 1
1 1ζ − <   and 1

2 1ζ − <  such that ( )1 1
2 1 2, 0B ζ ζ− − = . 

However, in this case, we have a 1ζ −  
1 1 1

1 1 2 2C Cζ ζ ζ− − −= +  such that ( )1 0B ζ − =  ,  on the 

other hand, since 1
1 1ζ − <  and 1

2 1ζ − < , we have  
1 1 1 1 1

1 1 2 2 1 1 2 2 1 2

1 2 1

C C C C C C

C C

ζ ζ ζ ζ ζ− − − − −= + ≤ + < + =

= + =
 

1 1 1
1 1 2 2z C z C z− − −= +  
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(since 1 2 0C C > ), 
that makes our 1-D filter with transfer function                            

( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=       non-stable (in BIBO sense), but 

this contradicts the assumption and this completes 
the Proof.                                                                               
█ 
 
 
 
A very interesting extension of this transformation 
can be the following  

1 1 1
1 2 1 2

0 0

( , )
N M

k l

kl

k l

z f z z C z z
− − − − −

= =

= =∑∑  

with 
0 0

1
N M

kl

k l

C
= =

=∑∑  and 
1 2 2 2

0k l k lC C >  ( 1 2, 0,1,...,k k N=  

and 1 2, 0,1,...,l l M= ) and the following theorem can 
be proved. 
 
 
 
Theorem 2. Consider a prototype 1-D BIBO stable 

filter a filter with transfer function    

                          ( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=                                           

(1) 
Under the transformation 

 
   (4) 
                               

 

with 
0 0

1
N M

kl

k l

C
= =

=∑∑  and 
1 2 2 2

0k l k lC C > , ( 1 2, 0,1,...,k k N=  

and 1 2, 0,1,...,l l M= )  the prototype 1-D BIBO of (1) 
gives  

                   ( ) ( )
( )

1 1
1 1 21 1

2 1 2 1 1
2 1 2

,
,

,

A z z
H z z

B z z

− −

− −

− −
=                                 

(3) 
with ( )1 1

2 1 2,H z z
− −  also stable. The origin of the axes  

( 0)ω = is depicted to the point  1 2( , ) (0,0)ω ω =  
 
Proof .  It is easy to prove that necessary and 
sufficient condition for the depiction of the origin of 
the axes  ( 0)ω =  to the point 1 2( , ) (0,0)ω ω = is 

0 0

1
N M

kl

k l

C
= =

=∑∑  

For Stability, one also has to prove that 
( )1 1

2 1 2, 0B z z
− − ≠ for every 1

1z
− and 1

2z
−  inside the unit 

bi-disk i.e. for every 1
1z
− and 1

2z
−   with 1

1 1z
− <   and 

1
2 1z
− < , we have ( )1 1

2 1 2, 0B z z
− − ≠ . This is really true, 

because assuming  that there are some  1
1ζ
− and 1

2ζ
−  , 

with 1
1 1ζ − <   and 1

2 1ζ − < , such that ( )1 1
2 1 2, 0B ζ ζ− − = , 

we have a 1ζ −  with 1
1 2

0 0

N M
k l

kl

k l

Cζ ζ ζ− − −

= =

=∑∑  such that 

( )1 0B ζ − = . On the other hand, since 1
1 1ζ − <  and 

1
2 1ζ − < , we would have  

 
1

1 2 1 2
0 0 0 0 0 0

0 0

1

N M N M N M
k l k l

kl kl kl

k l k l k l

N M

kl

k l

C C C

C

ζ ζ ζ ζ ζ− − − − −

= = = = = =

= =

= ≤ <

= =

∑∑ ∑∑ ∑∑

∑∑
(all the 

kl
C  have the same sign) that makes our 1-D 

filter with transfer function    ( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=       

non-stable (in BIBO sense), but this contradicts the 
assumption. This completes the Proof.                                                        
█ 
 
 
 
 

Consider now the most general transformation 
1 1

2 2

1 1 1 2
1 0 01 2

1 1
1 2

1 2
0 0

( , )
( , )

N M
k l

kl

k l

N M
k l

kl

k l

C z z
f z z

z
g z z

D z z

− −
− −

− = =
− −

− −

= =

= =
∑∑

∑∑
 

 

under what circumstances this transformation would 
transform the prototype 1-D BIBO stable filter of 
(1) to a stable 2-D filter? 

 

Let the 2-D rational function  

1 1

2 2

1 1 1 2
1 0 01 2

1 21 1
0 01 2

1 2
0 0

( , )
( , )

( , )

N M
k l

kl
k lk l

N M
k lk l

kl

k l

C z z
f z z

z h k l z z
g z z

D z z

− −
− − ∞ ∞

− − −= =
− −

= =− −

= =

= = =
∑∑

∑∑
∑∑

 

It is easy to verify that a necessary and sufficient 

condition can be 
0 0

( , ) 1
k l

h k l
∞ ∞

= =

=∑∑  and all the ( , )h k l to 

have the same sign.  It is also known that the 2-D 

      1 1 1
1 2 1 2

0 0

( , )
N M

k l

kl

k l

z f z z C z z
− − − − −

= =

= =∑∑  
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system 

1 1

2 2

1 1 1 2
0 01 2

1 1
1 2

1 2
0 0

( , )
( , )

N M
k l

kl

k l

N M
k l

kl

k l

C z z
f z z

g z z
D z z

− −
− −

= =
− −

− −

= =

=
∑∑

∑∑
 is BIBO stable if 

and only if 
0 0

( , )
k l

h k l K
∞ ∞

= =

≤ < ∞∑∑  

 

After these preparations we are ready to prove the 
following theorem. 

 

 
Theorem 3. Consider a prototype 1-D BIBO stable 

filter a filter with transfer function    

                          ( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=                                           

(1) 
Under the transformation 

 
1 1

2 2

1 1 1 2
1 0 01 2

1 21 1
0 01 2

1 2
0 0

( , )
( , )

( , )

N M
k l

kl
k lk l

N M
k lk l

kl

k l

C z z
f z z

z h k l z z
g z z

D z z

− −
− − ∞ ∞

− − −= =
− −

= =− −

= =

= = =
∑∑

∑∑
∑∑

 

       
                               
                                                                                 
(5) 
where  

 
1 1

2 2

0 0

0 0

0 0

( , ) 1

N M

kl

k l

N M
k l

kl

k l

C

h k l

D

∞ ∞
= =

= =

= =

= =
∑∑

∑∑
∑∑

, with all ( , )h k l  of the 

same sign, the  prototype 1-D BIBO of (1) gives  

 

the stable 2-D filter ( ) ( )
( )

1 1
1 1 21 1

2 1 2 1 1
2 1 2

,
,

,

A z z
H z z

B z z

− −

− −

− −
=                                

The origin of the axes   ( 0)ω = is depicted to the 

point  1 2( , ) (0,0)ω ω =  
 
Proof .  It is easy to prove that necessary and 
sufficient condition for the depiction of the origin of 
the axes  ( 0)ω =  to the point 1 2( , ) (0,0)ω ω = is also 

0 0

( , ) 1
k l

h k l
∞ ∞

= =

=∑∑  which is equivalent, from (5), to 

1 1

2 2

0 0

0 0

1

N M

kl

k l

N M

kl

k l

C

D

= =

= =

=
∑∑

∑∑
 

For Stability we also have to prove that 
( )1 1

2 1 2, 0B z z
− − ≠ for every 1

1z
− and 1

2z
−  inside the unit 

bi-disk i.e. for every 1
1z
− and 1

2z
−   with 1

1 1z
− <   and 

1
2 1z
− < . 

This is true, because if one assumes that there are 
some  1

1ζ
− and 1

2ζ
−   with 1

1 1ζ − <   and 1
2 1ζ − <  such 

that ( )1 1
2 1 2, 0B ζ ζ− − = , we would have a 1ζ −  with 

1
1 2

0 0

N M
k l

kl

k l

Cζ ζ ζ− − −

= =

=∑∑  such that ( )1 0B ζ − = .  On the 

other hand, since 1
1 1ζ − <  and 1

2 1ζ − < , we would 

have  
 

1
1 2 1 2

0 0 0 0

0 0

( , ) ( , )

( , ) 1

k l k l

k l k l

k l

h k l h k l

h k l

ζ ζ ζ ζ ζ
∞ ∞ ∞ ∞

− − − − −

= = = =

∞ ∞

= =

= ≤

< =

∑∑ ∑∑

∑∑
 

 
This would make our 1-D filter with transfer 

function ( ) ( )
( )

1
1

1

A z
H z

B z

−

−

−
=  non-stable which would be 

false.                                  █ 

 

 

Contour Plot (Isopotentials) can be plotted solving 
the equation 1 1 2 2cos cos cosC Cω ω ω= +  with respect 

2ω  

1 1 1
2

2

cos cos
cos

C

C

ω ω
ω −  −

=  
 

. So for 1 2 1/ 2C C= =  

we have the contour plot of Fig.1, while for 
1 0.3C = , 2 0.7C =  we have the contour plot of Fig.2. 

For 2 0.7C = , 

1 0.3C = , the contour plot of Fig.3 is obtained. 
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Fig. 1. Contour plot of isopotentials of frequencies 
for 1 1 1

1 2( ) / 2z z z− − −= +   

 

 

 

Fig. 2. Contour plot of isopotentials of frequencies 
for 1 1 1

1 20.3 0.7z z z− − −= +   

 

 

 

 

 

Fig. 3. Contour plot of of frequencies isopotentials 
for 1 1 1

1 20.7 0.3z z z− − −= +   

 

 

For the transformation of (4) the relation 

0 0

1
N M

kl

k l

C
= =

=∑∑  guarantees that the point 0ω =  is also 

mapped to 1 2( , ) (0,0)ω ω = . Isopotentials can also be 
plotted  solving the equation 

1 2
0 0

cos( ) cos( ) cos( )
N M

kl

k l

C k lω ω ω
= =

=∑∑ with respect to 2ω .  

So, for the transformation  

1 1 1 1 1
1 1 1 10.25 0.25 0.25 0.25z z z z z− − − − −= + + +  the contour 

plot of Fig.4 is obtained. 
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Fig.4. Contour plot of isopotentials of frequencies 
for 1 1 1 1 1

1 1 1 10.25 0.25 0.25 0.25z z z z z
− − − − −= + + +  

 

 
Similarly  we can show contour plots for  the case of 
(5). 
 

3 Numerical Examples 

Example 1. Consider the example of 6.4 of [27].  A 
1-D (digital) IIR three-pole Butterworth filter is 
described as follows 

 

( ) ( )
( )

1 1 3
1

1 1 21

(1 )
(1 0.9047 )(1 1.9925 0.9065 )

A z z
H z K

z z zB z

− −
−

− − −−

+
= =

− − +

 

 1/ 9000K =  

                                                                                   
(6) 

 

with magnitude response in Fig.5 

 

 

Fig 5. Magnitude response of the filter of (6) 

 

Consider now the transformation 
1 1 1

1 1 2 2z C z C z− − −= +  
 
where 1 2,C C  are real numbers with 1 2 1C C+ =  and 

1 2 0C C >  for example 1 2 1/ 2C C= =  

( ) ( )
( )

1 1 3
1

1 1 21

(1 )
(1 0.9047 )(1 1.9925 0.9065 )

A z z
H z

z z zB z

− −
−

− − −−

+
= = =

− − +

1 3

1 0.08635 1 0.08635 1

(1 )
(1 0.9047 )(1 0.9521 )(1 0.9521 )j j

z

z e z e z

−

− − − −

+
=

− − −
 

 

that gives the 2-D IIR filter 

( ) ( )
( )

1 1
1 1 21 1

2 1 2 1 1
2 1 2

,
,

,

A z z
H z z

B z z

− −

− −

− −
= = 

1 1 3
1 2

1 1 1 1 1 1 2
1 2 1 2 1 2

(2 )
(2 0.9047( ))(4 3.985( ) 0,9065( ) )

z z

z z z z z z

− −

− − − − − −

+ +
=

− + − + + +
1 1 3

1 2
1 1 0.08635 1 1 0.08635 1 1

1 2 1 2 1 2

(2 ( ))
(2 0.9047( ))(2 0.9521 ( ))(2 0.9521 ( ))j j

z z

z z e z z e z z

− −

− − − − − − −

+ +
=

− + − + − +

 

                                                                                     
(7) 
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with the 2-D magnitude response as in Fig.6. 

 

 

 

Fig.6 Magnitude Response of the 2-D filter of (7) 

 

Example 2. Chebyshev filters have the property that 
the magnitude of the frequency response is either 
equiripple in the passband and monotonic in the 
stopband or monotonic in the passband and 
equiripple in the stopband. The digital filter for a 
4th-order Chebyshev digital lowpass filter is 
expressed as follows ([28]): 

 

( ) ( )
( )

1 1 4
1

1 2 1 21

0.001836( 1)
(1 1.4996 0.84 )(1 1.5548 0.6493 )

A z z
H z

z z z zB z

− −
−

− − − −−

+
= =

− + − +

1 4

1 0.6133 1 0.6133

1 0.2662 1 0.2662

0.001836( 1)
0.84( 1.0911e )( 1.0911e )

1
0.6493( 1.2410e )( 1.2410e )

j j

j j

z

z z

z z

−

− − −

− − −

+
= ⋅

− −

⋅
− −

 

                                                                                        
(8) 

 

with magnitude response in Fig.7 

 

 

 

Fig 7. Magnitude response of the filter of (8) 

 

 

Consider again the transformation 1 1 1
1 2( ) / 2z z z− − −= +  

one takes ( ) ( )
( )

1 1
1 1 21 1

2 1 2 1 1
2 1 2

,
,

,

A z z
H z z

B z z

− −

− −

− −
= =  

 

1 1 4
1 2

1 1 0.6133 1 1 0.6133
1 2 1 2

1 1 0.2662 1 1 0.2662
1 2 1 2

0.001836(( 2)
0.84( 2 1.0911e )( 2 1.0911e )

1
0.6493( 2 1.2410e )( 2 1.2410e )

j j

j j

z z

z z z z

z z z z

− −

− − − − −

− − − − −

+ +
= ⋅

+ − ⋅ + − ⋅

⋅
+ − ⋅ + − ⋅

    

       

                                                                                    
(8) 

 

 

with the 2-D magnitude response in Fig.8. 
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Fig.8 Magnitude Response of the 2-D filter of (8) 

 
For the figures 1÷4, we used MATLAB, while for 
5÷8, we used the software “Graphis”. 
 
4 Conclusion 

In this paper, new general transformations are 
introduced for designing 2-D (Two-Dimensional) 
FIR and IIR filters. It seems that this methodology 
can be viewed as an extension of the McClellan 
Transformations and can be applied in several cases 
of 2-D FIR and IIR filter design, while the 
McClellan Transformations are applied only for the 
design of  2-D FIR filters. Two Numerical examples 
illustrated the validity and the efficiency of the 
method. The proposed methods ensure 2-D BIBO 
stability ([20]÷[26]) in all the cases due to Theorems 
1, 2, 3. 
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