
Exploiting Multi-Interface Networks:

Connectivity and Cheapest Paths? ??

Adrian Kosowski1,2, Alfredo Navarra3, and Maria Cristina Pinotti3

1 LaBRI - Université Bordeaux 1, 351 cours de la Liberation, 33405 Talence, France.
2 Department of Algorithms and System Modeling, Gdańsk University of Technology, Narutowicza 11/12,

80952 Gdańsk, Poland. E-mail: kosowski@sphere.pl
3 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1,

06123 Perugia, Italy. E-mails: {navarra, pinotti}@dmi.unipg.it

Abstract. Let G = (V, E) be a graph which models a set of wireless devices (nodes V) that can
communicate by means of multiple radio interfaces, according to proximity and common interfaces
(edges E). The problem of switching on (activating) the minimum cost set of interfaces at the nodes
in order to guarantee the coverage of G was recently studied. A connection is covered (activated) when
the endpoints of the corresponding edge share at least one active interface. In general, every node holds
a subset of all the possible k interfaces. Such networks are known as multi-interface networks. In this
setting, we study two basic problems: Connectivity and Cheapest Path.
The Connectivity problem corresponds to the well-known Minimum Spanning Tree problem in graph
theory. In practice, we need to cover a subgraph of G of minimum cost which contains a spanning
tree of G. The problem turns out to be APX -hard in general and for many restricted graph classes,
however it is possible to provide approximation algorithms: a 2-approximation in general and a (2− 1

k
)-

approximation for the unit cost interface case, i.e. when the cost of activating an interface is unitary for
any interface. We also consider the problem in special graph classes, such as graphs of bounded degree,
planar graphs, graphs of bounded treewidth, complete graphs.
The Cheapest Path problem corresponds to the well-known Shortest Path problem in graph theory.
In the multi-interface setting this problem is still polynomially solvable, and we point out a simple
Dijsktra-based algorithm with O(k|E| + k|V | log(k + |V |)) runtime in general and O(k(|E| + |V |))
runtime for the unit cost interface case.

Keywords: energy saving, wireless network, multi-interface network

1 Introduction

As technology advances and more sophisticated and heterogeneous devices are released, spe-
cial effort is required for managing new kinds of communication problems. Nowadays wireless
devices hold multiple radio interfaces, and are capable of switching from one communication
network to another according to required connectivity and related quality considerations.
The selection of the most suitable radio interface for a specific connection might depend on
various factors. Such factors include: its availability in specific devices, the required commu-
nication bandwidth, the cost (in terms of energy use) of maintaining an active interface, the
available neighbours, and so forth. While managing such connections, a lot of effort must
be devoted to energy consumption issues. Devices are, in fact, usually battery powered and

? The research was partially funded by the European project COST Action 293, “Graphs and Algorithms in Com-
munication Networks” (GRAAL).

?? Preliminary results concerning this paper appeared in [2, 15].

the network survivability might depend on their persistence in the network. This introduces
challenging and natural optimisation problems which must take care of different variables at
the same time.

In the considered model, the input network is described by a graph G = (V,E) with
n = |V | and m = |E|, where V represents the set of wireless devices and E is the set of
possible connections according to proximity of devices and the available interfaces that they
may share. Each v ∈ V is associated with a set of available interfaces W (v). The set of all
the possible interfaces available in the network is then determined by

⋃
v∈V W (v), and we

denote the cardinality of this set by k.
We say that a connection is satisfied when the endpoints of the corresponding edge share

at least one active interface. For an activation which satisfies some connections, the overall
cost is given as the sum of cost values associated with each interface, taken over all nodes
which activate the interface.

In these terms, the Connectivity problem can be described as follows. What is the cheapest
way of establishing connectivity in the network, i.e., which subset of available interfaces must
be activated at each node in order to guarantee a path between every pair of nodes in G
while minimising the overall cost of activation? The Cheapest Path problem has the following
intuitive formulation: given a source node s ∈ V , for each other node t ∈ V , which subset of
available interfaces in some nodes must be activated in order to guarantee a path between
s and t, while minimising the overall cost? Formal definitions of these problems are given in
the subsequent sections of the paper.

The interest in these problems comes from the necessity to study, in the context of multi-
interface networks, problems corresponding to the well-known problems of determining the
Minimum Spanning Tree and the Shortest Path Tree for standard graphs.

1.1 Related Work

Multi-interface wireless networks have recently been studied in a variety of contexts, usually
focusing on the benefits of multiple radio devices of each node. Many basic problems of
standard wireless network optimisation can be reconsidered in such a setting [1], focusing in
particular on issues related to routing [8] and network connectivity [6, 9].

The problems considered herein originate from [5] where a slightly different model is
introduced. That model considers the necessity of activating all the connections expressed
by G while minimising the overall cost. Such a problem can be referred to as Coverage of G.
Different interfaces may have different costs and moreover, in some works, mutually exclusive
interfaces have been considered (this means that some interfaces, if activated, preclude the
activation of some other interfaces). In [5], a sketchy proof of NP-hardness of the Coverage
problem was provided and experimental results were shown. In [12, 13] the Coverage problem
was formally defined (under the name of CMI). The number of interfaces k was assumed to
be a known constant. An algorithmic approach led to interesting hardness and approximation
results for various graph classes like complete graphs, trees, planar graphs, graphs of bounded
degree and general graphs. Moreover, both unit cost and non-unit cost interface cases were
considered. Indeed, the unit cost model is equivalent to ask for the minimum total number

2

of activated interfaces inside the network in order to cover all the connections. Results in a
similar context have been obtained in [12, 14] but for a slightly different scenario where k is
not known in advance, i.e., k depends on the input instance.

1.2 Our Results

For the Connectivity problem, the results presented in this paper are summarised in Table 1.
Connectivity turns out to be APX -hard in general and also when restricted to graphs of
maximum degree ∆ ≥ 4 (even for k = 2 interfaces), as well as for bounded treewidth
graphs (including trees) and complete graphs (when k is unbounded). It remains NP -hard
for graphs of maximum degree ∆ ≥ 3 (when k ≥ 2) and for planar graphs (when k ≥ 10 and
∆ ≥ 6). Approximation algorithms are then provided for general graphs. A 2-approximation
is given for the non-unit cost interface case, while for the unit cost interface case we have
a (2 − max{ 1

k
, 1

9(∆
2)−4(∆−1)

})-approximation. For k = 2 we also provide a 4
3
-approximation

in the unit cost interface case. Optimal algorithms are put forward for graphs of bounded
treewidth and complete graphs when k is bounded. When k is unbounded, an approximation
algorithm is provided for complete graphs for the unit cost and non-unit cost interface cases.

Table 1. Hardness and approximability for Connectivity. In the table, C represents the ratio b cmax
cmin

c between the

maximum and the minimum cost interfaces available in the network. The ‘*’ symbol stands for any other available
approximation ratio provided for the general case.

Graph class Complexity of Connectivity
unit costs non-unit costs

General graphs APX-hard ∀ k ≥ 2 APX-hard ∀ k ≥ 2
4
3
-approx for k = 2

(2− 1
k
)-approx ∀ k ≥ 2 2-approx ∀ k ≥ 2

(2− 1

9(∆
2)−4(∆−1)

)-approx ∀ k ≥ 2

Bounded ∆ NP-hard ∀ k ≥ 2, ∆ ≥ 3 NP-hard ∀ k ≥ 2, ∆ ≥ 3
APX-hard ∀ k ≥ 2, ∆ ≥ 4 APX-hard ∀ k ≥ 2, ∆ ≥ 4

Planar graphs NP-hard ∀ k ≥ 10, ∆ ≥ 6 NP-hard ∀ k ≥ 10, ∆ ≥ 6

Bounded treewidth graphs APX-hard (unbounded k) [12] polynomial (bounded k)

Complete graphs min{∗, 1 + k
n
}-approx min{2, C

(
1 + k

n

)}-approx
APX-hard (unbounded k) O(n2) (bounded k) [12]

Concerning Cheapest Path, we consider the most generic unbounded case, i.e. when the
number k is not known a priori. Even in such a setting, the problem can be solved in
O(km+kn log(kn)) time by making use of the standard Dijkstra’s technique [7] on a suitable
graph. For the unit cost interface case, the time complexity of the algorithm reduces to
O(k(m + n)).

1.3 Outline

The next section is devoted to the Connectivity problem. It provides definitions and notation,
hardness results, and a series of approximation algorithms for general and particular graph

3

topologies. Namely, graphs of bounded treewidth, graphs of bounded degree, planar graphs
and complete graphs are considered. For the Cheapest Path problem, an efficient general-case
polynomial time algorithm is presented in Section 3. Finally, Section 4 contains concluding
remarks.

2 Connectivity in Multi-Interface Networks

In this section, we present and study the Connectivity problem.

2.1 Definitions and Notation

For a graph H, we denote by V (H) its vertex set, by E(H) its edge set, by γ(H) the number of
its connected components, by ∆(H) its maximum vertex degree, and denote n(H) = |V (H)|,
m(H) = |E(H)|. Unless otherwise stated, the graph G = (V,E) representing the network is
always assumed to be simple (i.e., without multiple edges), undirected and connected, with
n(G) > 2 (so ∆(G) ≥ 2). When considering the network graph G, we simply denote the
number of its vertices, edges, and maximum degree by n, m, ∆, respectively.

An edge e ∈ E is said to cost α, which is denoted by cost(e) = α, if the cheapest common
interface available at both its endpoints has cost α

2
.

A global characterisation of interfaces of respective nodes from V is given in terms of an
appropriate interface assignment function W , according to the following definition.

Definition 1. A function W : V → 2{1,...,k} is said to cover graph H if for each {u, v} ∈
E(H) we have W (u) ∩W (v) 6= ∅.

The cost of activating an interface for a node is assumed to be identical for all nodes and
given by cost function c : {1, . . . , k} → R+, i.e., the cost of interface i is denoted as ci. The
considered Connectivity optimisation problem is formulated as follows.

Connectivity in Multi-Interface Networks

Input : A graph G = (V, E), an allocation of available interfaces W : V → 2{1,...,k}

covering graph G, an interface cost function c : {1, . . . , k} → R+.
Solution : An allocation of active interfaces WA : V → 2{1,...,k} covering a connected span-

ning subgraph G′ = (V, E ′) of G such that WA(v) ⊆ W (v) for all v ∈ V , and
E ′ ⊆ E.

Goal : Minimise the total cost of the active interfaces, c(WA) =
∑

v∈V

∑
i∈WA(v) ci.

Note that we can consider two variants of the above problem: the parameter k can be
considered as part of the input (this is called the unbounded case), or k may be a fixed
constant (the bounded case). In both cases we assume k ≥ 2, since the case k = 1 admits an
obvious unique solution (all nodes must activate their unique interface).

Connectivity might be seen as the search for a spanning tree of G of minimum cost. Such
a cost is determined by the set of interfaces that must be activated in order to cover all the
edges of such a tree. On the other hand, it might happen that by activating the minimum
cost set of interfaces for connectivity purposes, the resulting covered subgraph of G is not a
tree.

4

2.2 Complexity Results

We first prove that the problem is, in general, APX-hard.

Theorem 1. Connectivity is APX-hard even when restricted to the unit cost interface case
for k ≥ 2 and maximum degree ∆ ≥ 4.

Proof. Given an allocation function of active interfaces for an instance of Connectivity , to
check whether the induced subgraph is connected or not is linear in the number of edges
of the input graph G.The proof then proceeds by a polynomial reduction of the well-known
Minimum 3-Set Cover problem with bounded occurrences. The problem is known to be
APX -hard [10] and it can be stated as follows:

X3C : Minimum 3 Set Cover with at most 3 occurrences

Input : Collection C of subsets, each of cardinality at most 3, of a finite set S such that
each element occurs in at most 3 subsets of C.

Solution : A set cover for S, i.e. a subset C ′ ⊆ C such that every element of S belongs to
at least one member of C ′.

Goal : Cardinality of the set cover, i.e., |C ′|.
For our reduction we consider the unit cost interface case and k = 2. Given an instance

(C, S) of X3C , we transform it into an instance (G,W) of Connectivity with k = 2 unit cost
interfaces. Each element of S becomes a node of the input graph of Connectivity holding
only interface 1. For each subset belonging to the collection C, we introduce a gadget of nine
nodes to the Connectivity input instance as shown in Figure 1.

i

Connections to the three nodes
corresponding to the elements
belonging to the represented subset

{1,2}

{1,2}

{1,2}

{1,2}

{2}

{1,2} {2}

{1,2}

{1}

a b c
d

e f g h

Fig. 1. Auxiliary gadget for the reduction from X3C to Connectivity

To complete the instance transformation in the reduction, we need to explain the meaning
of the ground symbol in the figure. This is a connection to an auxiliary graph as will be
shown later; for the moment, we can assume that all of the ground connections lead to the
same additional node (called the root) shared by all the gadgets. Such a node holds both

5

interfaces 1 and 2, and it is connected to two further auxiliary nodes holding only interface
1 and interface 2, respectively.

In the modified graph, we see that activating a total of 9 interfaces is enough in order to
connect all the nodes of a single gadget to the root. This is done by activating interface 1
at nodes d, h and i, and interface 2 at all the remaining 6 nodes. In this way, all the nodes
of the gadget admit a path to at least one ground connection. Note that this is the only
possible activation of 9 interfaces having the property that each node of the gadget admits a
connection path to the root. Moreover, this activation cannot satisfy any connection (dotted
lines of Figure 1) from the gadget to the elements of the represented subset as by construction
the corresponding nodes hold only interface 1.

However, if we allow a cost bigger than 9 for a gadget, then there exists an interface
allocation of cost 10 which allows us to connect the gadget to both the root and all the three
external nodes corresponding to the represented subset. In fact, by activating interface 1 at
node i, and both interfaces 1 and 2 at node h, then we can activate interface 1 at nodes a,
b, e and f , and interface 2 at the remaining nodes c, d and g. This configuration connects
the gadget to all the nodes of the represented subset to the root.

Finally, regardless of the constraints for the other nodes, we are forced to activate interface
1 for each of the nodes representing elements of S, both interfaces for the root, and the one
available interface for the two auxiliary neighbours of the root. We thus obtain that there
exists a solution to the original X3C instance with cardinality |C ′| if and only if there exists
a solution to Connectivity in the modified graph with cardinality 9|C| + |C ′| + |S| + 4. As
X3C is known to be APX-hard even with the additional restriction that |C| ≤ |S| (see [10]),
and obviously |C ′| ≥ |S|/3, clearly Connectivity is APX-hard as well.

As the root has high degree, we can modify our construction in order to claim the above
result for networks of maximum degree greater than or equal to 4. Instead of the root, for
each of the 2|C| ground connections of the gadgets we add a structure behaving like the
previous root, i.e. one node holding both interfaces 1 and 2 connected to two nodes holding
interface 1 and interface 2, respectively. All these “roots” are then treated as the leaves of
a tree of maximum degree 4, and joined together to form such a tree using new auxiliary
internal nodes of the tree, which hold only interface 1. In this way all the nodes of the
constructed graph have degree less than or equal to 4, and the claim holds. ut
Corollary 1. Connectivity is NP-hard even when restricted to the unit cost interface case
for k ≥ 2 and maximum degree ∆ = 3.

Proof. Following the proof of Theorem 1, in order to decrease ∆ to 3 we need another
construction to connect all the roots. To each root we connect the root of a new binary
tree that has a number of leaves not less than the square of the number of gadgets, |C|2.
Nodes of the trees hold both interfaces 1 and 2. Then the j-th, 1 ≤ j ≤ |C|, leaf of the i-th,
1 ≤ i ≤ |C|, tree is connected to the i-th leaf of the j-th tree. In this way, each tree is covered
by activating only one interface per node, and all the trees sharing the same active interface
are connected. In order to guarantee connectivity we only require that one node among all
the nodes of the trees activates both interfaces (this globally affects the cost of the activation
in the whole graph by a constant of 1; this is negligible since X3C is APX -hard). Note that

6

in this way we only prove the NP -hardness of Connectivity , not its APX-hardness, as the
number of nodes of the constructed graph is much larger than |C|. ut
Theorem 2. Connectivity is NP-hard, even when restricted to the unit cost interface case
in planar graphs, for all values of k ≥ 10 and maximum graph degree ∆ ≥ 6.

Proof. The proof proceeds by reduction from the Hamiltonian Path in 3-Regular Planar
Graphs problem, which is known to be NP -complete [11].

HP3P : Hamiltonian Path in 3-Regular Planar Graphs

Input : A 3-regular planar graph G.
Question : Does G admit a Hamiltonian path?

Consider an arbitrary 3-regular planar graph G which is an instance of the HP3P problem.
We construct an instance of Connectivity as follows. First, we obtain graph G′ from G by
adding to G, for each vertex v ∈ V (G), exactly three new vertices v′1, v

′
2, v

′
3, and three new

edges {v′1, v}, {v′2, v}, {v′3, v}. Then, we assign interfaces to vertices of G′ as follows. Consider
an edge coloring of G such that edges which are at distance at most 2 (i.e. edges which
share a vertex, or which are both adjacent to some other edge) receive different colorings.
Such a coloring is known as a strong edge coloring, and for 3-regular graphs can always be
constructed in polynomial time using at most 10 colors [?]. Now, to each vertex v ∈ V (G)
we assign exactly 3 interfaces from the range {1, . . . , 10}, corresponding to the colors of
edges adjacent to v. If the interfaces assigned to vertex v ∈ V (G) are {c1, c2, c3}, then the
added vertices v′1, v

′
2, v

′
3 are assigned interfaces {c2, c3}, {c1, c3}, and {c1, c2}, respectively. All

interfaces have unit cost. We now show that G′ admits a solution to Connectivity with cost
at most 5|V (G)| if and only if G has a Hamiltonian path.

First, assume that G has a Hamiltonian path. For a vertex v ∈ V (G), let u and w be
its neighbours in the path. Then vertex v enables interfaces corresponding to the colors of
edges {u, v} and {v, w}. (For an endpoint of the Hamiltonian path, enable one interface
corresponding to the color of the edge of the path, and one more available interface.) In
this way, communication is possible along the Hamiltonian path, hence connectivity within
V (G) is achieved. Connectivity can be extended to the whole of V (G) by enabling exactly
one interface for each vertex from V (G′) \ V (G). This means that exactly two interfaces are
enabled for each vertex from V (G), and one interface is enabled for each vertex from V (G′),
thus the total cost of the activation is at most |V (G)|+ |V (G′)| = 5|V (G)|.

Conversely, suppose that there exists an activation of interfaces with cost at most 5|V (G)|.
To enable communication among vertices {v, v′1, v

′
2, v

′
3}, for any v ∈ V (G), it is necessary

to activate at least 5 interfaces in total for any such 4 nodes, and each vertex must enable
at least 1 interface. Since the total cost of the activation is at most 5|V (G)|, we have that
each vertex v ∈ V (G) can only enable at most 2 interfaces. By the properties of the edge
coloring used in the interface assignment, this allows v to communicate with at most two
other neighbours in G. Hence, since connectivity is achieved by assumption, graph G must
admit a spanning tree of maximum degree 2, which means G has a Hamiltonian path. ut
Theorem 3. Connectivity is 2-approximable.

7

Proof. Our algorithm A for Connectivity first chooses a spanning tree TG of the input graph
G of minimum cost with respect to the edge cost function provided in Section 2.1. Once TG

is chosen, the algorithm proceeds as follows. It simply activates the cheapest interface for
covering each edge of TG. This means that for each covered edge at most one interface at
both endpoints is activated. Moreover, according to the considered cost function, the cost
of TG, understood as the sum of the costs of its edges, is minimum. In fact, the set of edges
required for connectivity purposes by an optimal solution cannot have a cost smaller than
the cost of TG. Indeed, consider any optimal interface activation Wopt for Connectivity in
G. It induces some connected spanning subgraph G′ ⊆ G, and we consider an arbitrary
spanning tree TG′ of G′. For each edge e ∈ E(TG′) there must exist an interface of cost not
less than cost(e) which is activated in Wopt by both the endpoints of e. Since edges of TG′

can be mapped into distinct vertices of V , and by the minimality of spanning tree TG, we
obtain:

c(Wopt) ≥
∑

e∈E(TG′)

cost(e) ≥
∑

e∈E(TG)

cost(e).

On the other hand, for each edge e ∈ E(TG′), the proposed algorithm activates the interface
of cost cost(e) for both its endpoints, leading to an activation WA such that:

c(WA) ≤ 2
∑

e∈E(TG)

cost(e).

Clearly, c(WA) ≤ 2c(Wopt), and the claim holds. ¤

Theorem 4. Connectivity is (2− 1
k
)-approximable for the unit cost interface case.

Proof. For a not necessarily connected subgraph H ⊆ G without isolated vertices, let the
gain g(H) be defined as g(H) = n(H)− 2γ(H), where n(H) is the the number of vertices of
H, and γ(H) is the number of connected components of H.

The proposed approximation algorithm consists of the following steps:

1. For each interface i ∈ {1, . . . , k} determine the gain g(Hi), where Hi is obtained by
removing all isolated vertices from the subgraph of G induced by the set of vertices
equipped with interface i, {v ∈ V : i ∈ W (v)}.

2. Let j be any interface such that g(Hj) = maxi∈{1,...,k} g(Hi). Activate interface j at all
vertices of Hj. Let T be a forest in G consisting of arbitrary spanning trees of all connected
components of Hj.

3. One by one, consider all edges {u, v} ∈ E(G) \ E(T). If T ∪ {u, v} does not contain a
cycle, set T := T ∪ {u, v} and activate an arbitrary interface shared by nodes u and v at
both node u and node v.

After completing step (2) of the procedure, the number of connected components of the
graph, with respect to the current activation, is at most n−n(Hj)+γ(Hj), while the cost of
activation is exactly n(Hj). In step (3), it is thus necessary to perform activation for at most
n− n(Hj) + γ(Hj)− 1 edges, with an activation cost of at most 2(n− n(Hj) + γ(Hj)− 1).

8

Thus, the total cost c(Wa) of activation throughout steps (2) and (3) can be bounded from
above by:

c(WA) ≤ n(Hj) + 2(n− n(Hj) + γ(Hj)− 1) = 2(n− 1)− g(Hj). (1)

Consider now any optimal activation of interfaces Wopt for graph G. Let Topt be an
arbitrary spanning tree of the connected subgraph of G which is activated using Wopt. We
can decompose tree Topt into a union of disjoint forests, Topt = T1 ∪ . . . Tk, such that in
forest Ti all of the nodes must activate interface i.4 Thus, the cost of the optimal solution is
bounded from below by c(Wopt) ≥

∑k
i=1 n(Ti) =

∑k
i=1(|E(Ti)|+ γ(Ti)). Taking into account

that
∑k

i=1 |E(Ti)| = |E(T)| = n− 1 and g(Ti) = n(Ti)− 2γ(Ti) = |E(Ti)| − γ(Ti), we have:

c(Wopt) ≥ 2(n− 1)−
k∑

i=1

g(Ti). (2)

Now, observe that for all i, since Ti ⊆ Hi and Hi has no isolated vertices, we may write
g(Ti) ≤ g(Hi). Thus, we may develop expression (1) as follows:

c(WA) ≤ 2(n− 1)− g(Hj) ≤ 2(n− 1)− 1

k

k∑
i=1

g(Hi) ≤ 2(n− 1)− 1

k

k∑
i=1

g(Ti).

Taking into account that c(Wopt) ≥ n, we finally obtain from expression (2) and the above:

c(WA)

c(Wopt)
≤ 2(n− 1)− 1

k

∑k
i=1 g(Ti)

max{n, 2(n− 1)−∑k
i=1 g(Ti)}

≤ 2− 1

k
.

ut
Theorem 5. Connectivity is (2− 1

9(∆
2)−4(∆−1)

)-approximable for the unit cost interface case.

Proof. We make use of the following observation: if for some activation of two vertices u, v
we have that edge {u, v} is the only edge adjacent to u or v which uses some interface i in the
activation, then the contribution of such an edge to the overall cost of the activation is equal
to 2 (since interface i has to be activated by both u and v specifically for communication
along this edge). Let us build a graph P whose vertices are all three-vertex paths (u, v, w) in
G such that {u, v} ∈ E(G), {v, w} ∈ E(G), and u, v, w share at least one available interface,
and let two vertices of P be connected by an edge if the corresponding paths in G share
at least one vertex. By applying once more a standard spanning-tree-based argument, we
easily obtain that the cost of any, and thus also any optimal, interface activation Wopt can
be bounded from below as:

c(Wopt) ≥ max{n, 2(n− 1)− |V (P)|}. (3)

Now, consider an activation obtained using the following procedure:

4 From the optimality of Topt, it follows that each Ti does not contain isolated vertices, as otherwise, switching off
the corresponding interfaces would lead to a feasible cheapest solution.

9

1. Compute an independent set M ⊆ V (P) in graph P .
2. For all (u, v, w) ∈ M , activate the same shared interface for nodes u, v, w.
3. Complete the activation by activating one shared interface at the endpoint of at most

n− 1− 2|M | edges, so as to obtain connectivity.

The correctness of the construction in step (3) lies in the observation that after the completion
of step 2, the number of connected components in the already enabled communication graph
is at most n − 2|M | (since we have exactly |M | three-vertex paths and n − 3|M | isolated
vertices). The cost of the obtained activation is thus equal to at most

c(WA) ≤ 3|M |+ 2(n− 1− 2|M |) ≤ 2(n− 1)− |M |. (4)

It remains to be observed that in graph P we can find a sufficiently large independent
set. Indeed, using a (∆(P) + 1)-coloring based approach [4], we can find in polynomial time

an independent set M such that |M | ≥ |V (P)|
∆(P)+1

. By a simple local analysis of the possible

adjacency relations of three-vertex paths in G, we have ∆(P) ≤ 9
(

∆
2

)− 4(∆− 1)− 1, thus

|M | ≥ 1

9
(

∆
2

)− 4(∆− 1)
|V (P)|. (5)

Combining relations (3), (4), and (5), we finally reach the sought bound:

c(WA)

c(Wopt)
≤ 2− 1

9
(

∆
2

)− 4(∆− 1)
.

ut

Theorem 6. Connectivity is 4
3
-approximable for k = 2 in the unit cost interface case.

Proof. For any I ⊆ {1, 2}, let VI ⊆ V denote all those nodes whose set of available interfaces
is exactly I, giving the partition V = V{1}∪V{2}∪V{1,2}. We confine ourselves to considerations
of instances for which |V{1,2}| > 1

3
n, otherwise the sought approximation ratio can be trivially

achieved by activating all interfaces for all nodes of the graph. Without loss of generality
we may assume that |V{2}| ≤ |V{1}|, hence |V{2}| < 1

3
n. Let H1 be the induced subgraph of

G with vertex set V{1} ∪ V{1,2}, and let γ(H1) be the number of its connected components.
Again, without loss of generality we assume that each connected component of H1 contains
at least one node from V{1} (otherwise, all the nodes of this component can be treated as
if they belonged to V{2}). The proposed approximation algorithm consists of the following
steps:

1. Activate interface 1 for each node from V{1} ∪ V{1,2} and interface 2 for each node from
V{2}.

2. Activate interface 2 for at most |V{2}| + γ(H1) − 1 nodes from V{1,2} so as to establish
connectivity.

10

The details of step (2) require some comment. In fact, after completion of step (1) the
graph for which communication is already possible with the current activation has at most
|V{2}| + γ(H1) connected components: at most |V{2}| components within V{2} and exactly
γ(H1) connected components within V{1} ∪ V{1,2}. Thus, by enabling a connection on at
most |V{2}|+ γ(H1)− 1 further edges of the graph we can obtain connectivity with a single
connected component. These edges must connect some vertex from V{1,2} with some vertex
from V{2} (since for all other edges communication is already possible after step (1)); enabling
such an edge requires only the activation of interface 2 on the endpoint of the edge within
V{1,2}.

From the description of steps (1) and (2) of the algorithm we can immediately bound the
cost of activation of the obtained activation WA from above as follows:

c(WA) ≤ n + |V{2}|+ γ(H1)− 1 (6)

On the other hand, for any activation of interfaces, each node of the graph must activate at
least one interface; moreover, in each connected component C of H1 (with the exception of at
most one), there must exist a node with two active interfaces, so as to enable communication
between component C and the rest of the graph (observe that by assumption C contains a
vertex from V{1}, while all vertices adjacent to C, not belonging to C, belong to V{1}). Hence,
for any optimal activation Wopt we may write:

c(Wopt) ≥ n + γ(H1)− 1 (7)

Combining expressions (6) and (7) we eventually obtain the sought ratio:

c(WA)

c(Wopt)
≤ n + |V{2}|+ γ(H1)− 1

n + γ(H1)− 1
≤ 1 +

|V{2}|
n + γ(H1)− 1

≤ 1 +
|V{2}|

n
<

4

3
.

ut
The analysis of the approximation ratio for the above algorithm is tight (for the case |V{1,2}| >
1
3
n). Consider for example the class of instances of Connectivity shown in Fig. 2. For some

l

l+1

{1,2} {1,2} {1,2}

{2} {2} {2}

{1}{1}{1} {1} {1,2}

l+1

Fig. 2. Example of a worst-case instance for the algorithm from Theorem 6

integer l ≥ 1, we have n = 3l + 2, |V{2}| = l, and |V{1,2}| = |V{1}| = l + 1. An optimal
solution requires the activation of interface 2 for all nodes from V{2} and V{1,2}, and interface
1 for all nodes from V{1} and exactly one adjacent node from V{1,2}, hence its cost is 3l + 3.
The considered approximation algorithm will activate all the available interfaces, except for
the rightmost node from V{1,2}, obtaining a solution with cost 4l + 2. Thus the obtained
approximation ratio is arbitrarily close to 4

3
.

11

2.3 Particular Graph Topologies

In this section we show how Connectivity behaves with respect to particular graph classes
such as graphs of bounded treewidth and complete graphs.

Graphs of Bounded Treewidth. When the input graph G is a tree, connections need to be
established along all edges of G, hence Connectivity is equivalent to the Cost Minimisation in
Multi-Interface Networks problem previously studied in [12]. Since such a problem is known
to be hard even for trees, Connectivity also remains APX -hard for trees when the value of
k is unbounded, even in the unit cost interface case.

When k is bounded, the locality of the Connectivity optimisation criterion makes it pos-
sible to apply a dynamic programming technique described by Bodlaender [3] to solve Con-
nectivity optimally and in polynomial time for the class of graphs with bounded treewidth,
which includes trees, outerplanar graphs, and series-parallel graphs. (For the details of for-
malising the connectivity condition in such an approach, cf. e.g. the LCC-formulation for
the Degree-bounded Connected Subgraph problem in [3].)

Corollary 2. For any constant t ∈ N+, Connectivity can be optimally solved in polynomial
time for graphs of treewidth t.

In particular, when t = 1 (i.e. graph G is a tree), such an approach provides an optimal
solution to bounded Connectivity in O(n) time.

Complete Graphs. When the input graph G is complete, clearly the 2-approximation in
general and the (2− 1

k
)-approximation for the unit cost interface case still hold, but we can

provide a (C(1+ k
n
))-approximation algorithm with C being the ratio between the costs cmax

and cmin of the most expensive and the cheapest available interfaces among G, respectively.
In the unit cost interface case, C = 1. The algorithm simply activates all the edges from
a chosen source to all the other nodes by means of the cheapest available interfaces for
each edge. By definition, such connections are available, i.e., all the nodes share at least
one interface with the source. This is clearly a solution to Connectivity since it induces a
star graph from the source to all the other nodes of G. The sought approximation ratio
guaranteed by this algorithm is shown by observing that, in general, in the constructed
solution we might activate up to n+k interfaces of cost cmax, whereas the optimum solution
might find a spanning tree by activating n interfaces of cost cmin. It follows that:

(n + k)cmax

ncmin

< C

(
1 +

k

n

)
.

For complete graphs, Connectivity remains APX -hard when k is unbounded even in the
unit cost interface case. This is immediately clear, since a unit-cost instance of Connectivity
in an arbitrary graph G of order n can be reduced to an instance of Connectivity in the
complete graph Kn: for each pair of nodes u, v which are not connected by an edge in G,
we add a new interface, available only for u and v. Any activation of interfaces in G is also

12

a valid activation for the modified instance in Kn; conversely, there does not exist in Kn an
activation of smaller cost than the one in G. Note that the assumption about unbounded
k is relevant (since we add a new interface number for potentially Θ(n2) edges); in fact,
for bounded k the Connectivity problem in complete graphs can be shown to admit an
O(n2)-time solution, similar to that presented for the Coverage problem considered in [12].

3 Cheapest Paths in Multi-Interface Networks

In this section, we present and study the Cheapest Path problem.

3.1 Definitions and Notation

As we considered in the previous section for defining Connectivity , let G = (V, E) be the
network graph always assumed to be simple, undirected and connected. The set of all the
available interfaces in v is denoted by W (v), and the cardinality of all the available and
distinct interfaces in G by k.

For each node v ∈ V , let WA(v) be the set of switched on (activated) interfaces. Clearly,
WA(v) ⊆ W (v) where W (v) is the same function of Definition 1.

Again, the cost of activating an interface for a node is assumed to be identical for all
nodes and given by cost function c : {1, . . . , k} → N. The cost of interface i is denoted as ci.

A path P in G from a given source node s to a target node v is denoted by a sequence of
couples: for each node vj ∈ P , besides node vj itself, the interface ij used to reach vj is given.
Namely, ij ∈ WA(vj). For example, the sequence P = 〈(s ≡ v0, 0), (v1, i1), . . . , (v ≡ vt, it)〉,
denotes a path P from s to v that moves on the nodes s, v1, . . . , vt−1, v and that reaches node
vj via interface ij, for 1 ≤ j ≤ t. Interface 0 is used to denote “no interface” since the source
is not reached by any other node in P . Conventionally, c0 = +∞. However, the source needs
to activate interface i1 in order to reach v1, hence the cost of activating the edge (s, v1) is
2c1. In general, the cost for activating the path P is

dP (v) =
t∑

j=1

cost ((vj−1, ij−1), (vj, ij))

where

cost ((vj−1, ij−1), (vj, ij)) =

{
2cij if ij−1 6= ij
cij otherwise

Let δ(v) be the minimum cost to activate a path from the source node s to node v, that
is, δ(v) = min{dP (v) : P is any path from s to v}. In addition, let the cheapest path CPv

from the source s to v be any path P from s to v such that dP (v) = δ(v). An i-path P
from s to v is a path from s to v that reaches v via interface i. Let dP (v, i) denote the cost
of the i-path P , whereas δ(v, i) denotes the minimum cost among all the i-paths from s to
v. Besides, let the cheapest i-path CPv,i from the source node s to node v be any i-path P
such that dP (v, i) = δ(v, i). Clearly, δ(v) = min{δ(v, i) : i ∈ W (v)}. Whenever clear by the
context we remove P from the notation dP .

13

We study the usually called Shortest Path problem but in the context of multi-interface
networks. Actually, in these networks, dealing with shortest paths is neither of practical nor
of theoretical interest. In fact, as shown above, the cost of an edge is not set up a priori as in
the standard problem, but depends on the activated interfaces at its endpoint. The Cheapest
Path (CP for short) problem can be formulated as follows.

Cheapest Path (CP)

Input : A graph G = (V, E), an allocation of available interfaces W : V → 2{1,...,k}

covering graph G, an interface cost function c : {1, . . . , k} → R+ and a source
node s ∈ V .

Solution : A set of n− 1 paths, one for each node but s. For each node v ∈ V \{s}, a path
P from s to v must be specified by a sequence of couples of the form (vj, ij),
with v0 = s, i0 = 0, vt = v and vj ∈ V , ij ∈ W (vj) for 1 ≤ j ≤ t with the
meaning that node vj is reached by means of interface ij.

Goal : For each node v ∈ V , find δ(v) along with a cheapest path CPv.

3.2 A Polynomial Time Algorithm

In order to better understand differences with the standard shortest path problem, let us
consider the simple network of Figure 3, and assume we want to solve the cheapest path
problem from source node a in the graph G, in a setting where the costs of interfaces 1, 2 and
3 are 1.5, 1.5 and 1, respectively. We find that δ(d) = 6 and CPd = 〈(a, 0), (e, 2), (f, 2), (d, 2)〉,

{1,2}

{1,3}{1}

{2,3} {3}

{2} {1,2,3}

f

a d

e

g
cb

Fig. 3. A sample network. In brackets for each node there are the corresponding available interfaces.

whereas δ(g) = 15
2

and CPg = 〈(a, 0), (b, 1), (c, 1), (d, 3), (g, 3)〉. However the supbapth of CPg

from a to d, that is 〈(a, 0), (b, 1), (c, 1), (d, 3)〉, has cost 13
2

> δ(d). Therefore, it turns out,
that the main property of the standard shortest path problem does not hold. Precisely:

Proposition 1. A subpath of a cheapest path is not necessarily a cheapest path itself.

While the sub-optimality property does not hold in general, it holds when we consider a
subpath of a cheapest path characterised not only by its final node, but also by the interface
used in its last hop.

14

Lemma 1. Given a graph G = (V, E) and a source node s ∈ V , let CPv be a cheapest path
from s to v that passes through node u and reaches u via interface i. Then, the i-subpath of
CPv from s to u is a cheapest i-path.

Proof. Let P denote the i-subpath of CPv from s to u. By contradiction, suppose that P
is not a cheapest i-path, and hence dP (u, i) > δ(u, i). Since a cheapest path CPu,i reaches
u via interface i, replacing P with CPu,i in CPv, a new path P ′ from s to v with cost
dP ′(v) = δ(v) − (dP (u, i) − δ(u, i)) < δ(v) is found, contradicting the definition of cheapest
path. ¤

As a consequence, the cost of a cheapest path from s to v can be easily determined when
the endpoints of the final edge of such a path and the interface used to reach v are given.

We can thus solve Cheapest Path on a graph G = (V, E) by making use of the standard

Dijkstra’s algorithm [7] on a slightly modified input instance
−→
G . The directed weighted

graph
−→
G = (V ′, E ′) with n′ = |V ′| and m′ = |E ′| is obtained from G as follows. Each node

v ∈ V is replaced by |W (v)| + 1 nodes: one node for each interface available at node v,
{vi : i ∈ |W (v)|}, and one extra node v′. We connect these nodes into a star with center v′

as follows: for all i ∈ W (v), edges (vi, v
′) have weight 0, whereas edges (v′, vi) have weight

ci. Moreover, each edge {u, v} ∈ E is replaced by |W (u) ∩ W (v)| pairs of edges: for each
i ∈ W (u) ∩ W (v), we define a new pair of arcs (ui, vi) and (vi, ui), each of weight ci. An
example of the performed transformation is shown in Fig. 4. Solving the Cheapest Path

0

2

c3

c1

c1

c2

c1

c1

c3

c3

c2

c3c1

c3

c2 c2
c2

c3

0

0

0

0

0

0

a’

e’

b’
c’

g’d’

f’

0 0
c

Fig. 4. The directed graph obtained from the graph of Figure 3 for applying Dijkstra’s algorithm.

problem with source s on G is equivalent to solve the shortest path tree problem on
−→
G with

source s′, and the cost of the path from the source to a generic node v ∈ V in G is equal to

dP (v′) in
−→
G .

15

Hence, Dijkstra’s algorithm can be applied on
−→
G , achieving a time complexity of O(m′+

n′ log n′) = O(km + kn log(kn)). For the unit cost interface case, each of the arcs of
−→
G has a

weight of either 0 or 1, and thus the time complexity reduces to O(m′ + n′) = O(k(m + n)).

4 Conclusion

We have considered two basic problems in the context of multi-interface networks. Namely,
the well-known minimum spanning tree determination has become the Connectivity prob-
lem, and the well-known shortest path tree determination has become the Cheapest Path
problem. For Connectivity we have shown complexity results in both general and restricted
settings. For most network topologies, Connectivity turns out to have fundamentally different
approximability and hardness characteristics than previously studied problems, such as the
Coverage problem which activates all possible connections in the network graph. Concerning
Cheapest Path, we have shown that the problem is polynomially solvable even though some
minor investigations were required. We have provided a suitable reduction for any input
graph which allows us to make use of the standard Dijkstra’s algorithm in order to solve the
problem.

The obtained results give new insight in the context of multi-interface networks. Many
other interesting problems related to multi-interface networks remain unexplored. The study
of other standard optimisation problems in this context is challenging for future work. An-
other interesting direction would be to explore such problems in a distributed setting.

Acknowledgement

The authors would like to thank the anonymous referees for many insightful comments.

References

1. P. Bahl, A. Adya, J. Padhye, and A. Walman. Reconsidering wireless systems with multiple radios. SIGCOMM
Comput. Commun. Rev., 34(5):39–46, 2004.

2. F. Barsi, A. Navarra, and M.C. Pinotti. Cheapest paths in multi-interface networks. In Proceedings of the
10th International Conference on Distributed Computing and Networking (ICDCN), Lecture Notes in Computer
Science. Springer-Verlag, 2009, to appear.

3. H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In Proceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), volume 317 of LNCS, pages 105–118,
1988.

4. R. L. Brooks. On coloring the nodes of a network. Proceedings of Cambridge Philosophical Society, 37:194–197,
1941.

5. M. Caporuscio, D. Charlet, V. Issarny, and A. Navarra. Energetic Performance of Service-oriented Multi-radio
Networks: Issues and Perspectives. In Proceedings of the 6th International Workshop on Software and Perfor-
mance (WOSP), pages 42–45. ACM Press, 2007.

6. D. Cavalcanti, H. Gossain, and D. Agrawal. Connectivity in multi-radio, multi-channel heterogeneous ad hoc
networks. In Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), pages 1322–1326. IEEE, 2005.

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill, 2001.

16

8. R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of
the 10th annual international conference on Mobile computing and networking (MobiCom), pages 114–128. ACM,
2004.

9. A. Faragó and S. Basagni. The effect of multi-radio nodes on network connectivity—a graph theoretic analysis.
In Proceedings of the IEEE International Workshop on Wireless Distributed Networks (WDM). IEEE, 2008.

10. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, 1979.

11. M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar hamiltonian circuit problem is NP-
complete. SIAM J. Comput, 5(4):704–714, 1976.

12. R. Klasing, A. Kosowski, and A. Navarra. Cost minimisation in wireless networks with bounded and unbounded
number of interfaces. to appear in Networks.

13. R. Klasing, A. Kosowski, and A. Navarra. Cost minimisation in multi-interface networks. In Proceedings of
the 1st EuroFGI International Conference on Network Control and Optimization (NET-COOP), volume 4465 of
Lecture Notes in Computer Science, pages 276–285. Springer-Verlag, 2007.

14. A. Kosowski and A. Navarra. Cost minimisation in unbounded multi-interface networks. In Proceedings of the
2nd PPAM Workshop on Scheduling for Parallel Computing (SPC), volume 4967 of Lecture Notes in Computer
Science, pages 1039–1047. Springer-Verlag, 2007.

15. A. Kosowski, A. Navarra, and M.C. Pinotti. Connectivity in Multi-Interface Networks. In Proceedings of the 4th
International Symposium on Trustworthy Global Computing (TGC), volume 5474 of Lecture Notes in Computer
Science, pages 157–170. Springer-Verlag, 2008.

17

