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Abstract 

In this paper, we address the analysis and the state- 
feedback synthesis problems for linear parameter-varying 
(LPV) sampled-data control systems. We assume that the 
state-space matrices of the plant and the sampling inter- 
val depend on parameters that are measurable in real-time 
and vary in a compact set with bounded variation rates. 
We explore criteria such as the stability, the energy-to- 
energy gain (induced L2 norm) and the energy-tepeak 
gain (induced L2-to-Lm norm) of such sampled-data LPV 
systems using parameter-dependent Lyapunov functions. 
Based on these analysis results, the sampled-data state- 
feedback control synthesis problems are examined. Both 
analysis and synthesis conditions are formulated in terms 
of linear matrix inequalities (LMIs) that can be solved via 
efficient interior-point algorithms. 
Keywords. Parameter-varying systems; sampled-data 
systems; linear-matrix inequalities. 

Introduction 

The control of engineering systems often involves a 
continuous-time plant controlled using discrete-time me% 
surements via analog-tedigital (A/D) and digital-te 
analog (D/A) devices for interfacing. Sampled-data con- 
trol has recently received increased attention to address 
the analysis and feedback control synthesis for these sys- 
tems with guarantees for stability, performance and in- 
tersample behavior [3],[5],[6],[8]. To this end, H 2 ,  Hw 
and 1' control methodologies have been developed in a 
sampled-data framework using lifting techniques to asso- 
ciate a time-invariant discrete-time system with infinite- 
dimensional input/output spaces to the initial sampled- 
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data one, such that system induced norms are preserved. 
In this work, the analysis and state-feedback control 

synthesis problems for linear parameter-varying (LPV) 
sampled-data systems are examined. The LPV systems 
theory [1],[2],[10],[11],[16] has been motivated by the gain- 
scheduling approach for control of linear and nonlinear sys- 
tems [12]. It provides a systematic methodology to design 
parameter-dependent controllers that guarantee stability 
and performance specifications using computationally ef- 
ficient linear matrix inequality (LMI) optimization tools. 
Hence, in our work, we assume that the state-space matri- 
ces of the sampled-data system and the sampling interval 
depend on system parameters that are available for mea- 
surement in real time at the sampling instances. The de- 
pendency of the sampling interval on measurable system 
parameters allows the treatment of systems with variable 
sampling rates, such as engines, manufacturing systems 
and telerobotic systems. For example, in an internal com- 
bustion engine, the sampling interval is variable and de- 
pends on the engine speed (event-based sampling). 

We seek to develop controllers that are scheduled 
based on the measurement of the parameters to guaran- 
tee stability and desired performance specifications. Two 
performance objectives are examined in this work: the 
energy-to-energy gain (induced L2 norm) and the energy- 
to-peak gain (induced L2-to-Lw norm). A lifting ap- 
proach [3], [5] is followed to transform the sampled-data 
system to a discrete-time system with infinite-dimensional 
input/output spaces. Due to the parameter dependence of 
the system matrices and the sampling interval, the lifted 
system is a discrete-time LPV system with infinite di- 
mensional input and output spaces. Parameter-dependent 
Lyapunov functions are utilized to develop analysis and 
state-feedback control synthesis results. The analysis and 
synthesis conditions are formulated in terms of parameter- 
dependent LMIs that can be discretized over the parameter 
space and solved using efficient interior point optimization 
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algorithms. For the special case where the parameter set 
is a singleton, our results provide analysis and synthesis 
conditions for standard (parameter-independent) sampled- 
data systems in terms of LMIs. 

Preliminaries 

Consider the following continuous-time linear parameter- 
varying (LPV) plant 

where t k  are sample instances, h is the sampling interval 
and R is a compact subset of W8. So, p ( t )  is assumed to be 
a bounded piecewise-constant vector-valued function with 
bounded variation rates. It is assumed that at the sam- 
pling instances tk, k = 1,2 , .  . . , the parameter vector p ( t )  
is measurable. We seek to design sampled-data control 
schemes that depend on the measurement of the parame- 
ter vector p ( t )  to guarantee stability and performance of 
the closed-loop system, see Figure 1. In this formulation, 

Figure 1: LPV sampled-data control system. 

the controller K(p) is a statefeedback control gain that 
is scheduled based on p ,  sh (p )  is an ideal sampler (with 
sampling interval h(p)), and Hh(p) is a zero-order hold 
(with sampling interval h@)). The sampling interval h 
is a bounded continuous h c t i o n  of the parameter vector 
p .  The sampling and hold operators sh(p )  and Hh(p) are 
assumed to be synchronized. We call Hh(p)K(p)Sh(p)  the 
sampled-data LPV controller. 

The lifting technique plays a key role in solving 
sampled-data control problems [3]. The sampled-data 
LPV control system in Figure 1 can be converted to the 
following discrete-time LPV control system: 

Notice that lifting techniques applied to sampled-data sys- 
tems with constant sampled-period result in a discrete- 
time LTI representation. In our case where the sampling 
interval is a function of the parameter vector p we obtain 
a discrete-time LPV representation. 

The lifting operator w h  provides an isometric m a p  
ping between the continuous and discrete normed spaces. 
In this paper, we will consider the signal spaces whose 
norms are the LP and 1P norms for p = 2 (energy of a 
signal) and 00 (peak value of a signal). The lifted system 
ph(p) has a statespace realization 

z h ( k  + 1) = Ah(P)Zh(k) + Bhl(p)wh(k)  + Bh2(p)uh(k) 

Zh(k) = c h l ( p ) z h ( k )  + Dhl l@)wh(k)  -k Dhl2(p)uh(k) 

Yh(k) = z h ( k )  

(2) 
where z h ( k )  = z ( t k ) ,  uh(k) = U(&), yh(k )  = Y(tk)r wh = 
w h ( p ) w ,  .Zh = wh(p) z .  The state-space matri- 
ces Ah( . ) ,  Bh2(.) are matrix valued functions, while 
Bhl ( ' ) ,  Chi(.), Dhl l ( ' )  and Dh12(') are operator valued. 
All these operators have finite rank. The system ph(p) 

is an infinite dimensional LPV system. In our approach, 
the control design problem for ph(p) will be transformed 
to a problem involving a finite-dimensional input/output 
plant that depends on the parameter vector p .  Then, an 
LPV control design scheme will be implemented for control 
synthesis. 

LPV Sampled-data Energy-to-Energy Gain 
Synthesis 

Consider the unforced LPV system 

w = A(p(t))z( t )  (3) 
wherep(.) E F;i and A(- )  is a bounded continuous function 
of p .  Since p ( . )  is a piecewise-constant function oft, so will 
be A ( 0 ) .  The system (3) has a lifted representation 

Zh(k + 1) = Ah(p(k ) ) zh (k )  (4) 
where Xh(k) is the kth component of the lifted state vector 

The following result provides conditions for asymp 
totic stability of the LPV system (3) in terms of the lifted 
system (4). 

and Ah@)  = exp(h(p)A). 
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Theorem 1 Consider the unforced LPV system (3) and 
Ah@) defined in (4). If there exists a bounded continuous 
matrix function Q(P) > 0, such that 

A'h(P)Q(P)Ah(P) - &(P + q)  < 0 (5) 

for allp E R, p+q E R and Iqil 5 vi, then the system (3) 
is asymptotically stable, that is, the solution .(e) converges 
to zero as t --t 00 for all p(.) E PR. 

Proof. Omitted.. 
If the assumptions of Theorem 1 are satisfied, 

we will say that the LPV system is sampled-data 
parameter-dependent quadratically stable (or SDPDQ sta- 
ble). Hence, SDPDQ stability implies asymptotic stability 
for the unforced LPV system in (3). Here we consider the 
matrix function Q in an &e form 

8 

Qb) = Qo + C p i Q i  
i=l 

where Qi,  i = 0,1, - 
trix function is continuous and bounded for p E R. 

Corollary 2 Consider the unforced LPV system (3) and 
Ah@) defined in (4). If there exists an afine function 
Q ( p )  = Qo + ELl piQi > 0, such that 

, s are constant matrices. This ma- 

B 

A'h(P)Q(P)Ah(P) - &(PI - k(viQi) < 0 (6) 
i=l 

for all p E R, then the system (3) is SDPDQ stable. 

Remark 1 The notation EL1 &(-) in (6) is used to in- 
dicate that every combination of +(-) and -(-) should be 
included in the inequality. That is, the inequality (6) rep- 
resents 2' different combinations in the summation. 

To examine the energy-teenergy (induced L2 norm) 
problem, now consider the following input-output LPV 
system 

(7) = A(P(t))z(t) + B(P(t))w(t)  
z ( t )  = C b ( t ) ) W  + D(P(t))w(t)  

with p E PR. This system can be lifted to the following 
discretetime LPV representation 

zh(k  + 1)  = Ah(P(k))zh(k) -k Bhb(k) )Wh(k)  
Zh(k) = Ch(p(k))zh(k) + Dhb(k))Wh(k)  (8) 

where Wh(k) and Zh(k) are the kth components of the lifted 
hput/output signals, and the operators Bh and ch have 
finite rank. The following result provides conditions for the 
LPV system (7) to have energy-to-energy gain (induced L2 
norm) less that y in terms of the lifted system (8). 

Theorem 3 Consider the input-output LPV system in 
(7) with p E FZ and its lifted representation (8) with 
DiDh - y21 < 0. Then (7) is SDPDQ stable and has 
energy-to-energy gain less than y if there exists a bounded 
continuous matrix function Q(p) > 0, such that 

Ab(P)Q@)Ad(P) - Q(P + Q )  i- c A ( P ) c d ( P )  
%(P)Q(P)Ad (PI (9 )  Ab(P)Q(P)Bd(P) < 

%b)Q(P)Bd(P) - Y21 I 
[ 

where A&), B d ( P )  and c d ( P )  are matrix valued f u 7 W t i O n  
satisfying 

A d @ )  = Ah@) 
Bd(P)BA(P) = ?Bh(P) (T21 - Dib)Dhb)) - 'B i (P> 
cA(P)cd(P) = 'Y2Ci(P)(?I - Dh(P)Di(P))-'Ch(P) 

Bh(P)Di(P)(?I - Dh(P)Di(P))-lch(P) 

(10) 

f o r a l l p E R ,  p + q ~ R  a n d l q i l I v i , i = 1 , 2 , . - -  ,s. 

Proof: Omitted.. 
If the assumptions of Theorem 3 are satisfied, we will 

say that the LPV sampled-data system is SDPDQ stable 
and has energy-to-energy gain less than y. 

Remark 2 The condition DiDh-y21 < 0 can be checked 
by  matrix computation 151, and i f  it is true, the expressions 
in (IO) are well defined. Ch(') ,Bh(.) ,Dh(')  are operators 
but their compositions in the right-hand side of (10) are 
matrix valued for@edp. Then, B d ( - )  and c d ( ' )  can be ob- 
tained by a matrix factorization, for example, the Cholesky 
factorization. By gridding the parameter space R, the con- 
dition (9) can be tested via a finite dimensional LMI opti- 
mization. 

Corollary 4 Consider the input-output LPV system in 
(7) with p E F;I and its lifted representation (8) with 
DiDh - y21 < 0. Then (7) is SDPDQ stable and has 
energy-to-energy gain less than y i f  there exists an affine 
matrix function Q(P) = QO + piQi > 0, such that for 
all p E R 

Ab(P)Q(P)Ad(P) - &(PI - x:=1 f ( W i Q i )  + c;(P)Cdb) 
%(P)Q(P)Ad 03) 

Abb)Qb)Bdb) < 
%b)Q(P)Bd(P) - T21 1 

Consider the system (2), which has the same energy- 
to-energy gah as the system (1). w e  assume that yh(k) = 
Zh(k),  that is, the states are available at the sampling 
times for feedback. The LPV sampled-data energy-te 
energy control synthesis problem is to design a parameter 
varying controller K(p) with a lifted representation 
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to render the closed-loop system SDPDQ stable and to 
guarantee an energy-to-energy gain less than a given 
bound y. The sampled-data state-space synthesis problem 
can be converted to a discrete-time state-feedback LPV 
synthesis problem using the following result. 

Lemma 5 suppose Di11Dhll - y21 < 0. The state- 
feedback gain F(p) in (11) makes the sampled-data system 
(2) SDPDQ stable with energy-to-energy gain less than y 
if and only i f  the same state-feedback gain F(p) makes 
the following dismte-time system (12) PDQ stable with 
energy-to-energy gain less than y 

zd(k -k 1) = Ad(P)zd(k) 4- Bdi(P)Wd(k) 4- Bdz(P)Ud(k) 
Zd(k) = cdi(p)Xd(k) DdlZ(p)Ud(k) 

(12) 

with state-space matvices satisfying 

A d  
Bd2 

= Ah + BhlDi1(721 - DhllDill)-lchl 
= Bh2 + BhlD&(y21 - DhllDi11)-1Dh12 

BdlB21 = y2Bhl(y2I - D&lDhll)-lBil 

and the state-feedback controller is 

w(k) = F@(k))zd(w (13) 

Proof. Omitted.. 
For simplicity, we assume that Ddlp(p) has full col- 

umn rank for all p E R. Then the system can be expressed 
in a form where 

The following result provides the synthesis conditions for 
the energy-to-energy gain sampled-data LPV control prob- 
lem. 

Theorem 6 Suppose Dil1Dhl1 - y21 < 0. The state- 
feedback gain F(p) in (11) makes the system (2) SDPDQ 
stable with energy-to-energy gain less than y i f  and only if 
there exists a matrix function S(p) > 0, such that for all 

In  this case, the state-feedback gain is 

F03) = -[I + BA2(P)(S(P) - r-2wP)B21@))-1 
Bd2(PI -l [B:,(P)(S(P) - -r2Bdl OBL 03)r1 
A d @ )  + cd12(P)] (16) 

Proof. Omitted.. 

Remark 3 The state-feedback gain (16) is same as the 
static state feedback law in [l4] ( where a minus sign is 
missing) by letting S = P-l, where P is the solution of an 
algebraic Riccati equation in [ld]. 

Corollary 7 Suppose Dil1Dh1l - y21 < 0. The state- 
feedback gain F(p) in (11) makes the system (2) SDPDQ 
stable with energy-to-energy gain less than y i f  there exists 
an afine matrix function S(p) = So + piSi > 0, such 
that for all p E R, (14) and (15) hold, where S(p + q) is 
substituted by S(p)+C:==, &(U&). In  this case, the state- 
feedback gain is given by (16). 

LPV Sampled-data Energy-to-Peak Gain Problem 

Now we consider the energy-to-peak gain problem for the 
following LPV system 

i ( t )  = A(P(t))z(t) + B(P(t)Mt) 
4) = C(p( t ) ) z ( t )  (17) 

with p E PR. Note that the system (17) has no 
feedthrough term, otherwise this system will not have a 
finite energy-to-peak gain. Since the lifting operator also 
preserves the peak norm, the system (17) can be lifted to 

Zh(k + 1) = Ah(P(k))zh(k) Bh(P(k))%(k) (18) 

Note that Dh is nonzero even though there is no 
feedthrough term in the system (17). 

Theorem 8 Consider the input-output LPV system (17) 
with p E Fg and its li,fted form (18). The system (17) is 
SDPDQ stable and has an energy-to-peak gain less than or 
equal y i f  there exists a bounded wntinuous m a t h  fine- 
tion Q(p) > 0 such that 

Ad(P)Q(P)AL(P) - Q(P + q) Bd(PIB2(P) < 0 (19) 

zh(k) = Ch(p(k))zh(k) Dh(P(k))wh(k) 

CdT(p)Q(P)C&O - ?I < 0 (20) 

forTE [ O , h ( p ) ) , p ~ R , p + q € R ,  Iqil S v i , i = 1 , 2 , * . .  9 5 ,  

where A&), Bd(P), CdT (p, y) are matrix valued function 
satisfying 

A d @ )  = Ahb) 
Bd (PI BL (P)  = B h  @> Bi (PI 

(p )  CdT (P) = c,* ( I  - 7-20T (p)O,* (P))-' c' (PI 
(21) 

and cT(-), &(.) have the same definitions as ch(.), &(') 
by substituting h with T .  
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Proof. Omitted.. 
If the assumptions of Theorem 8 are satisfied, we will 

say that the LPV sampled-data system is SDPDQ stable 
and has energy-to-peak gain less than y. 

Next we consider the energy-to-peak gain sampled- 
data statefeedback control synthesis. We assume that Dll 
in the system (1) is zero. The controller is assumed to have 
the statefeedback parameter-varying form (11). 

Theorem 9 Suppose D:llDTll - y21 < 0. The state- 
feedback gain F(p) in (11) makes the system (1) SDPDQ 
stable with energy-to-energy gain less than 7 if and only if 
there exists a mat% function F(p) and a bounded contin- 
uous matkfvnction Q(p) > 0 such that 

and cTl(’), DTll(.) , DT12(*) have the same definitions os 
Chl(.),Dhll(.),Dh12(.) by substituting h with T .  If the 
Fnditions avx satisfied, the state-feedback gain is F(p) = 

Proof. Omitted.. 

F@)QO>) -l- 

Numerical Example 

Consider the problem of designing a sampled-data con- 
troller to control the following plant 

] 4 t )  
2sin(0.2t) 1.1 + sin(0.2t) 

-2.2 + sin(0.2t) -3.3 + sin(0.2t) 

] [ i [ ::: ] w(t)  + 1 j + sin(0.2t) 
2 sin(0.2t) 

q t )  = 

m = 0 0 + 4 t )  

We assume that the sine term in the above model corre- 
sponds to a plant parameter whose functional represen- 
tation is not known a priori, but it can be measured in 

real-time. Hence, we define p(t) = sin(0.2t), and the orig- 
inal system is formulated as an LPV system as follows 

= [  - 
+ [  

= [ :  
The parameter p(t) E [-l,l]. The sampling period h 
will be chosen to be a constant h = 0.5 for the proposed 
sampled-data scheme. Since Ilj(t)l 5 0.2, p(t) does not 
change significantly within one sampling period. We use 
Theorem 6 to design a sampled-data parameter-varying 
controller such that the closed-loop system is SDPDQ sta- 
ble and has an energy-to-energy gain less than a criteria 
y = 0.25. For simplicity, we consider S be a constant ma- 
trix and grid the parameter space using a 10 points grid. 
Solving the LMIs in Theorem 6, we get 

1 2.0656 -0.5938 
’= [ -0.5938 2.7369 

Given a unit rectangular disturbance w(t) = 1 (t E [0,5]), 
we simulate the closed-loop system behavior. The output 
z(t) is shown in Figure 2. 

For comparison, we also consider a conventional a p  
proach to design a continuous-time LPV controller for the 
continuous-time plant, then discretize the controller. For 
the same energy-to-energy criteria y = 0.25, we design a 
continuous-time LPV controller. The response is shown 
in Figure 3. Then, we discretize the controller for several 
sampling periods: h = 0.2,0.25,0.3. The response for the 
cases where h = 0.2 and 0.25 axe shown in Figures 4 and 
5. Notice that, when h 3 0.3, the response diverges. The 
above comparison shows the advantage of the proposed 
sample-data LPV control design scheme. 

Conclusion 

In this work, the analysis and state-feedback synthesis 
problems for linear parameter-varying sampled-data sys- 
tems have been examined. It is assumed that the system 
matrices and the sampling interval depend on system pa- 
rameters that are measurable in real-time. The stabiliza- 
tion, energy-to-energy gain and energy-to-peak gain prob- 
lems are considered. Using a lifting approach the analysis 
and synthesis problems are formulated as standard analy- 
sis and synthesis problems for an LPV discrete-time lifted 
system. The use of parameter-dependent Lyapunov func- 
tions provides LMI-based analysis and synthesis conditions 
that can be solved using efficient interior-point algorithms. 
The resulting discrete-time state-feedback controllers are 
scheduled based on the real-time measurement of the pa- 
rameters. A numerical example demonstrates the advan- 
tage of the proposed approach compared to the traditional 
continuous-time design along with discretization. 
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Figure 2: Sampled-data controller with h = 0.5 

Figure 3: Continuous LPV controller 
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Figure 4: Discretized controller with h = 0.2 
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Figure 5: Discretized controller with h = 0.25 
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