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Abstract

A concern about personal information confidentiality
typically arises when any desktop application commu-
nicates to the external network, for example, to its pro-
ducer’s server for obtaining software version updates.
We address this confidentiality concern of end users by
an approach called shadow execution. A key property of
shadow execution is that it allows applications to suc-
cessfully communicate over the network while disallow-
ing any information leaks. We describe the design and
implementation of this approach for Windows applica-
tions. Experiments with our prototype implementation
indicate that shadow execution allows applications to
execute without inhibiting any behaviors, has accept-
able performance overheads while preventing any infor-
mation leaks.

1 Introduction

There is a growing trend of deploying applications that
are available for download from code producers that dis-
tribute software over the Internet. These applications
are employed by end-users to perform daily tasks such
as document processing, email and multimedia content
playback. Typical examples of such software include
media players (e.g., RealPlayer), document processing
software (e.g., Acrobat), and web browser add-ons (e.g.,
Google Toolbar). These applications run with the priv-
ileges of the end-user and typically enjoy full access to
the user’s personal data and files.

Even if the origin of these applications is from rep-
utable sources, end-users typically have concerns about
the confidentiality of their private information when
dealing with these applications. When sensitive infor-
mation is provided to such software, it further increases
concern about confidentiality. There have been many
recent instances where such software have been found
leaking personal information of end users. Such infor-

mation is usually transmitted through the network to a
remote system, such as the producer’s site. The ob-
jectives of transmitting such sensitive information may
range from pure marketing uses related to learning con-
sumer habits to more malicious uses such as harvesting
credit card numbers.

To illustrate this further, consider a program such as
RealPlayer that plays music files. It is not unusual to
find that such a program periodically connects over the
network to an external server, possibly to check for an
updated version of the program (and if so, prompts the
user to download and use the updated version). When
the program tries to connect to the network, a personal
desktop firewall (such as ZoneAlarm) will prompt the
user and display a pop-up message whenever the music
player sends a message through the network to its code
producer. A genuine concern arises in the user’s mind
when program communicates over the Internet: Is this
application leaking any personal information stored in
the system?.

In this paper, we consider the problem of preventing
such information leaks from programs that reside in a
user’s desktop system and communicate over the net-
work. We consider this problem in the context of soft-
ware for Windows operating systems, which are used by
the majority of end users today. In Windows, applica-
tions are distributed without source code and end users
have no access to source code in order to easily control
or modify the functionality of an application.

When using such third party code, users are typi-
cally instructed to read the end-user-license agreement
(EULA) that is meant to indicate the software’s data har-
vesting practices. However, in practice, such EULAs are
long and loaded with legal jargon and are therefore dif-
ficult for the end users to comprehend. Hence, they are
ignored by end users while downloading and installing
third party software, exposing them to attacks on confi-
dentiality.

Our approach In this paper, we describe a new ap-
proach called shadow execution that successfully pre-



vents any leakage of sensitive information. Shadow exe-
cution consists of replacing the original application with
two copies of the same program that run the same code
but are initialized with different sets of inputs, and dif-
ferent restrictions are imposed. One copy, called the pri-
vate copy, is prevented from accessing the network, but
is supplied with the user’s confidential data so that the
application can be employed suitably to avail its func-
tionality. Another copy, called the public copy is sup-
plied with non-confidential “constant” inputs that do not
in any way pertain to the user, and is allowed to com-
municate over the network. The response obtained for
this program can then be shared with the private copy,
which can avail any network related functionality (such
as obtaining program updates) without any loss of con-
fidentiality.

While our basic technique is platform-neutral, the
specific implementation of shadow execution described
in this paper is for Windows operating systems, using
virtual machine technology. Our approach and imple-
mentation provide the following benefits:

• Application and Operating System Transparency. No
modifications to the application or operating system is
required in order to employ our prototype.

• Wide applicability. Our approach targets Windows
based systems,currently used by the majority of users,
where applications are distributed as binaries and end-
users do not have the mechanisms to easily understand
the intention of each application employed.

• Provable and robust protection. Our approach pro-
vides provable security guarantees, and our implemen-
tation provides robust prevention of confidential infor-
mation leaks by applications.

• Friendly to safe applications. Our approach does not
affect the functionality of applications that do not leak
sensitive information.

Paper Organization This paper is organized as follows:
In Section 2 we provide the basic approach and sketch
the formal framework behind our approach. Section 3
describes our implementation. Section 4 describes our
functional and performance evaluation of our implemen-
tation. Section 5 discusses related work, and in Sec-
tion 6, we conclude.

2 Basic Approach
We describe the basic theoretical ideas behind our ap-
proach in this section. Consider a program P that takes
some local inputs, computes and communicates with
servers on the network and terminates by generating

Figure 1. Our framework

some local outputs. We divide its local inputs as well as
local outputs into two classes: private and public. In ad-
dition to local inputs and outputs, it has message outputs
to and message inputs from the network. We classify
these message inputs and outputs also as public as these
are seen by the servers. Confidentiality requires that the
value of all the public outputs (local as well as network
outputs) be independent of the value of private (sensi-
tive) inputs. Note that private outputs (such as to some
trusted local files) of P may depend on private inputs.

2.1 Shadow Execution
To prevent dependence of public outputs on confidential
inputs, a first key idea behind our scheme is of using
“constant” (or fake) private inputs to the program. For
instance, if a user considers her phone number to be sen-
sitive, and would like to prevent a program from com-
municating this information on a network message or
generating it as a local public output , then she provides
a constant number (such as an arbitrary 10 digit num-
ber) as input to the program. When such constant inputs
replace a user’s sensitive data no information leaks that
concern the user will happen, because the program is
never provided any real sensitive information in the first
place. Such a program with constant inputs can there-
fore be allowed to communicate over the network with-
out any loss of confidentiality.

However, merely replacing the program inputs with
constants will not achieve the desired functionality.
Consider a word processing program that needs to op-
erate on a user’s (sensitive) file. In this case, if this sen-
sitive file is replaced by a file with dummy values, it
will address confidentiality. However, the program will
not be able to perform its job and the approach will not
be very useful. To address the above problem, we in-
troduce a second idea: run two versions of P , called



Ppublic, Pprivate in parallel, as shown in Figure 1.
Both these versions use the same actual public inputs,

but they differ in their private inputs. Ppublic is provided
constant values for its private input, while Pprivate is
provided the actual sensitive input. The public output
of the system is the public output of Ppublic, while its
private output is that of Pprivate.

Every message sent over the network by Pprivate is
blocked since this may contain private information. On
the other hand, messages sent by Ppublic are allowed,
i.e., transmitted. Note that we do not need to concern
ourselves any information leaks that resulting from al-
lowing Ppublic to communicate over the network. This
is because such output will anyway be only derived from
constant inputs, and this will not result in leakage of any
sensitive information.

However, every corresponding message received
from the network by Ppublic is also played to Pprivate.
This way, Pprivate will be able to receive messages such
as program updates even if it is not allowed to commu-
nicate. When both Ppublic and Pprivate terminate nor-
mally, the outputs of the system will be released; in this
case, the public output of Ppublic and the private output
of Pprivate are released. If one of Pprivate, Ppublic has
terminated and the other is involved in further commu-
nication, then the the system consults the user for fur-
ther course of action, such as abort application or ig-
nore network communication and continue. The result-
ing system, denoted as Q, is shown in Figure 1. We
can show that the following statements hold: (i) Q sat-
isfies the confidentiality property. (ii) If P satisfies the
confidentiality property, then both the public and private
outputs of Q are identical to the corresponding outputs
of Pprivate. (iii) If P does not satisfy the confidentiality
property, then the private outputs of Q are same as the
corresponding outputs of Pprivate, while the public out-
puts ofQmay differ from the public outputs of Pprivate.

2.2 Formal Reasoning of Correctness

In this section, we formally define the confidentiality
property for a program communicating on the network.
We show that our approach given above ensures confi-
dentiality. An input state of P is a pair 〈u, v〉 where u, v
are vectors, respectively, specifying the values of pub-
lic and private variables. Similarly an output state is a
pair of vectors specifying the values of output variables.
There is a special output state⊥ that denotes aborting or
non-termination of P .

The output values generated by P not only depend on
the input state, but also on the interactions of P over the
network. We assume that the messages sent or received

over the network, by P , are values from a domain D.
Each such message contains the address of it’s destina-
tion as well as origin.

An interaction σ of P over the net is a finite alter-
nating sequence O1, I1, ..., Om, Im of messages where,
for 1 ≤ i ≤ m, Oi, Ii are respectively the messages
sent and received by P . The semantics of the program
P is given by a set F (P ) of triples of the form (s, σ, t)
where s, t are input and output states respectively, and
σ is an interaction. We require that when P receives a
message, it should handle every possible message value
it receives. With this as the main motivation, we re-
quire F (P ) to satisfy the following property: for every
(s, σ, t) ∈ F (P ), for every proper prefix σ′ of σ end-
ing in an output message and for every message value
x ∈ D, there is a triple of the form (s, σ′′, t′) ∈ F (P )
such that (σ′, x) is a prefix of σ′′.

We say that P is deterministic if the output mes-
sages sent by P and the final output generated by it are
uniquely determined by the input state and the sequence
of input messages received by it up to that point. We
assume that programs we consider are deterministic.

We say that P satisfies confidentiality property if the
output messages and the final low security output gen-
erated by it, are independent of the high security input
value. Formally, we say that P satisfies the confidential-
ity property if, for every (〈u, v〉, σ, 〈u′, v′〉) in F (P ) and
for everyw ∈ D, the following condition (*) is satisfied:

(*) there exists some w′ ∈ D such that
(〈u,w〉, σ, 〈u′, w′〉) in F (P ).

We also define weak confidentiality property. We say
that P satisfies weak confidentiality if the output mes-
sage values generated by it are independent of low se-
curity input, and if it terminates normally then its low
security output is independent of its high security input.
Its formal definition is given by replacing condition (*)
by the weaker condition (**) as given below:

(**) either there exists some w′ ∈ D such that
(〈u,w〉, σ, 〈u′, w′〉) is in F (P ), or for some prefix
σ′ of σ, (〈u,w〉, σ′, ⊥) is in F (P ).

Now the following theorem states that system Q, con-
structed in our approach, satisfies weak confidentiality.
Further more, if P satisfies confidentiality then Q be-
haves as P . (The proof is not sketched due to space
limitations.)
Theorem: The system Q satisfies weak confidential-
ity property. Further more, if P satisfies confidentiality
property then Q is identical to P , i.e., F (Q) = F (P ).



2.3 Discussion

The above theorem assures that Q satisfies weak confi-
dentiality even when P does not satisfy confidentiality.
It however does not specify the conditions under which
the private output generated by Q is useful to the end
user. Let P∗ be the program P run with actual public
and private inputs, and is allowed to freely communi-
cate on the network. We would like to have the private
output ofQ to be same as that of P∗; recall that its public
output is same as that of Ppublic. Say that P∗ commu-
nicates once on the network, i.e., sends a message and
receives a reply. (The message sent by P∗ may depend
on its private input.) Suppose that the response message
received from the network does not depend on the pri-
vate input value of P∗. In this case, we can show that
the private output generated by Q is same as the private
output of P∗.

So, under the above condition, the user can con-
tinue to derive the benefit from the private outputs of Q.
We note that the above conditions is typically satisfied
for network messages that pertain to software updates,
where the response itself (the software code received) is
not derived from any private information, but the update
request message may contain private information. Our
experiments with software update requests of programs
lends strong evidence to this observation.

3 System Design & Implementation

We propose to apply the above approach to prevent in-
formation leaks from software running on Windows sys-
tems. Implementing the shadow execution approach re-
quires mainly addressing the following questions:

• Efficient Parallel Execution. How do we efficiently
execute public and private copies of the program P in
parallel, replicating the execution environment for the
two programs, while ensuring that all sensitive data in
the system remains isolated from the public copy?

• Providing simultaneous inputs. How do we simultane-
ously provide identical public inputs to both copies of
the program? Similarly, how do we provide asymmet-
ric (constant inputs vs. actual sensitive inputs) private
inputs, in a simultaneous fashion (for file reads, mouse
and keyboards inputs) to both copies?

• Monitoring public output. How do we monitor net-
work communication from program Ppublic and replay
it to Pprivate?

We address these issues in the following three sub-
sections.

3.1 Parallel Execution

A starting point for running two copies of the same ap-
plication is to run the two instances as processes in the
same Windows environment. The first instance will be
granted access to the private data stored on the system
but will be denied all network access. The second in-
stance of the same program (i.e., Ppublic) will be re-
stricted (through sandboxing) to prevent access to any
sensitive information.

However, the above solution has the following draw-
backs.

• When running two processes, sandboxing to provide
strong isolation of sensitive data from one copy, while
allowing access for the other, is difficult for Windows
systems. This is because sensitive information can not
only be present in the filesystem, but also in system
resources such as clipboard. Adopting sandboxing for
many such low level resources can be tedious.

• Another important issue is that many programs, such
as Mozilla Firefox, disallow two instances to be run on
the same machine. Avoiding this would require close
monitoring of application activity to inhibit this kind
of search in every possible way. Moreover, conflicts
between the two separate instances, on configuration
files or registry keys for instances, should be carefully
handled.

An alternative approach is to run the two instances
in separate environments through the use of virtual ma-
chines. Virtual machines provide strong isolation in a
natural way, and this separation can be leveraged to pro-
vide a “physical” shield between public and sensitive
data. Also, virtual machine support is gaining increasing
attention as a commoditized product; most mainstream
hardware and software platforms provide some form of
virtualization today, and the trend is on the rise.

Our approach is therefore to have Ppublic execute
on a virtual machine environment (called VMpublic).
Pprivate can be run on the same host platform, or in a
separate virtual machine. This design choice does not
affect confidentiality as Pprivate will not anyway be al-
lowed to communicate over the network. Let us call the
environment in which Pprivate runs as VMprivate.

Implementation In our approach, the virtual environ-
ment used to create and manage the two virtual ma-
chines is provided by VirtualBox [7], a general-purpose
full virtualizer for x86 hardware. The systems running
in the virtual machines are identical. To support simul-
taneous execution of the same process in both virtual
machines, the inputs to VMpublic is augmented as de-
scribed in the next section.



3.2 Providing simultaneous inputs

Recall from Figure 1 that both Ppublic and Pprivate need
to be provided identical public inputs and different pri-
vate inputs. Identical public inputs are required so that
the resulting system has the same behavior as P if con-
fidentiality is respected. Differing private inputs are
needed so that any network communication resulting
from use of “constant” inputs can be allowed without
the fear of loss of confidentiality.

We systematically divide the vectors that a program
may receive as inputs into three parts (1) input read from
the operating system resources such as file system and
registry (2) input obtained through user interaction such
as keyboard mouse input and (3) input from the network.
Furthermore, we require that both execution environ-
ments be identical except for any differences in sensitive
data.

Achieving identical initial environments. It is also
important that the initial environments for VMpublic and
VMprivate be the same. In our approach, the identi-
cal initial states of the two machines have been achieved
by cloning the virtual disk image of the first virtual en-
vironment. We used the VirtualBox tool VBoxManage
for this purpose, which performs a physical one-to-one
copy of a virtual disk (source) into another one (destina-
tion). The only difference between the two virtual disks
is their VirtualBox identification number (UUID). Sub-
sequently, these two virtual environments are allowed to
differ only in the contents of sensitive data as explained
below.

Providing Identical keyboard and mouse inputs.
When the user enters keyboard or mouse input that
is not sensitive, we need to relay that to VMpublic.
This requires establishing a communication protocol be-
tween the two environments. A key implementation
technique in our approach to facilitate such identical
and simultaneous public inputs is to employ the pop-
ular VNC protocol [15], as the protocol to communi-
cate keyboard and mouse events, or more generally, the
same desktop events to be shared by both VMpublic

and VMprivate. We will use VNC to allow same in-
puts (mouse and keyboard) to be replicated on both
VMprivate and VMpublic.

A typical VNC application (such as TightVNC [19]),
is made up of two components: a client, whose function
is to send to the remote machine (the server) any event
generated by the virtual desktop, displayed inside a win-
dow; and the server, whose aim is to“inject” into the
hosting system the events sent by the client, as a normal
Win32 Event.

For our implementation, to obtain two environments
executing in parallel, we augmented the original behav-
ior of TightVNC client in the following way. At first we
created a separate executable-DLL, in order to globally
“hook” [11] both the mouse and keyboard events. This
DLL was later loaded into the TightVNC application
(client-side), after the remote connection setup phase, so
that every mouse or keyboard event currently happening
in the system would also be redirected to this applica-
tion. In this way, the incoming events are processed by
Tight VNC application and sent to the remote machine.
The server component, of the TightVNC application, did
not require any enhancement. It relays all events from
the client to the Ppublic environment. By maintaining
the same resolution, and the same initial state of the two
virtual machines, the VNC module guarantees that the
two Windows desktops evolve almost concurrently.

A typical scenario of our implementation is the fol-
lowing: let us say the user is interacting directly with
VMprivate (running Pprivate); further, using the mouse
she double-clicks on the Firefox icon on the Desktop.
The same mouse gestures are replicated in VMpublic

so the browser starts up on both the machines. Let’s
suppose that the homepage is set to www.google.com;
the user now inputs a search-key through the keyboard
in the input field and presses Enter. Since the key-
board and mouse keystrokes are identically replicated on
VMpublic, now both machines will have an instance of
Firefox opened displaying the results of the performed
search.

Asymmetric private data flow
Providing user input asymmetry. So far we have ex-
plained our solution for the problem of providing public
inputs through the keyboard and mouse. However, the
user may choose to enter private data into an application.
As explained in Figure 1, we need to provide “constant”
data to the public machine, in place of the private data.
Since the privacy requirements vary by user, we will re-
quire some amount of involvement from the user to iden-
tify and group private information. Our preliminary im-
plementation in providing such asymmetry is to require
each user to create a “Portfolio” of private information
and corresponding “constant” information, similar to the
one presented in Table 2. On the private environment,
we will need to supply the real information of a user,
while on the public environment we will need to supply
fake private information. When a user wants to provide
any such private information to the application, she will
simply copy and paste the information from the Portfo-
lio into the applications files. Our implementation has a
specific clipboard handler for the portfolio; every time



a value is chosen for a private value, the corresponding
fake value is sent to the clipboard of the shadow virtual
machine. For instance, if the application requires a mail
address which the user considers private, the public en-
vironment will get the corresponding fake address.
Providing file asymmetry. Whenever the application
reads files that contain sensitive data, we will need to
replace such files by those that contain fake data, such
as a string of constant lengths. We have also augmented
our public virtual environment with a file interposition
mechanism in a dynamically linked library (DLL). This
DLL intercepts all I/O system calls (API) to files and
re-writes these calls to perform an action supplied by
our implementation. When writing to public files this
module has no effects. On the other hand, when writ-
ing on sensitive files, while on private environment the
WriteFile function will execute as normal, on VMpublic

(through our interposition) it will perform a dummy
write through the injection of a constant string of char-
acters. This way, we maintain “dummy” modifications
on VMpublic for every corresponding change in the sen-
sitive file in VMprivate.

The File Access Monitor is based on Detour [6], an
interposition library provided by Microsoft for instru-
menting arbitrary Win32 functions.

3.3 Monitoring network output

Our approach inhibits network access to VMprivate, the
one with private information, while it allows VMpublic

to communicate over the network. It replays any result-
ing communication to VMprivate.

Our approach for achieving this functionality in-
volves the use of a network proxy. Since most applica-
tions use HTTP protocol for receiving updates, our im-
plementation prototype focuses only on the HTTP proto-
col messages that are sent by the application. Our future
implementation will require employing similar proxies
to handle other network protocols. The rest of this sec-
tion focuses on the specifics of the HTTP proxy.

The purpose of our HTTP Proxy is to intercept re-
quests by both VMprivate and VMpublic, but only the
requests performed by VMpublic will actually reach the
remote server, while the ones of VMprivate, will be
“paused” at the proxy. When the remote server replies
to VMpublic, its response will be forwarded to both
VMprivate and VMpublic. To achieve these require-
ments, we modified jProxy, an HTTP proxy for our pro-
totype implementation.

Note that every HTTP connection can be identified
by the < request, response > pair. We implemented a
data cache inside jProxy, based on this pair. This cache

V Mprivate V Mpublic

Client sends Req to Proxy Client sends Req to Proxy
Proxy searching in Cache Proxy sends Req to Server

Proxy receives Res from Server
Proxy saves Res in Cache
and forwards it to Client

Proxy gets a hit in the Cache
Proxy sends Res to Client

Entry removed from Cache

Table 1. Steps executed by Proxy

is accessed by the working threads in the following man-
ner: when VMpublic obtains a response to a previous re-
quest, the thread managing the connection saves the pair
< request, response >. Since the two machines are
performing the same action, VMprivate, at some point,
will perform the same request of VMpublic. The request
of VMpublic, however, is not forwarded to the remote
server: instead, the response will be searched inside the
cache, for a fixed amount of time. If found, it will be sent
back to the application. In this way, VMprivate never
really accesses the external network, but, at the same, is
able to obtain valid responses to its requests.

Since the actions on the two environments are not
perfectly synchronized, two scenarios can occur:

1. VMpublic is the first one performing the request
and obtaining the response before VMprivate tries
to forward its request; in this case when VMprivate

searches in the cache it will find the correspond entry
in the cache and will fetch the content of the response.

2. VMprivate is the first one performing the request and
VMprivate has not send the request yet or it did not re-
ceive the response so far; in this scenario, VMprivate

will perform a fixed amount of trials reading the proxy
cache until it finds the entry that it was looking for.

A sketch of concurrent execution on the two virtual ma-
chines is presented in Table 1.

4 Results
4.1 Functional Evaluation
We present a functional evaluation of our approach.
These tests were performed to verify the effectiveness
of our implementation to enforce confidentiality, han-
dle different possible scenarios that may occur in a real
system, and guarantee the functionalities of applications
that preserve confidentiality. In evaluating applications,
we used the tool Wireshark [24], which is an auto-
matic network protocol analyzer for Windows and Unix



REAL FAKE

Country Italy Switzerland
Language Italian English(US)
Zip Code 21100 99999
Birth Date 1984 1956
Sex M F

Table 2. Part of the Portfolio used for the
testing phase

that allows live examination of data from a network.
We based the functional evaluation on the following list
of programs:

• Adobe Reader, a popular viewer application for PDF
files. the functionality that we tested was the update
process of the application. This is a test case in which
we observed no leakage of information.

• Apple Update, a tool that allow to search for updates
for all the multimedia applications (such as Quick-
Time and iTunes) produced by Apple. The analysis
of network traffic for this case shows a flow of only
public information about the system.

• Real Player, a well known multimedia player. This
third test case focused on the update process per-
formed by the application. This time we observed an
attempt to leak sensitive information about the user.

• Mozilla Firefox, a popular web-browser. This test case
is useful to show how our platform behaves when the
functionalities tested are different from a simple pro-
gram update. The purpose was to understand whether
our approach was capable of dealing with more com-
plex pairs of requests and responses, especially when
interacting with highly dynamical websites.

Table 2 shows a scratch of the portfolio of data used
for all these experiments. Let us now have a closer look
at the results obtained by the evaluation of these pro-
grams.

Adobe Reader By inspecting the packets exchanged by
the two instances of Adobe Reader during the update
process, we observed that there are no differences. Since
the program respects the user’s confidentiality in every
run we tested, its behavior is preserved by our approach.

Apple Update In this test case analyzing the network
traffic of the two instances, we noticed that the informa-
tion sent to the Apple server only included information
about the graphics controller of the system, and since
this happened to be the same in both the virtual ma-

Figure 2. Real Player Output - Real and Vir-
tual Machine

chines, no difference was reported, and the system was
successfully able to obtain all updates from Apple.com.

Real Player The results presented by this test case are
the most interesting ones. The output sent by RealPlayer
to the network is presented in Figure 2. A detailed anal-
ysis of the output showed that Real Player does leak
some information that could be considered confidential
by a user. The behavior that raises potential concern
has been pointed out by the presence of two different
strings contained in the output: In the first line of the
output transcript, at the end of the line, we highlight the
string “it21100” in VMprivate and the string “ch99999”
in VMpublic. The meaning of these two sequences of
characters is quite evident after a manual analysis: the
first two characters represent the country through which
the program was registered, while the following num-
bers are the ZIP code. This information was supplied
by the user when installing the program, using a Port-
folio of data such as the one presented before. The
pair <country, ZIP code> represents location informa-
tion for a user, and can be considered sensitive. Its
leakage over the network violates confidentiality. How-
ever, in our case, using the portfolio, the user supplied
fake country (“ch”) and zip code (“99999”) and this was
communicated to the external network, and the program
successfully obtained its updates.

The second difference is located in the last line of the
output: the word “localization” points out an attempt of
tracking the user. This could represent a form of “track-
ing” of a user, using well-known concept of “cookies”.
While multiple use tracking at an external site is not
completely in our system’s control, the effect can be mit-
igated by sending a different fake localization value that
is unique for each instance.

Mozilla Firefox As remarked before, we ran this test case



in order to see how the platform works when network
traffic comes into play. We tested several highly dy-
namic websites: sites as Google Maps use lots of dy-
namically loaded content, in order to provide an easier
interface to the user. This eventually results in a con-
tinuous exchange of information between the client and
the server, “stressing” the HTTP cache. Moreover we
wanted to ensure that, even when loading a page con-
taining a huge number of advertisement banners, the
user would still be able to access the partial content of
the page in which he/ she is interested, within an accept-
able time.

Browsing tests performed on our system demon-
strated an overall smooth and acceptable behavior of the
platform: most of the pages were correctly loaded, with
full content displayed, include highly interactive sites
such as Google Maps and YouTube. The only exception
were those sites containing banners or other types of ad-
vertisements, that contained random strings, on which
VMprivate times out after search.

4.2 Performance evaluation

In order to see how our prototype impacts on the overall
performance of the system, we took measurements re-
garding the execution time of the applications mentioned
in the previous subsection. Once again we used the tool
Wireshark to measure at packet level the total amount
of time that the network communication requires, from
the beginning of the first request to the time when the
last response arrives.
In particular, four different loading times have been
measured and two percentages have also been calcu-
lated, to compare the overheads introduced by our ap-
proach.
Loading Time w/o Shadow Execution (LTWS) The
full loading time of a page, without the use of our sys-
tem.
Loading Time in VM public (LTVMPUB) The full
loading time of a page within the VMpublic.
Loading Time in VM private (LTVMPRI) The full
loading time of a page within the VMprivate.
Loading Time for Usability (LTFU) The partial load-
ing time of a page within VMprivate, when using our
implementation: this is the time after which a user is
able to access the whole significant content of a page,
even if some parts of it (i.e., the banners not found by
the proxy) are not completely visible. This measure is
only meaningful for web browsing measurements, pre-
sented later in this section.
Overhead Percentage in VM private (OPVMPRI)
The loading time overhead induced by our implemen-

Application LTWS
(ms)

LTVMPUB
(ms)

LTVMPRI
(ms)

OPVMPRI

Adobe Reader 371 403 508 +36%
Apple Update 6470 7937 9527 +47%

Table 3. Application Performance

tation in VMprivate, w.r.t. LTWS, expressed in percent-
age.
Overhead Percentage For Usability (OPFU) The
loading time overhead induced by Porfolio in VM pri-
vate since usability, w.r.t. LTWS, expressed in percent-
age.

Applications updates overheads In Table 3 we can see a
summary of the timing details related to Adobe Reader
and Apple Update. Let us start by considering the third
and the fourth columns. Since the instance of the ap-
plication running in the virtual environment is the one
with direct access to the Internet, it is also the first one
receiving the response. The instance in the real desktop
receives the response with a delay of about 20%. This is
due to the fact that the proxy-thread serving the real ma-
chine has to inspect the cache and search for the correct
match before injecting it to the application in the real
environment.

Let us now have a look to the last column showing the
percentage overhead with respect to the execution of the
same application in a system without our system. These
numbers are acceptable considering the fact that in these
operations (searching for available updates) it is not so
crucial to have an immediate response from the network
as these requests operate in the background.

Web browsing overheads To measure the performances
of Mozilla Firefox, we used a small add-on specific for
this browser, called Load Time Analyzer [10]. This is a
simple and compact utility that allows users to measure
the amount of time taken by web pages to load inside
Firefox. Load Time Analyzer also produces graphs that
show the occurrence of events such as requests for the
page, images and scripts, along with events like the ex-
ecution of an on-load script: they enabled us to identify
when the significant components of a page have been
loaded and therefore the possibility to measure the so-
called “time for usability”, i.e., time from which a user
can start exploring the content of a page, even if not
all the elements are completely loaded (e.g., the adver-
tisements). Since this tool is a lightweight component
we believe that the performance is not influenced by the
add-on itself. To prevent cache-related effects, we also



Website LTWS
(ms)

LTVM
PUB(ms)

LTVM
PRI(ms)

OPVM
PRI

Maps.Google.com 2156 4110 5541 +157%
TransitChicago.com 2469 3565 4812 +94%

Altavista.com 891 1652 1392 +56%
Ansi.com 3364 7198 7461 +121%

Wordreference.com 451 1192 1382 +206%
Berkeley.edu 6259 7320 7721 +23%

CNN.com 10031 18840 103829
MSN.com 8031 12568 55250
Yahoo.com 3141 4186 52718

Table 4. Load Time of websites in Firefox

disabled the Firefox cache, setting it to zero megabytes.
The most important observation that can be made con-
cerning timings presented in Table 4 concerns the last
three rows for which the OPVMPRI is missing. For
websites like these, i.e. full of advertisements, what re-
ally matters is the “time for usability”. The OPFU for
the last the last three websites are respectively: 120%,
102% and 67%.
We also noted that some of the overhead was due to the
choice of using the VirtualBox VM, where the VM runs
as a regular process. Use of para-virtualized systems
such Xen would result in much lower overheads, but
would have required support from the operating system.
In contrast, our choice of VirtualBox was influenced by
our (usability) requirement of a “drop-in” solution that
provides operating system transparency, i.e., no modifi-
cations to the operating system.

5 Related Work

The goal of most works discussed in this section is to
enforce the non-interference property [5]. We only dis-
cuss some representative works closely related to ours.
A more comprehensive treatment of previous works in
this area can be found in the extensive survey [16] by
Sabelfeld and Myers.

Runtime approaches. The scripting language Perl
has a taint mode [22] that tracks data that arrives from
untrusted sources (such as the network). Perl also
supports implicit downgrading data from “tainted” to
“untainted” through pattern matching. Recently, sev-
eral works have proposed the use of taint-tracking to
defeat attacks by enforcing integrity policies on pro-
grams [13, 17, 25]. [26, 4] target spyware detection
through such taint tracking. However, most taint track-
ing approaches do not track all forms of implicit flows,

as explained here [2], and therefore may miss certain
confidential information leaks. A signature based ap-
proach [23] detects spyware by looking for footprints
in network traffic; however, this approach will fail for
spyware that uses implicit flows to communicate confi-
dential information.

There are a few approaches [21, 28, 20] that employ a
combination of static and dynamic methods to avoid the
limitations of pure dynamic approaches. In both these
works, the use of dynamic techniques is to expand the
scope of the static analysis based policy enforcement
mechanisms. However, all the above works can be im-
precise in reporting false alarms when in fact there is
no leakage of information, say when a program outputs
identical information in both the branches of a condition
that handles sensitive information.

Data sandboxing [9] partitions a program into private
and public zones based on the data handled, and enforces
different confidentiality policies on these zones. How-
ever, this technique is applicable only when the source
of the program is available. TightLip [27] is another re-
cent approach that is closely related to ours. TightLip
detects breaches due to confidentiality by using dopple-
ganger processes. While TightLip is designed to detect
confidentiality violations by trusted programs due to ac-
cess control errors, we detect confidentiality violations
of programs that may intentionally leak sensitive infor-
mation. Another important difference is that we handle
threats to confidentiality in an operating system trans-
parent manner through the use of virtual machines and
isolated execution. This main benefit of our approach
makes it readily usable in Windows operating systems,
where threats to data confidentiality are numerous.

Languages for writing secure programs Myers
presents a language called Jif [12] that uses a typesys-
tem to aid the programmer to construct programs that
respect confidentiality. Flow Caml [14], developed by
Simonet and Pottier, is another realistic programming
language aimed at supporting information flow controls.
These approaches provide robust production, when the
producer of the software wants to develop programs that
respect confidentiality. They do not address concerns
about binary code, which is the typical mode of distri-
bution by content producers.

Theorem proving based approaches. In order to im-
prove over the precision offered by static analysis, Joshi
et al [8] (and more recently, Darvas et al. [3] and Barthe
et al. [1]) have proposed the use of theorem proving
techniques. This is done by characterizing information
flow as a safety problem (using a technique called self-
composition, summarized in a formulation by [18]) and



using theorem proving technology to certify programs
as safe. The downside of a theorem-proving based ap-
proach is that it is not fully automated and requires man-
ual intervention.

6 Conclusion

In this paper, we presented a solution for preventing in-
formation leaks pertaining to an end user’s confidential
information. Our solution works by the technique of
shadow execution, which runs two executable copies of
a program with a different set of inputs and prevents in-
formation leaks by construction. We implemented our
technique for Windows based applications, and evalu-
ated our system with several examples. The results from
our approach lead us to believe that our prototype makes
a significant step towards utilizing the power of com-
modity virtual machines for the purpose of protecting
end user data confidentiality.
Note The authors gratefully acknowledge the partial sup-
port of this research through their NSF grants (CNS-
0716584), (CNS-0551660) and (CCF-0742686). The
first two authors are enrolled in the UIC-Politecnico di
Milano joint Masters program.
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