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A New Model for Quantifying Anisotropic Scale
Invariance and for Decomposition of Mixing Patterns1

Qiuming Cheng2,3

A new power–law function has been derived to represent the relationship between area of the set
consisting of wave numbers with spectral energy density above S (A(>S)) on the two-dimensional
frequency plane and S. The power–law relation holds if the field concerned possessing isotropic scale
invariance or generalized scaling invariance involves rotational and ratio-scale changing transforms.
The equation is valid for dealing with common exploration geophysical and geochemical fields en-
countered in mineral exploration and environmental assessment. This power–law function not only
provides a new model for characterizing anisotropic scaling invariance for generalized scaling field,
for example, estimating the power exponent of power spectrum of generalized scale invariance measure
in frequency domain, but also forms a theoretical base for theS–A filtering technique developed for
decomposing a mixing field into components on the basis of distinct scaling properties in the frequency
domain. It is demonstrated that the method has potential to become a general technique for image
processing and pattern recognition.

KEY WORDS: multifractal, self-similarity, anisotropic scaling, geophysical and geochemical data
processing, Landsat TM image.

INTRODUCTION

A two-dimensional (2D) multifractal measure may represent a field or pattern with
scaling properties observed on or near the surface of the Earth or remotely sensed
from space. The patterns may reflect variabilities projected on the Earth surface by
multi-scale overlapping geological objects and superimposed processes occurring
at or near the Earth’s surface. The same type of phenomena can be found in other
fields such as medical imaging where images are sensed from the outside of the
human body and used to identify patterns pertaining to internal causes. Some of
the useful signals can be weak and hidden within irrelevant patterns caused by
features acting as noise, concealing useful information. Whether or not a real

1Received 5 September 2003; accepted 25 November 2003.
2Department of Earth and Amtospheric Science, Department of Geography, York University, Toronto,
Ontario, Canada M3J 1P3; e-mail: qiuming@yorku.ca

3Earth Systems and Mineral Resources Lab, China University of Geosciences.

345

0882-8121/04/0400-0345/1C© 2004 International Association for Mathematical Geology



P1: KEF

Mathematical Geology [mg] PP1175-matg-484954 May 5, 2004 20:15 Style file version June 25th, 2002

346 Cheng

component can be extracted from the total pattern and associated with a unique
process (cause) or describe the probability distribution for a single regionalized
random variable is obviously essential for pattern identification, and this is often
related to the accuracy of decision making. Complexity involved in geoscientific
spatial patterns is due to the variability, diversity, randomness, and temporal/space
multiple-scale properties. The variability observed at the Earth’s surface usually
reflects multiple (cascade type) processes with multiple controling factors.

Spectral analysis has been widely used in physics for pattern recognition, sig-
nal processing, and decomposition. One of the common ways to convert between
spatial domain and frequency domain is Fourier/Inverse Fourier transformation.
Spectral energy density functions characterize the power spectrum distribution
in the frequency domain. The advantage of dealing with fields in the frequency
domain is that complex convolution operations in the spatial domain for corre-
lation analysis, filtering and transformation can be simplified significantly in the
frequency domain. Moreover, anisotropic spatial distribution of a spectral energy
density retains the spatial structure of a field. Therefore, spatial analysis can be
applied to anisotropic spectral energy density in the frequency domain in order
to construct filtering functions to process the field (Cheng, 2001a,b; Cheng, Xu,
and Grunsky, 1999, 2001). In this regard, to quantify anisotropy is essential for
developing new techniques of pattern decomposition.

The relationships between multifractal modeling and spectral energy density
functions may be useful for investigation of new methods of spatial-spectral analy-
sis. The current paper has two purposes. Firstly, a new function relating multifractal
model and spectral energy density function will be derived to show the power–
law relationship,A(>S) ∝ S−2/s or A(>S) ∝ S−2d/s, between the spectral energy
density value (S= ‖F(ωx,ωy)‖) and “area” of the set with spectral energy density
values aboveS, {(ωx, ωy): >S}, whereF represents Fourier transformation;ωx

andωy are wave numbers in horizontal and vertical directions, respectively; and
s andd parameters to be introduced in the text. Secondly, it will introduce a new
method based on the above model for separating geochemical and geophysical
anomalies from background. Landsat TM images were used to validate the meth-
ods for identifying gold and copper associated alteration zones in the northwestern
British Columbia, Canada.

QUANTIFICATION OF ANISOTROPIC SCALE INVARIANCE

Anisotropy is not only a common characteristic of geochemical and geophys-
ical fields but also carries valuable information for image processing and pattern
recognition. How to quantify and extract anisotropic properties is crucial for mak-
ing use of anisotropy in data processing and classification. A number of authors
have attempted to develop techniques for quantifying anisotropic properties. Fox
and Hayes (1985) introduced different scaling exponents for different directions;
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Agterberg, Cheng, and Wright (1993) applied anisotropic transformation to loca-
tions of gold deposits to convert anisotropic to isotropic distributions; Schertzer and
Lovejoy (1991) introduced the concept of generalized scale invariance; Lewis and
others (1999) proposed a scale invariant generator technique; Cheng, Agterberg,
and Ballantyne (1994) developed theC–A method for quantifying anisotropy of
geochemical data. In the current paper, a new technique is proposed to quan-
tify anisotropy in the frequency domain. In comparison with most of the existing
methods, the new method is particularly useful not only for quantifying anisotropy
but also for constructing filters for decomposition of mixing patterns. A method
developed on the basis of the new model will be discussed.

Spectral Analysis of Isotropic Scale Invariance

Scale invariance refers to the property of a system that does not change by
changing scales. Properties at large-scale and small-scale are related by a scale
changing transformation involving only the scale ratio. It can be proved that only
the power–law function has the property:

M(δ) = cδ−β (1)

whereM is measure andδ is the measuring unit;c andβ are two constants. The
power–law function (1) is a one-dimensional (1D) function involving only one
variableδ. If this function is used to characterize 2D or 3D quantities it is usually
assumed that the scaling is isotropic meaning the scale changing at the same ratio
in different directions. Most of the existing fractal and multifractal modelling
techniques are designed for isotropic scaling. For example, the commonly used
box-counting method impliesN(δ) = cδ−D, whereN(δ) is the number of boxes
containing a feature; the boxes are usually squares with linear sizeδ andD is the
box-counting dimension. In the formulism of multifractal moment model, there is
a power–law relationship between measureµ and measuring unitε, µ(ε) = cεα,
whereµ(ε) is a measure defined in a square box of linear sizeε andα is the
so-called singularity index. The power–law spectral energy density function often
has the form:

S(ω) = cω−s (2)

whereω = ‖(ωx, ωy)‖ is the norm of the wave numbersωx andωy for horizontal
and vertical directions of the 2D field.S(ω) obtained by integrating the angular
energy density. If this function is used to characterize an anisotropic 2D spec-
tral energy density field, the anisotropy of the field will be “washed out” by the
smoothing effect of the integral (Lewis and others, 1999). In order to introduce
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the new function to quantify anisotropy in the next section, here we first take a
simple case by assuming an isotropic field so that Equation (2) holds true. Then
the relationship between “area”,A(>S), in the frequency domain where the spec-
tral energy density values are above a threshold (S) and S can be derived as
follows

A(>S) =
∫∫

S(ω)>S

dωxdωy ∝ 2π
∫ ( S

c )−
1
s

0
ωdω = π

(
S

c

)− 2
s

∝ S−
2
s (3)

usingωx=ωsinθ ,ωy = ωcosθ (coordinate transformation), and replacingS(ω) >
Sbyω < (S/c)−1/s. It can be seen that the functionA(>S) is a decreasing power–
law function of spectral energy density valueSwith exponent−2/s< 0. Compar-
ison of Equations (2) and (3) suggests that Equation (2) holds true either because
of the isotropic scaling measure so that it can be represented as a 1D functionS(ω)
or, otherwise, it washes out the anisotropy of the field by smoothingS(ωx, ωy).
Equation (3) does not have this problem although it was derived from (2) under the
assumption of field isotropy. In the next section, the power–law relation (3) will
be derived for a field with anisotropic scale invariance.

Anisotropic Scale Invariance

As discussed previously, isotropic scaling usually involves only one scale-
changing factor as illustrated in (1). Since 1983, Schertzer and Lovejoy (1991)
have developed the concept of general scale invariance (GSI), which defines
the concept of scale in anisotropic scaling systems. In the formulism of GSI,
taking 2D problem as example, the scaling inx and y directions will not be
at the same scale-changing rate. Similarly, following the linear GSI formulism
we can define the relationship between the measure and the measuring
scale as

M(Tλ) = M(λ−G) = λD (4)

whereTλ = λ−G represents scale transformation,G is a 2× 2 matrix (for 2D
problem), andλ is scale ratio (generallyλ = initial unit/δ). If G = I as unity
matrix, then the model (14) becomes the isotropic model (1). Otherwise, ifG
is not unity, then model (4) characterizes anisotropic scale invariance. A gen-
eral form ofG for a linear GSI was proposed by Lovejoy and Schertzer (1985)
as

G = d1+ cK + f J+ eI (5)
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where:1, K , J, andI are the bases of the 2D matrices

1=
(

1 0
0 1

)
, K =

(
1 0
0 −1

)
, J =

(
0 1
1 0

)
, I =

(
0 −1
1 0

)
(6)

thus

Tλ = λ−G = λd

(
I cosh(au)− (G− dI )

a
sinh(au)

)
(7)

whereu = logλ, andα2 = c2+ f 2− e2. If α2 < 0, the above formula holds but
with |α| replacingα. In the scale-changing operator,d is a measure of overall
contraction,c is a measure of the relative scaling of the two coordinate axes,f
represents reflection across a line diagonal to the axes, ande is a measure of
rotation.

Various techniques have been developed for quantifying the anisotropic scale
invariance under the formalism of GSI. The scale invariance generator (SIG) is
one of several recently published techniques for dealing with anisotropic scale
invariance (Lewis and others, 1999). In the following discussion, the relationship
(3) will be explored on the basis of the linear GSI formalism relations (4)–(7).

Lovejoy and Schertzer (1985) have demonstrated that spectral energy density
of a field with the generalized scaling invariance property under the formalism of
GSI can be expressed as

〈S(T̃λω)〉 = λ−s〈S(ω)〉 (8)

whereS represents spectral energy density,ω is wave number vector,̃Tλ = λG̃ is
the scale-changing operator in Fourier space,G̃ is the generator in Fourier space,
λ is scale ratio ands> 0 is the exponent. In the case of linear GSI,G̃ = GT , the
transpose of the real space generator (5)–(7). The scale transformationT̃λ in the
Fourier domain becomes (Lovejoy and Schertzer, 1985)

T̃λ = λd

(
I cosh(au)+ (GT − dI )

a
sinh(au)

)
(9)

In order to derive the relation betweenA(>S) and S from Equation (9), the
following discussion starts from transformation with operators1, K , J, andI . The
primitive operators1, K , J, andI transformω (ωx andωy) by changing the scales
with rotation and their combinations. Let us take any given contour with constant
S(ω) and denote the set enclosed by the contour asÄ0 with “area” A0, where
the area has the unit of square wave numbers. It is noted that in the following
discussion this “area” will be called area for convenience only.
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Denote the set transformed from theÄ0 after applying the scale-changing
operator asÄλ = T̃λ Ä0. In order to derive the relationship between the area of
Äλ(A(Äλ)) and the area ofÄ0(A(Ä0)), we only need to find the general relationship
for any circular setÄ0. For any circular setÄ0, its boundary can be expressed
as ∂Ä0 = {ω : ‖ω − ω0‖ = r }, whereω0 is the center of the setÄ0 and r its
radius. Therefore,A(Ä0) = π‖ω − ω0‖2 = πr 2. Write ωλ − ωλ0= T̃λ(ω − ω0),
then‖ωλ − ωλ0‖2= (ω − ω0)T T̃T

λ T̃λ(ω − ω0)= (ω − ω0)T Aλ (ω − ω0),whereAλ
is a symmetrical matrix and with eigenvalues that can be proved to beλ2(d−a) and
λ2(d+α). Therefore, the area of the set{ωλ − ωλ0 = T̃λ (ω − ω0): ‖ω − ω0 ‖ = r } is
equal toλ2d A(Ä0) = πr 2λ2d. Because the difference between the set{ωλ − ωλ0=
T̃λ (ω − ω0): ‖ω − ω0‖ = r} andÄλonly involves a translation operation, their
areas must be equal. This can be expressed as

A(Äλ) = πr 2λ2d (10)

Because of the arbitrary choice of circleÄ0, relation (10) must hold true for
any setÄ0. This is because any set of this type can be approximated by means of
circles. The relation (10) is independent off , c, ande implying that the transfor-
mation involving rotation and symmetrical relative scaling of the two coordinate
axes does not change the area.

Considering that the spectral energy densityS(T̃λω) decreases for increasing
scale ratioλ, we can combine relations (10) with (8) which gives:

A(Äλ) = A(>S) = πr 2(S/S0)−2d/s ∝ S−2d/s (11)

where∝ stands for “proportional to.” Thus we have derived power–law rela-
tion between areaA(>S) and the threshold spectral energy densityS. We can
conclude that for isotropic scale invariance or anisotropic generalized scale in-
variance involving rotation and differential change of scales of two axes, the
power–law relation (11) is exact. 2d = Trace (G) is called elliptical dimension.
If 2d = 2 corresponds to isotropic scale and in this case the relation (11) be-
comes the same form as (3). Most of the geophysical and geochemical fields for
mineral exploration reflecting the geological bodies formed through overlap of
multiphase rotational and relative compression deformation, therefore the rela-
tion (11) holds true for these data. This relation will be used as the foundation
for the S–A method for decomposing mixing patterns as discussed in the next
section.

It can be seen that the result (11) is independent ofα2 = f 2+ c2− e2. In
addition, the area (A) and power spectrum densityS in the Equation (11) are real
values even ifα2 < 0. This property makes the Equation (11) useful in dealing with
complex power spectrum whereα2 < 0 and matrixG has complex eigenvalues
and the measure gives log–log oscillations in power spectrum.
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It can be seen that although the derivation of Equation (11) was based on the
linear GSI transformation matrixG, the result holds true for nonlinear GSI as well.
As suggested by Lovejoy in his critical reviewer’s comments the Equation (3) can
be abstracted as follows:

We can use the scale functionωλ and the generalized angleθ , then the fol-
lowing area element can be used in integral to expressA(Äλ)

dωλ = d‖ωλ‖Ddθ (12)

whereD is the elliptical dimension. Equation (12) could be regarded as the defini-
tion of θ ; it will depend on the exact scale function used. If a scale function exists,
then we can obtain the area less than scale‖ωλ‖:

A(Äλ) =
∫∫

‖ω′λ‖<‖ωλ‖

d‖ω′λ‖Ddθ = Ä

D
‖ωλ‖D (13)

whereÄ is the “total angle” (=2π in 2D isotropic system). The corresponding
generalized scaling for the power spectral density

〈S(ωλ)〉 = ‖ωλ‖−s (14)

Combining Eqns. (13) and (14) we obtain

A(Äλ) = Ä

D
S−

D
s (15)

DECOMPOSITION OF MULTIFRACTAL MEASURES

Since power–law relation (11) holds true for anisotropic fields, it is useful in
practice to characterize the spatial distribution of a power-spectrum. For example,
it can be used to test whether a field possesses one single power–law relation for
all ranges of spectral energy density or if several power–law relations may be
needed to fit the relation (11). In the latter case one can determine a threshold in
the frequency domain to construct different filters to decompose the field in the
space domain.

Decomposition of Patterns

Assume the observed fieldT(x, y) represents bulk value of element con-
centration in surface media such as rock samples created by various large-scale
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geological processes and small-scale mineralization. These two different processes
may cause distinct distributions of the same element concentration in the same area
to be denoted asB(x, y) andA(x, y), which are unknown components ofT(x, y).
The mixing could be of two different forms: product or sum. By log-transformation
the former becomes the latter. Therefore, only the sum mixing effect (summation
form) will be discussed. It can be expressed as

T(x, y) = B(x, y)+ A(x, y) (12)

whereT(x, y) represents bulk value observed at location (x, y) in an area,B(x, y)
the component reflecting regional large-scale processes, andA(x, y) the com-
ponent reflecting local small-scale processes. There are a number of techniques
available for decomposingT into A andB. For example,

(1) Threshold-based method that separatesT into B and A on the basis
of valueT in comparison with the thresholdT0: B = T if T < T0 and
otherwiseA = T if T ≥ T0. There have been a number of ways to set
thresholds such asT0 = E(T)+ αS(T), whereE andS stand for mean
and standard deviation of theT andα is the factor. This method assumes
that B andA have separate value populations.

(2) Methods such as trend analysis setB as constant or as a polynomial sur-
face and the residuals asA. These types of methods use predetermined
polynomial surfaces to fitB, which may be applicable in special situ-
ations where B shows regional variability that can be approximated by
predetermined polynomial surfaces.

(3) Methods such as kriging takeB as the mean surface for normally and
log-normally distributed regionalized random variables and the residuals
asA. This treatment depends on choice of spatial association model.

(4) Frequency-based filter techniques separateT into B and A based on
frequency periodic properties, such as low- and high-pass filtering and
band-pass filtering. These types of methods separateT into B andA both
with distinct frequency or wavelength properties.

(5) The method to be introduced in detail below separatesT into B and A
based on distinct anisotropic scaling properties in the frequency domain.

Fractal Filtering Technique (S–A)

The S–A method developed by Cheng, Xu, and Grunsky (1999) constructs
fractal filters on the basis of distinct power–laws determined by fitting different
relations (11). Usually, several straight-line segments can be fitted to the relation
(11) on log–log plot. Each range of spectral energy density within which relation
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(11) holds true can be used to define a filter. For example, if two straight-line
segments are fitted to the data, and these straight lines yield the thresholdS0, then
two filters can be defined as:GB(ω) = 1 if S(ω) > S0 and otherwiseGB(ω) = 0;
and the second one withGA(ω) = 1 if S(ω) ≤ S0 and otherwiseGA(ω) = 0. From
the definition ofGA(ω) andGB(ω), we can see that the shapes of the filters could be
irregular depending on the complexity of the spectral energy density distribution.
However, in general, the wave numbersω in filter GA(ω) are relatively larger than
those inGB(ω) implying that the frequency inGA(ω) is relatively higher than
those inGB(ω). In this sense,GA(ω) corresponds to a relatively high frequency
component andGB(ω) to a relatively low frequency component. However, one
must keep in mind that the two filters are not sharply bounded either by frequency
or by wave numbers. They are defined in such a way that the spectral energy
density distributions on the two filters satisfy distinct power–laws or have different
anisotropic scaling properties, that in a simple situation, may correspond to distinct
(isotropic) self-similarities or self-affinities (stratification). Applying the Inverse
Fourier Transformation with these two filters applied to the Fourier transformed
functions we can get decomposed components in the space domain:

B = F−1[F(T)GB)], A = F−1[F(T)GA)] (17)

whereF andF−1 represent the Fourier and Inverse Fourier transformations ofT ,
respectively. Therefore, the two componentsB and A have different properties.
The frequencies onB and A may not be totally different but they must show
distinct scaling properties in their spatial distribution as quantified by two distinct
power–laws in the frequency domain.

A CASE STUDY

The data to be used to validate the relation (11) and to demonstrate the appli-
cation of theS–A method are Landsat TM images, received on 9 September 1985,
covering the Mitchell-Sulphurets mineral district, northwestern British Columbia.
These images have been studied for alteration identification (Cheng, 1999; Rencz,
Harris, and Ballantyne, 1994) and for nonlinear modeling (Cheng 1999). The
dataset consists of seven TM images (bands 1–7) with 30-m resolution for bands
1–5 and 7 (120 m for band 6) each of which contains 496c× 777r pixels covering
an area of about 350 km2.

The relations (11) and (13) will be applied to TM bands 1 to 5 and 7 only
for maintaining a uniform resolution. Figure 1 shows the TM bands 1 and 7 (other
images not shown here). The spectral energy density values (S) obtained by means
of the Fast Fourier transform in GeoDAS GIS (Cheng, 2000) are shown in Fig. 2.
The centers of the maps in Fig. 2 correspond toω = 0. The values ofS towards
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Figure 1. Landsat TM image bands 1 (A) and 7 (B), containing 496c× 777r pixels at 30-m resolution
covering an area of about 350 km2,received on 9 September 1985, from Mitchell–Sulphurets area,
northwestern British Columbia (Rencz, Harris, and Ballantyne, 1994).

the center are generally higher than the values away from the center. The image
is diagonally symmetrical. From all the spectral energy density images calculated
for the six TM bands (results for bands 2–5 not shown), we can see that the spectral
energy density images for bands 1–4 areN–Selongated and are symmetrical both
vertically and horizontally. Whereas the spectral energy density images for bands 5
and 7 are elongated in the north–north-western (NNW) direction with a few degree
departure from north–south orientation. The two vertical and horizontal strips on
Fig. 2 are due to edge effects. Because the constant areas occupied by the two strips
are relatively small, it does not seriously affect the power–law plot betweenA(>S)
and S. The effect can be corrected by applying a smoothing transformation or
through other edge effect treatment (more discussion about edge effect correction
can be found in Ge, Cheng, and Zhang (in press). The results ofA(>S) versus
S obtained for the six images are shown in Figs. 3(A)–(F), respectively. When
the data are plotted at log–log scale, towards the right the valueS increases and
accordingly the frequency decreases. On the farmost right the plot becomes flat
because of the area increment becoming zero. To the left the plot tends towards
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Figure 2. Images showing distribution of spectral energy density values as two-dimensional function
of wave numbers in vertical and horizontal directions. The center of the image is the origin where
wave number equals zero. The spectral energy density function was obtained by Fast Fourier transform.
(A) The result obtained for image band 1 shown in Fig. 1(A) and (B) result obtained for image band
7 shown in Fig. 1(B).

relatively low valueSand high frequency. A few points on the plot from the farmost
left are of large uncertainty because of the high frequency energy density function.
Therefore, the points on both the farmost right and left ends should not be included
in the straight-line fitting. The data ofA(>S) andSobtained for the six images on
Fig. 3 can be generally fitted by two straight-line segments using the least-square
method. The bands 1–4 images show relatively short segments on the right and
most values ofScan be fitted as one straight line. On the other hand, the bands 5
and 7 images show two different straight-line fittings.

Cheng (1999) has found that the patterns defined on the basis of bands 1–4
are close to single fractals whereas the patterns on bands 5 and 7 are multifractals.
The current study has demonstrated bands 5 and 7 show two significantly different
power–law relations betweenA(>S) and S whereas bands 1–4 show only one
significant relation. For this reason, theS–A method is used only to decompose
the images of bands 5 and 7 into two components on the basis of these two distinct
power–law models. For example, in Fig. 3(F) the two straight lines separate the
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spectral energy density values into two ranges with cutoff value Log(S0) = 12.47 or
S0 = 261904, where Log is natural log. The first filter can be defined asGB(ω) = 1
if S(ω) > S0 and, otherwise,GB(ω) = 0. Similarly, the other filter can be defined
asGA(ω) = 1 if S(ω) < S0 and, otherwise,GA(ω) = 0. The shapes of these two
filters are irregular. The norm of wave number vector‖ω‖ in GB is generally
small in comparison with that inGA; however, because of their irregular shapes,
these two filters are not sharply bounded by wave number. Therefore, although the
frequency in GB is generally lower than that inGA, these filters are not sharply

Figure 3. Plots showing the relationship betweenA(>S) andS obtained for images
bands 1–5 and 7, respectively. The log-transformation is natural log. The dots represent
spectral energy density values at equal interval with 100 classes. The low and high
values were set at about low and up 3% pixels as bounds for display purposes. Two
straight-line segments were fitted by Least-Squares. Vertical lines represent the dividers.
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Figure 3. (Continued)

bounded by frequency. This is a fundamental distinction between theS–A method
and other frequency-based regular filtering techniques including high-, low-, and
band-pass filters.

The signals in the filters constructed on theS–A plot are not only based on
magnitude of frequency but also on the power–law property of the spectral energy
density distribution. In this regard,S–A can be considered as a spectral-spatial
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Figure 3. (Continued)

analysis method rather than a frequency-based filter technique. The two decom-
posed components of band 7 withGB andGA are shown in Figs. 4(A) and (B),
respectively. The component obtained from applyingGB in Fig. 4(A) shows gen-
eral background variability of the image with high values reflecting outcropping
rocks and alteration zones as well as relatively high topographical areas. The com-
ponent obtained from applyingGA in Fig. 4(B) shows general residuals of the
image with high values reflecting detail patterns of both alteration zones and al-
tered rocks between glacial deposits. Comparing the component in Fig. 4(B) with
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Figure 4. Plots showing the decomposed image from image band 7 (Fig. 1(B)) by Inverse Fourier
transformation with the filters defined on the basis of the straight-line fitting on Fig. 3(F) (see text for
details).

the original image in Fig. 1(B) we can see that the decomposed image shows
the patterns (alteration zones and altered rocks between glacial deposits) in great
detail. More geological interpretation will be discussed in a separate paper.

CONCLUSIONS

From a multifractal point of view, the spatial autocorrelation, and spectral en-
ergy density are related to the low-order moment statistics of multifractal model.
The spectral energy density function and spatial autocorrelation functions can be
used to quantify anisotropic property of field from the frequency and space do-
mains, respectively. The new power–law relationshipA(>S) versusS derived in
the current paper can be used as a general model to quantify anisotropic scale in-
variance of a field because of differential contraction and rotational operation. The
new technique (S–A method) has been demonstrated to be useful for decomposing
mixing patterns on the basis of distinct scaling properties in the frequency domain.
It has potential to become a general technique for image processing and pattern
recognition.
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