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Software pipelining technique is extensively used to exploit instruction-level parallelism of loops,
but also significantly expands the code size. For embedded systems with very limited on-chip mem-
ory resources, code size becomes one of the most important optimization concerns. This paper
presents the theoretical foundation of code size reduction for software-pipelined loops based on re-
timing concept. We propose a general Code-size REDuction technique (CRED) for various kinds of
processors. Our CRED algorithms integrate the code size reduction with software pipelining. The
experimental results show the effectiveness of the CRED technique on both code size reduction and
code size/performance trade-off space exploration.
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1. INTRODUCTION

Software pipelining is extensively used to exploit instruction level parallelism
in loops [Chao and Sha 1995, 1997; Chao et al. 1997; Hennessy and Patterson
1995; Huff 1993; Kuck et al. 1981; Lam 1988; Rau 1994; Rau and Glaeser 1981;
Rau and Fisher 1993; Rau et al. 1992]. Although this performance optimiza-
tion technique helps to achieve a compact schedule, it expands the total code
size by introducing prologue and epilogue sections, that is, the codes executed
before entering and after leaving the new loop body. Furthermore, the size of
prologue and epilogue grows proportionally as more iterations of the loop get
overlapped in the pipeline [Rau et al. 1992]. For embedded processors with very
limited on-chip memory resources, the code size expansion becomes a major
concern. Consequently, making trade-off between code size and performance
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Fig. 1. (a) The original loop. (b) The loop after applying software pipelining.

Fig. 2. (a) Execution record of the original loop. (b) Execution record of the software-pipelined
loop.

for software-pipelined applications becomes an important task for compilers
targeting at embedded systems [Araujo et al. 1995; Lanneer et al. 1995; Texas
Instruments, Inc. 2001a, 2001b].

A simple for loop and its code after applying software pipelining are shown
in Figures 1(a) and 1(b). The loop schedule length is reduced from four control
steps to one control step for software-pipelined loop. However, the code size
of software-pipelined loop is three times larger than the original code size.
Figures 2(a) and 2(b) show the execution records of the original loop and the
software-pipelined loop, respectively. In this paper, code size is defined as the
number of basic instructions of the compiled code.

Some ad hoc code size control techniques were used to reduce the pro-
logue/ epilogue produced by software pipelining. For example, code-collapsing
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technique is developed for TI’s TMS320C6000 processors [Granston et al. 2001].
However, the effectiveness of their techniques cannot be guaranteed and quite
limited. Kernel-only code generation schema presented in Rau et al. [1992] can
only be applied to IA64 [Intel Corporation 2001]. It requires special architec-
tural support that is not found in DSP processors. There is no theoretical frame-
work presented in literature for the code size reduction of software-pipelined
loops.

In our research work, we study the underlying relationship between retiming
and software pipelining, and show that the size of code expansion is closely re-
lated to the retiming function. As a result, the code size of a software-pipelined
loop can be controlled by using only the retiming function. Based on this under-
standing, we present a Code-size REDuction (CRED) technique that attempts
to remove the code in prologue and epilogue by conditionally executing the loop
body. This code transformation technique can be generally applied to various
kinds of processors with or without conditional registers. Conditional register
is also called “predicate” register when it holds Boolean values, or “guard” reg-
ister. An instruction guarded by a conditional register is conditionally executed,
depending on the value in the conditional register. If it is “true,” the instruction
is executed. Otherwise, the instruction is disabled. We classify the processors
into five classes. Processor class 0 is the processors that do not have conditional
register and do not fully support conditional execution with predication, such
as Motorola/Agere’s StarCore [Motorola Digital DNA & Agere Systems 2001].
Processor class 1 is the processors that do not have conditional register but
support conditional execution with predication by using “condition code” bits in
the instruction, such as Intel’s StrongARM [Seal 2000]. Processor class 2 sup-
ports conditional execution with predicate registers, such as Philips’ TriMedia
[Philips Inc. 2000]. Each instruction can be guarded by a predicate. Processor
class 3 implements conditional registers with counters as in TI’s TMS320C6000
processors [Texas Instruments Inc. 2000]. Processor class 4 implements special-
ized hardware support for conditionally executing software-pipelined loops as
in IA64 [Intel Corporation 2001]. Our CRED technique can be applied to all
these five classes of processors and significantly reduce the code size.

Our contributions are

(1) Establish the theoretical foundation of code size reduction for software-
pipelined loops based on retiming concept (Sections 2 and 4),

(2) Design the CRED technique for achieving the minimal code size of software-
pipelined applications (Sections 2 and 5),

(3) Show that the CRED technique is general enough to be applied to any type
of processors (Section 3),

(4) Obtain good code size reduction with accurate count of resulting code sizes
for each class of processors (Theorem 4.6), and

(5) Explore the code size/performance trade-off space to generate the best
schedule length for a given code size requirement. (Sections 5.2, 5.3, and 6).

Our experimental results show the effectiveness of our techniques in reducing
the code size of a software-pipelined loop. For example, the software-pipelined
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Fig. 3. (a) A simple DFG. (b) The retimed DFG with r(A) = 1 and r(B) = 0.

code size of elliptic filter is 68. But it is significantly reduced to 38 after our
CRED technique is applied. The improvement of code sizes is ranged from
25.0% to 61.7% for our benchmarks experimented on processor class 3 (modified
TMS320 processor). We also conduct the experiments to explore the opportu-
nities in making code size/performance trade-off by using our algorithm. Our
code size reduction technique can be easily combined with some optimization
techniques considering memory constraints and data prefetching, such as those
in Wang et al. [2001], and Chen et al. [1998, 2000].

The rest of the paper is organized as follows: in Section 2, we introduce
necessary backgrounds related to CRED technique. In Section 3, we present
the application of CRED technique on various processors. Section 4 presents
the theoretical foundation of code size reduction for software pipelined loops.
Section 5 provides CRED algorithms. Section 6 presents the experimental
results. The last section, Section 7, concludes the paper.

2. BASIC PRINCIPLES

In this section, we provide an overview of the basic principles related to our
code size reduction technique. These include data flow graph, retiming, software
pipelining, and rotation scheduling. We demonstrate that retiming and software
pipelining are essentially the same concept. First of all, we briefly introduce the
data flow graph.

2.1 Data Flow Graph

A data flow graph (DFG) G = (V , E, d , t) is a node-weighted and edge-weighted
directed graph, where V is a set of computation nodes, E ⊆ V × V is a set of
edges, d is a function from E to a set of nonnegative integers, representing the
number of delays between any two nodes, and t is a function from V to a set of
positive integers, representing the computation time of each node.

Programs with loops can be represented by cyclic DFGs as shown in
Figure 3(a). An iteration is the execution of each node in V exactly once. Itera-
tions are identified by an index i starting from 1. Interiteration dependencies
are represented by edges with delays, which is indicated by the edges with bar
lines in the graph. In particular, an edge e(u → v) with delay count d (e) > 0
means that the computation of node v at j th iteration requires data produced
by node u at ( j − d (e))th iteration. The dependencies within the same itera-
tion are represented by edges without delay (d (e) = 0). A static schedule must
obey these intraiteration dependencies. The cycle period of a DFG is defined as
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Fig. 4. (a) A static schedule of original loop. (b) The pipelined loops.

the computation time of the longest zero-delay path, which corresponds to the
minimum schedule length when there is no resource constraint. We assume the
computation time of a node is 1 time unit in this paper. Thus, the cycle period
of the DFG in Figure 3(a) is 2.

2.2 Retiming and Software Pipelining

The retiming technique [Leiserson and Saxe 1991] can be applied on a data
flow graph to improve the cycle period by evenly distributing the delays in the
graph. The delays are moved around in the graph in the following way: a delay
is drawn from each of the incoming edges of v, and then added to each of the
outgoing edges of v, or vice versa. Note that the retiming technique preserves
data dependencies of the original DFG.

The retiming function r : V → Z is the number of delays moved through
node v ∈ V . Figure 3(b) shows the retimed DFG of Figure 3(a) with retiming
functions r(A) = 1, r(B) = 0. We use the normalized retiming function in
computing the expanded code size, which simply subtracts minv r(v) from r(v)
for every node v in V .

Consider a retimed DFG Gr = (V , E, dr , t) computed by retiming r. The
number of delays of any edge e(u → v) after retiming can be computed as
dr (e) = d (e)+ r(u)− r(v). For any legal retiming r, we have dr (e) ≥ 0 for every
edge, and the total number of delays remains constant for any cycle in the graph.

When a delay is pushed through node A to its outgoing edge as shown in
Figure 3(b), the actual effect on the schedule of the new DFG is that the ith
copy of A is shifted up and is executed with (i − 1)th copy of node B. Because
there is not dependency between node A and B in the new loop body, these two
nodes can be executed in parallel. The schedule length of the new loop body is
then reduced from two control steps to one control steps. This transformation
is illustrated in Figures 4(a) and (b).

In fact, every retiming operation corresponds to a software-pipelining oper-
ation. When one delay is pushed forward through a node u, every copy of this
node is moved up by one iteration, and the first copy of the node is shifted
out of the first iteration into the prologue. With retiming function r, we can
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Fig. 5. (a) A DFG of the program in Figure 1(a). (b) The retimed DFG for the program in Figure 1(b).

measure the size of prologue and epilogue. When r(v) delays are pushed for-
ward through node v, there are r(v) copies of node v appeared in the prologue.
The number of copies of a node in the epilogue can also be derived in a sim-
ilar way. If the maximum retiming value in the data flow graph is maxu r(u),
there are maxu r(u)− r(v) copies of node v appeared in the epilogue. For exam-
ple, Figure 5(a) shows the DFG of the code in Figure 1(a). Figure 5(b) shows
the retimed graph for software-pipelined loop in Figure 1(b) with r(A) = 3,
r(B) = r(C) = 2, r(D) = 1, and r(E) = 0. We can see that there are exactly
three copies of node A and two copies of node B and C in the prologue. Since the
maximum retiming value is 3, there is no copy of node A in epilogue, and there
is 3 − 2 = 1 copy of node B and C in epilogue. The numbers of copies of the
other nodes can also be obtained in a similar way.

From the retiming point of view, if there are k different retiming values, k
iterations are pipelined in the static schedule. That is, the pipeline depth is
k. In this paper, we also call the number of different retiming values k as the
software pipelining “degree.” The larger this value is, the deeper the pipeline
is, and the shorter the schedule length can be achieved.

2.3 Rotation Scheduling

Rotation scheduling is a flexible technique for scheduling cyclic DFGs with
resource constraints [Chao et al. 1997]. It produces a compact schedule iter-
atively. In each rotation phase, it implicitly applies retiming operations on a
set of nodes, then these nodes are rescheduled to obtain a software-pipelined
schedule. The effect of the retiming on a static schedule is that the nodes are
moved to a different iteration.

Figure 6(a) to Figure 8(b) illustrate the rotation scheduling progress on the
program in Figure 1(b). In the first rotation phase, node A is rotated and
rescheduled as shown in Figures 6(b) and (c). The effect on the schedule is
the same as pushing the first copy of node A into prologue and the last copy
of the other nodes into epilogue. Figure 7(a) to Figure 8(b) show the second
and the last rotation phases. The resulting schedule is optimal. The schedule
length is only one control step. The pipeline depth is four. The italic letters in
the schedule show how the second copy of the original loop body are pipelined
with other copies in a new iteration. In the process of rotation scheduling, the
state of rotation can be recorded by retiming functions. For example, the state
of the last rotation is recorded as r(A) = 3, r(B) = r(C) = 2, r(D) = 1, and
r(E) = 0.
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Fig. 6. (a) The original loop schedule. (b) The first phase rotation. (c) Rescheduling after rotation.

3. APPLICATION OF CRED TO VARIOUS PROCESSORS

In this section, we show that the CRED technique can be applied to any type
of processors for software-pipelined applications with code size constraints. We
use the five classes of processors introduced in Section 1 to illustrate that the
applicability of this technique is independent of architectures. We also show
that the code size is gradually reduced when the architectural support is in-
creased from processor class 0 to 4. While processor class 4 obtains the smallest
code size, it depends on the specialized hardware support for conditional execu-
tion of software-pipelined loops as in IA64. However, this kind of architectural
support has not been found in DSP processors. We propose a modified TMS320
processor for processor class 3, which is practical and efficient for implementing
CRED on DSP processors.

CRED technique uses the retiming function to control the execution order
of the computation nodes in a software-pipelined loop. The relative values are
stored in a counter to set the “lifetime” of the nodes with the same retiming
value. For node v with retiming value r(v), its counter is set as the maximum
retiming value minus the retiming value of node v, that is, p = maxu r(u)−r(v).
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Fig. 7. (a) The second phase rotation. (b) Rescheduling.

Fig. 8. (a) The third phase rotation. (b) The resulted pipeline schedule.

We also specify that the instruction is executed only when 0 ≥ p > −n. In other
words, the instruction is disabled when p > 0 or p ≤ −n, where n represents
the original loop counter. In the following, we use the software-pipelined loop
in Figure 1(b) to show the application of CRED technique on various processor
classes.

3.1 Processor Class 0

Processor class 0 does not have conditional register, and does not support condi-
tional execution with predication for all its instructions. For these processors,
the conditional execution defined by CRED can be directly translated to if–
then clauses. To implement CRED, each retiming value needs a counter and
a branch. Thus, computations for updating the counter and controlling the
branch need to be added in the loop. For processors in class 0, we can use condi-
tional branches and retiming function to eliminate all the code in prologue and
epilogue.

Figure 9(a) shows the code after removing prologue/epilogue of the code in
Figure 1(b). The registers p1, p2, p3, and p4 are used for four different retiming
values of nodes A, B and C, D as well as E, respectively. Each of them is initial-
ized to a different value depending on its retiming value, and is decreased by
one for each iteration. Note that the loop is now executed for n−3+3+3 = n+3

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



598 • Q. Zhuge et al.

Fig. 9. (a) The code after applying CRED on processor Class 0. (b) The new execution sequence.
(c) The reduced code size in memory.

times, since it first decreases three iterations by software pipelining, which is
maxu r(u) in this example, and then adds three iterations from prologue and
the other three from epilogue because of code size reduction. By doing so, the
computation of node A starts from the 1st iteration and stops at the nth itera-
tion, while the computations of nodes B and C start from the 2nd iteration and
stops at (n+1)th iteration, and so on. Figure 9(b) shows the execution sequence
of the conditional operations in our implementation when n = 5. The numbers
in parentheses are the values of the counters. Note that each iteration executes
only the static schedule of the loop body after applying CRED. Figure 9(c) illus-
trates the reduced code size for VLIW architecture with three adders and two
multipliers. The effect of the additional computations of branches and counters
on code size and performance will be discussed later.

3.2 Processor Class 1

Processor class 1 supports generalized predication. That is, all the instruc-
tions can be conditionally executed by checking “condition code” bits in the
instruction [Seal 2000]. This kind of architectural support for predication can
be found in ARM architecture. To implement the CRED technique on these
processors, the if–then branch can be converted to a sequence of predicated in-
structions in the compiled code, as shown in Figures 10(a) and (b). Note that
the branch in Figure 10(a) is equivalent to the branch in Figure 9(a). The in-
teresting thing in the compiled code is that the second compare instruction
(cmplt) is also predicated. The two compare instructions correctly set the value
of register p1 without involving the and operation. The instruction count of this
code is less than the compiled code of processor class 0 by two for the same
branch.
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Fig. 10. (a) A branch. (b) The compiled code in ARM.

Fig. 11. CRED on processor class 2.

3.3 Processor Class 2

For the class 2 processors that support conditional executions with predicate
registers, the if–then control branch can be removed. Instead, the computation
nodes with the same retiming values are guarded by a predicate. The Boolean
assignments of the predicate control the execution of these nodes. This mecha-
nism is called “guarding” [Philips Inc. 2000]. By using the predicate registers,
the performance penalty related to the branches, such as branch misprediction,
can be eliminated. The code size of a loop after performing CRED on processor
class 2 is the same as that on processor class 1. A part of the loop body after
applying CRED on processor class 2 is shown in Figure 11.

3.4 Processor Class 3

Processor class 3 implements the conditional registers with the functionality
of counters. The representative of this processor class is TI’s DSP processor
TMS320C6000. Figure 12 shows a portion of the new code for the program in
Figure 1(b). The prefix (p2) means the guarded instruction is executed when p2
is nonzero, while the prefix (!p2) indicates the instruction can only be executed
when p2 is zero [Granston et al. 2001; Texas Instruments Inc. 2000].

3.5 Modified TMS320 Processor

We propose an architecture similar to TMS320 to further reduce the inserted
instructions for implementing CRED. A new instruction is proposed to set the
initial value and boundary of a conditional register.

setp p1 = 3 : −n.
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Fig. 12. CRED on processor class 3.

Fig. 13. The code after totally removing prologue/epilogue on modified TMS320 processor.

This instruction sets the initial value of p1 to 3, and specifies that the guarded
instructions will be disabled when p1 > 0 or p1 ≤ −n. Figure 13 shows the code
after applying CRED on the modified TMS320 processor.

For a VLIW processor, the computations of conditional register can be easily
put into the available slots of an instruction word wherever possible after all
the guarded instructions are issued. These inserted instructions can also be ex-
ecuted in parallel with other instructions through software pipelining. In most
cases, code size reduction does not hurt the performance of an optimized loop.

The other option of CRED implementation can further reduce the initial-
ization part of the code. We only need to initialize one conditional register p1.
The other registers can be set up in the loop body by adding a value difference
to p1. For example, if p1 = 0 in initialization, we can set another conditional
register p2 = p1 + 1 in the loop body. Going further, we can even remove the
initialization instruction of p1, if the loop counter i is decreased by 1 in each
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Fig. 14. CRED on processor class 4.

iteration, and p1 can be set as a function of i in the loop body. However, this op-
tion introduces the dependencies among the computations of conditional regis-
ters, which increases the difficulty for generating a schedule without increasing
the schedule length. Therefore, we use the implementation in this paper, which
allows the computations of conditional registers to be scheduled more freely.

3.6 Processor Class 4

Processors in class 4, such as IA64, provide special-purpose hardware support
for conditional execution of software-pipelined loops [Intel Corporation 2001;
Rau et al. 1992]. The conditional register is implemented as a rotating register,
where each bit is a predicate. The rotating register is controlled by a set of
special loop control instructions, such as brtop. Each of these instructions is
actually a control logic updating the rotating register and the loop counter.
The operations in the control logic is implemented by hardware. To implement
CRED on this kind of processor, a 1-bit predicate in the rotating register is
used to guard the instructions with the same retiming value. Also, only one
loop control instruction, such as brtop, needs to be insert into the loop body.
The number of inserted instructions for performing CRED on processor class 4 is
the smallest among the four classes of processors; however, it needs specialized
hardware support that is not found in DSP processors. Figure 14 illustrates a
portion of code after removing prologue and epilogue on processor class 4. The
initialization phase includes setting the first predicate in the rotating register
and the other two counters (lc and ec) required by by the loop control instruction
[Intel Corporation 2001].

4. CODE SIZE REDUCTION THEOREMS

In this section, we present the theoretical foundation of code size reduction
based on retiming concept. It is a code transformation that attempts to remove
the code in prologue and epilogue, so that the code size requirement can be
satisfied. The theorems show the correctness of this code transformation.

THEOREM 4.1. Let Gr = 〈V , E, dr , t〉 be the retimed data flow graph of a loop
with retiming function r. The prologue can be correctly executed by

(1) Executing only the repeated loop body and
(2) Executing node u whose r(u) = k for k times starting from the (maxu r(u)−

k + 1)th iteration, ∀u ∈ V and k ≥ 0.
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PROOF. Suppose that there is an edge e(u → v) and retiming function r(u)
and r(v) for nodes u and v. Thus, there are r(u) copies of node u and r(v) copies
of node v in prologue. We show that if the dependency represented by e(u→ v)
cannot be preserved by executing the static schedule as stated in the theorem,
there must be at least one illegal retiming.

Part I. Edges with No Delay. Suppose that there is an edge e(u→ v) with
no delay before a retiming. Let ui denote a copy of node u in the ith iteration. If
ui is not executed before node vi by executing the static schedule after retiming,
there must be r(v) > r(u). That is, dr (e) = d (e)+r(u)−r(v) = 0+r(u)−r(v) < 0.
Hence, the corresponding retiming on r(v) is illegal.

Part II. Edges with Delays. Suppose that the delay count on edge (u→ v)
is j , and j > 0. This interiteration dependency defines that ui needs to
be executed before vi+ j . If this order cannot be preserved in static sched-
ule after retiming, there must be r(v)− r(u)> j . We have dr (e)=d (e)+
r(u)− r(v)= j + r(u)− r(v)< 0. This is also an illegal retiming.

Theorem 4.1 gives the correct execution sequence of prologue when we only
execute the static schedule. For example, if r(v) = 3 and maxu r(u) = 5, then
node v will be disabled in the first and the second iterations, and start to be
executed in the third iteration. A similar execution can be applied to the epi-
logue, except that the loop body needs to be executed for (maxu r(u)− k) times
in the last maxu r(u) iterations.

THEOREM 4.2. Let Gr = 〈V , E, dr , t〉 be the retimed data flow graph of a loop
with retiming function r. Let n be the number of iterations in the original loop.
The epilogue can be correctly executed by

(1) Executing only the repeated loop body and
(2) Executing node u ∈ V with retiming value r(u) = k for (maxu r(u)−k) times

in the last maxu r(u) iterations starting from the (n+ 1)th iteration, ∀u ∈ V
and k ≥ 0.

PROOF. The proof is similar to the proof of Theorem 4.1.

Theorems 4.1 and 4.2 establish the theoretical foundation for code size re-
duction of a software-pipelined loop. They indicate that the code in prologue or
epilogue can be removed by conditionally executing the schedule of loop body.

As we have presented in Section 3, conditional registers can be used to guard
the execution of instructions in a static schedule. Then, the prologue and epi-
logue can be totally removed. In the following theorem, we decide the relation-
ship between the number of conditional registers required for a total code size
reduction and the number of distinct retiming values.

THEOREM 4.3 (CRED-TOTAL). Let P be the number of available conditional
registers, and R the number of different retiming values in a software-pipelined
loop. If P ≥ R, then all the codes in prologue and epilogue can be removed.
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PROOF. From Theorems 4.1 and 4.2, we know that the nodes in the static
schedule need to be conditionally executed according to their retiming values.
Since the nodes with the same retiming value can be guarded by one conditional
register, it is clear that R conditional registers are needed to totally remove the
prologue and epilogue.

Theorem 4.3 actually defines the maximum software pipelining degree (the
number of distinct retiming values) allowed for obtaining a software-pipelined
loop without code size overhead in prologue and epilogue. For instance, if we
want to obtain a pipelined loop without code size overhead by using four con-
ditional registers, the maximum software pipelining degree performed on this
loop should be less than or equal to 4. That is, there are at most three iterations
in prologue and epilogue.

Since CRED technique uses retiming function to control the execution se-
quence of the nodes, it consumes less conditional registers than code-collapsing
method presented in Granston et al. [2001], which needs two conditional regis-
ters for the same computation node, one for removing the copy in prologue, the
other for epilogue.

For most DSP processors, the resource of conditional registers is very limited.
TI’s TMS320C6x, for example, can have up to six conditional registers [Texas
Instruments Inc. 2000]. For some deeply software-pipelined applications, we
may not have enough conditional registers to remove all the iterations in pro-
logue/epilogue. It is obvious that we can add branches to simulate the function
of conditional registers in the codes, but it introduces performance overhead.
The following theorem states that CRED technique can also be applied to re-
move a part of prologue and epilogue when there are insufficient conditional
registers. For example, suppose we have three different retiming values {0,
3, 4}. Originally, prologue and epilogue each contains codes of four iterations,
since the maximum retiming value is 4. In the following theorem, we show that
the innermost three iterations can be safely removed from both prologue and
epilogue with only two conditional registers. That is, the nodes with retiming
values 0 and 3 can be removed from prologue and epilogue.

THEOREM 4.4 (CRED-PARTIAL). Let P be the number of available conditional
registers. Let R be the number of different retiming values in a software-
pipelined loop, and rP be the Pth smallest retiming value. If P < R, then the
innermost rP iterations can be safely removed in both prologue and epilogue.

PROOF. The proof of this corollary follows directly from Theorems 4.1–
4.3.

For node u whose retiming value r(u) > rP , We can use the conditional
register of the nodes with retiming value rP to guard the node u. Consider
the pipelined schedule shown in Figure 8(b), if we have only three available
conditional registers, the last two iterations performed in the prologue and the
first two iterations performed in the epilogue can be removed. Since the largest
retiming value of the nodes whose r(v) ≤ rP is r(B) = r(C) = 2, the initial value
of the conditional register is set to 2 − r(v). Figure 15(a) shows the loop after
applying CRED-Partial on modified TMS320 processor. Figure 15(b) shows the
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Fig. 15. (a) The code after reducing part of prologue and epilogue on modified TMS320 processor.
(b) The execution sequence after applying CRED-Partial. (c) Reduced code size in memory.

execution sequence. After this reduction, there are only the first iteration with
one node A remaining in the prologue and the last iteration with node E left in
the epilogue. Figure 15(c) illustrates the reduced code size for a VLIW processor.
In case that the innermost iterations have the most instructions of prologue and
epilogue, CRED-Partial can be used to obtain smaller code size effectively. More
importantly, Theorem 4.4 can be used in design process to explore the trade-off
space of code size and software pipeline depth. The details of the algorithm will
be presented in Section 5.2.

Based on the understanding of underlying relationship between retiming
function and code size expansion for software-pipelined loops, we can accurately
compute the expanded code size after software pipelining and the code size after
applying CRED-Total on all five processor classes. In the following theorems,
the code size is measured by the number of instructions in the compiled code.

THEOREM 4.5. Given the retimed DFG Gr = 〈V , E, dr , t〉 of a software-
pipelined loop Q. Let maxu r(u) be the maximum retiming value of Gr. The
number of instructions in Q is N = (maxu r(u)+ 1) ∗ |V | .

PROOF. For node v with retiming value r(v), there are r(v) copies of node v in
prologue, and maxu r(u)−r(v) copies of node v in epilogue. Thus, totally there are
maxu r(u) copies of node v out of the loop body for any node v ∈ V . It is obvious
that there is exactly one copy of node v in the loop body. Hence, the total number
of instructions in the software-pipelined loop is N = (maxu r(u)+ 1) ∗ |V |.

We have shown the applications of CRED-Total in Section 3. The following
theorem concludes the computation of the code size after applying CRED-Total
on various processors.
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THEOREM 4.6. Given the retimed DFG Gr = 〈V , E, dr , t〉 of a software-
pipelined loop Q. Let R be the number of different retiming values in Gr. Then,
the number of instructions in Q after applying CRED-total is

—processor class 0: Ncred = R ∗ 6+ |V |;
—processor class 1: Ncred = R ∗ 4+ |V |;
—processor class 2: Ncred = R ∗ 4+ |V |;
—processor class 3: Ncred = R ∗ 2+ |V |;
—processor class 4: Ncred = |V | + 4.

PROOF. It follows directly from the CRED technique discussed in
Section 3.

Consider a loop with 50 instructions, maxu r(u) = 1, and R = 2. The code size
of software-pipelined loop is expanded toN = 2 ∗50 = 100 instructions accord-
ing to Theorem 4.5. After applying CRED on processor class 3, the code size is
reduced to Ncred = 2 ∗ 2+ 50 = 54 instructions, according to Theorem 4.6. This
result is very impressive for DSP processors without specialized architectural
support as in IA64.

5. CODE SIZE REDUCTION ALGORITHMS

In this section, we present CRED algorithms. These algorithms can be used
to meet various code size reduction requests for removing prologue and epi-
logue totally, partially, or only removing iterations in either prologue or epi-
logue. Our CRED algorithms are integrated with rotation scheduling to control
the code size and software pipelining degree at the same time. The advantage
of integrating code size reduction with software pipelining is to achieve the
code size requirement with the least affect on schedule length. The algorithms
are illustrated for modified TMS320 processor. The CRED algorithms on the
other processor classes can be easily implemented according to our discussion
in Section 3.

5.1 Total Code Size Reduction Algorithm

Algorithm 5.1 is used to totally remove the prologue and epilogue, assum-
ing there are sufficient conditional registers. The code size reduction is per-
formed during rotation scheduling. Rotation scheduling generates a software-
pipelined schedule iteratively. Each rotation phase consists of four steps. The
first step does normal rotation scheduling. It tries to find a more compact sched-
ule by rotating the first row of the initial schedule and rescheduling the rotated
nodes. The second step assigns one conditional register to guard the nodes with
r(v) = 0, that is, the nodes not retimed. The third step detects the distinct
retiming values produced by rotation scheduling, and assigns one conditional
register for each retiming value. The loop counter and the number of consumed
conditional registers are updated at the same time. Note that the inserted
decrement instructions for updating conditional registers can also be rotated
and rescheduled in the rotation scheduling procedure. Thus, our algorithm can
produce the minimal code size with the least schedule length increment. For
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Fig. 16. (a) The differential equation solver. (b) The data flow graph.

a VLIW processor, these decrement instructions can be inserted into available
slots of the instruction word without increasing the schedule length in most
cases.

ALGORITHM 5.1 [CRED-TOTAL]
Input: Initial schedule S, DFG G = 〈V , E, d , t〉.
Output: New schedule Sopt , the number of conditional registers used j

and the new loop counter LC.
j ← 1;
for i = 0, . . . , S.length

/* Step 1: Rotate nodes. */
Q ← First Row(S);
Sopt ← ReSchedule(S, Q);
/* Step 2: Guard the nodes v with r(v) = 0. */
p0 ← maxu r(u), ∀u ∈ V ;
Insert the decrement instruction of p0;
/* Step 3: Guard the nodes with new retiming values. */
if there’s a new retiming value r(v)

pj ← maxu r(u)− r(v);
Insert the decrement instruction of pj ;
j ← j + 1;
LC← LC + 2;

endif
/* Step 4: Update the inserted nodes */
Update the decrement instructions in Sopt ;

endfor
return Sopt , j , LC;

We use the differential equation solver in Figure 16(a) as an example to
illustrate the procedure of Algorithm 5.1. The DFG is shown in Figure 16(b). We
use the boxes to represent additions and the circles to represent multiplications.

Figures 17 through 19(b) demonstrate the procedure of producing a com-
pact schedule with the minimal code size by applying Algorithm 5.1. The final
schedule on a processor with two multipliers and three adders has three control
steps as shown in Figure 19(b). It has the same schedule length as the optimal
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Fig. 17. Retiming node 10.

Fig. 18. (a) A global view of entire loop schedule for differential equation solver. (b) The first
rotation. (c) Rescheduling.

schedule. Only two conditional registers are used to completely remove the
prologue and epilogue.

5.2 Partial Code Size Reduction Algorithm

According to Theorem 4.4, CRED-Partial algorithm can be obtained after mak-
ing some modifications on Algorithm 5.1. Two more input data need to be added,
that is, the number of available conditional registers CR and the memory
code size requirement Wreq. For VLIW architecture, the code size requirement
is represented by the number of instruction words for a particular processor
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Fig. 19. (a) Retiming nodes 0,1,2,7, and 8. (b) The final schedule.

configuration. The output will also report the number of used conditional reg-
isters CRuse, the new memory code size Wnew and the largest retiming value of
the nodes guarded by conditional registers in CRED-Partial, rP . In Step 3, the
if statement will check if there are available registers. If so, CRuse is increased
by one in this step. If not, it guards all the other nodes with the last conditional
register that contains the largest retiming value rP as shown in Theorem 4.4.

/* Step 3: Guard the nodes with new retiming values. */
if there’s a new retiming value r(v) and CRuse < CR

pj ← maxu r(u)− r(v);
Insert the decrement instruction of pj ;
j ← j + 1;
LC← LC + 2;
CRuse ← CRuse + 1;

else
rP ← maxu r(u)− pj ;
Guard all the nodes v whose r(v) > rP
with conditional register pj ;

We also add Step 5 to output the shortest schedule satisfying the memory
code size requirement:

/* Step 5: Output the schedule satisfying memory code size requirement. */
if Wnew ≥ Wreq

Sopt = S;
Exit the loop;

CRED-Partial algorithm captures the code size and software pipeline depth
during software pipelining, and produces the shortest schedule satisfying the
code size requirement. Thus, the software pipelining degree can be controlled
by compiler when the program memory size is limited. In the traditional ap-
proach, when the resulting code size cannot be fit in the memory, the compiler
may give up the software pipelining, and use an unoptimized version of the code
[Granston et al. 2001; Rau et al. 1992]. By using CRED-Partial, the compiler
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Fig. 20. (a) The code after applying Prologue-only CRED on modified TMS320 processor. (b) The
execution sequence. (c) The reduced code size in memory.

is able to effectively explore the trade-off space between code size and soft-
ware pipeline depth. Figures 15(a)–(c) illustrate the results of partial code size
reduction.

5.3 Prologue/Epilogue Only Code Size Reduction Algorithm

In some cases, removing only prologue or epilogue, or part of prologue or epi-
logue can also achieve desired code size. Both CRED algorithms in Sections 5.1
and 5.2 can be modified to obtain prologue/epilogue-only CRED algorithm.

When only prologue is removed, the nodes with retiming value maxu r(u)
do not need to be guarded, since there is still a complete epilogue section left
in the program for the completion of the pipeline. Also, the loop counter reg-
ister can be removed. Similarly, when only the code in epilogue is removed,
the nodes with retiming value 0 do not need to be guarded. Note that the loop
counter for this algorithm is still n when removing only the prologue or the
epilogue. Similarly, CRED-Partial algorithm can be modified to remove part of
iterations in either prologue or epilogue. The new loop counter is n− i, where i
denotes the number of iterations left in prologue/epilogue after applying CRED.
Figure 20(a) illustrates the loop after applying prologue-only CRED on modified
TMS320 processor for the example shown in Figure 1(b). Figure 20(b) shows
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Table I. The Results of CRED-Total on Modified TMS320

Number of Code Size Schedule Length
Benchmarks Registers SP CRED % SP CRED
IIR 2 16 12 25.0 2 2
DEQ 2 22 15 31.8 3 3
All-pole 4 60 23 61.7 5 6
Elliptic 2 68 38 44.1 11 11
4-Stage 3 78 32 59.0 7 7
Voltera 2 54 31 42.6 9 9

the new execution sequence, and Figure 20(c) shows the reduced code size in
memory.

Comparing the prologue/epilogue-only CRED technique with the code col-
lapsing technique in Granston et al. [2001], it is interesting to see that the
effect of code collapsing is the same as prologue/epilogue-only CRED. That is,
code collapsing becomes a special case of CRED technique. Since CRED tech-
nique is based on the fundamental understanding of retiming and code size
expansion of software-pipelined loops, the CRED technique can be generally
applied to any software-pipelined application on any processor class.

6. EXPERIMENTAL RESULTS

We have experimented the CRED algorithms with a set of well-known bench-
marks on various processors, including IIR filter (IIR), differential equation
solver (DEQ), all-pole filter (All-Pole), fifth order elliptic filter (Elliptic), 4-stage
lattice filter (4-Stage), and voltera filter (Voltera). In most cases, we can use
only three or fewer conditional registers to completely remove all the iterations
in prologue and epilogue without incurring performance penalty. The code size
is measured as the number of instructions in a schedule including prologue,
loop body, and epilogue. The schedules are generated on simulated processors
with three adders and two multipliers, assuming the computation time of each
functional unit is one time unit. The experiments show the promising results
of code size improvement.

Table I displays the code size by applying CRED-Total algorithm
(Algorithm 5.1) on modified TMS320 processor. The second column shows the
number of conditional registers used to remove all the iterations performed in
prologue and epilogue, which is equivalent to the number of distinct retiming
values. The third column displays the code size of the software-pipelined loops.
The fourth column displays the code size after performing code size reduction.
The code size reduction percentage ranges from 25.0% to 61.7%, as shown in col-
umn “%”. The last two columns show the schedule lengths of the loop body before
and after applying code size reduction. In most cases, the schedule lengths are
the same as the software-pipelined schedule lengths, except for All-Pole filter,
whose schedule length is increased by one control step. The performance over-
head introduced by additional computation for code size reduction is very small.

Table II shows the code size results after applying CRED-Total technique on
five different types of processors, processor class 0 to 4, starting from column 4
in that order. The second column shows the code size of original loops, and the
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Table II. The Results of CRED-Total on Various Types of Processors

Various Types of Processors
Class 0 Class 1 Class 2 Class 3 Class 4

(StarCore) (StrongARM) (TriMedia) (Modified TMS) (IA64)
Benchmarks Original SP Size % Size % Size % Size % Size %
IIR 8 16 20 −25.0 16 0 16 0 12 25.0 12 25.0
DEQ 11 22 23 −4.5 19 13.6 19 13.6 15 31.8 15 31.8
All-pole 15 60 39 35.0 31 48.3 31 48.3 23 61.7 19 68.3
Elliptic 34 68 46 32.4 42 38.2 42 38.2 38 44.1 38 44.1
4-Stage 26 78 44 43.6 38 51.3 38 51.3 32 60.0 30 61.5
Voltera 27 54 39 27.8 35 35.2 35 35.2 31 42.6 31 42.6
Average 18.2 31.1 31.1 44.2 45.6

Improvement

Table III. Code Size Exploration for All-Pole Lattice Filter Using 2
Conditional Registers

Pipeline Schedule Number of Instruction Instruction Words
Depth Length SP CRED-P % SP CRED-P %

2 11 30 19 36.7 23 11 52.2
3 7 45 34 24.4 30 19 36.7
4 5 60 49 18.3 35 29 17.1

third column shows the code size of the expanded code after software pipelin-
ing. For the percentages of reduced code size shown in “%” columns, most of
them show the impressive improvement on the code size of pipelined loops. The
code size reduction percentages on processor classes 3 and 4 are greater than
the other two kinds of processors. Also, there are two negative percentages ap-
pearing in the column of processor class 0. These numbers indicate that the
computations of the conditional execution is larger than the number of reduced
instructions in prologue/epilogue. According to Theorems 4.5 and 4.6, the re-
duction can only be achieved when Ncred < N . Since Theorems 4.5 and 4.6 can
accurately compute the code size of a software-pipelined loop and the code size
after applying CRED, the designer can easily decide whether or not to apply
CRED in optimization. The experimental results also show that the smallest
code size can be achieved on processor class 4, which has specialized hardware
support and loop control instructions as in IA64. For DSP processors with-
out these special architectural features, the modified TMS320 architecture can
achieve the minimal code size. The experimental results show that the CRED
technique can be generally applied to various kinds of processors to reduce the
code size, and impressive results can be achieved in most cases, especially for
processor classes 3 and 4. The last row of the table shows the average code size
improvement for each processor class.

Given the number of available conditional registers, we can explore the trade-
off between code size and software pipeline depth by using the CRED-Partial
algorithm in Section 5.2. Table III illustrates several design choices in code
size/performance trade-off space with two conditional registers for All-pole fil-
ter. The column “Number Instruction #” shows the number of instructions for
the software-pipelined loop (field “SP”), the number of instructions for the loop
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after performing code size reduction (field “CRED-P”), and the reduction per-
centage (field “%”). The column “Instruction Words” shows the number of in-
struction words of the compiled code for the particular processor with three
adders and two multipliers. For example, for a pipelined depth of 2, we get a
schedule length of 11 control steps, and 23 instruction words, which can be
reduced to 11 instruction words with three conditional registers. When the
pipeline depth increases, the memory code size is increased and the schedule
length is decreased. By using the CRED technique, designers are able to gen-
erate a compact schedule with much smaller code size than that of a software-
pipelined loop, and explore the trade-offs between code size and performance
effectively.

7. CONCLUSION

Software pipelining is widely used to exploit instruction-level parallelism and to
improve the performance of applications in embedded systems. However, this
performance optimization technique expands the code size, which is a major
concern for embedded systems with very limited on-chip memory size. In this
paper, we developed the theoretical foundation for a general code size reduction
technique, CRED, based on the fundamental understanding of the relationship
among retiming, software pipelining, and code size expansion. It can be easily
integrated in a compiler to optimize the code size. We proposed the implementa-
tions of the CRED technique on various processor classes, with or without condi-
tional registers. Our CRED algorithms can control the code size during software
pipelining. The experimental results show that the CRED technique can be ef-
fectively applied on various types of processors while maintaining an optimized
performance in most cases. The CRED technique can also be used to explore
the trade-off space between code size and software pipeline depth efficiently.
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