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Abstract: By representing the input testing image as a sparse linear combination of the training samples via 

l1-norm minimization, sparse representation based classification (SRC) has shown promising results for face 

recognition (FR). Particularly, by introducing an identity occlusion dictionary to code the occluded portions 

of face images, SRC could lead to robust FR results against face occlusion. However, the l1-norm 

minimization and the high number of atoms in the identity occlusion dictionary make the SRC scheme 

computationally very expensive. In this paper, a Gabor feature based robust representation and classification 

(GRRC) scheme is proposed for robust FR. The use of Gabor features not only increases the discrimination 

power of face representation, but also allows us to compute a compact Gabor occlusion dictionary which has 

much less atoms than the identity occlusion dictionary. Furthermore, we show that with Gabor feature 

transformation, l2-norm could take place the role of l1-norm to regularize the coding coefficients, which 

reduces significantly the computational cost in coding occluded face images. Our extensive experiments on 

benchmark face databases, which have variations of lighting, expression, pose and occlusion, demonstrated 

the high effectiveness and efficiency of the proposed GRRC method.  
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1. Introduction 

Automatic face recognition (FR) is one of the most visible and challenging research topics in computer 

vision, machine learning and biometrics [11]. Although facial images have a high dimensionality, they 

usually lie in a lower dimensional subspaces or sub-manifolds. Therefore, subspace learning and manifold 

learning methods have been dominantly and successfully used in appearance based FR [1-9]. The classical 

Eigenface and Fisherface [1-4] algorithms consider only the global scatter of training samples and they fail 

to reveal the essential data structures nonlinearly embedded in high dimensional space. The manifold 

learning methods were proposed to overcome this limitation [5-6], and the representative manifold learning 

methods include locality preserving projection (LPP) [7], local discriminant embedding (LDE) [8], 

unsupervised discriminant projection (UDP) [9], etc. Besides, in order to better exploit the prior knowledge 

that face images from a single subject could construct a subspace, nearest subspace (NS) classifiers 

[19][35][36][37] are developed, which are usually superior to the simple nearest neighbor (NN) classifier. 

The success of manifold learning implies that the high dimensional face images can be sparsely 

represented or coded by the representative samples on the manifold. Recently an interesting work was 

reported by Wright et al. [10], where the sparse representation (SR) technique is employed for FR. In Wright 

et al.’s pioneer work, the training face images are used as the dictionary to code an input testing image as a 

sparse linear combination of them via l1-norm minimization. The SR based classification (SRC) of face 

images is conducted by evaluating which class of training samples could result in the minimal reconstruction 

error of the input testing image with the associated sparse coding coefficients. To make the l1-norm sparse 

coding computationally feasible, in general the dimensionality of the training and testing face images should 

be reduced, or a set of features could be extracted from the original image for SRC. In the case of FR 

without occlusion, Wright et al. [10] tested different types of features, including Eigenface [2], Randomface 

[10] and Fisherface [3], and they claimed that SRC is insensitive to feature types when the feature dimension 

is large enough. In the case of FR with occlusion/corruption, an occlusion dictionary was introduced in SRC 

to code the occluded/corrupted components [10]. Since the occluded face image can be viewed as a 

summation of non-occluded face image and the occlusion, with the sparsity constraint the non-occluded face 

part is expected to be sparsely coded by the training face dictionary only, while the occlusion part is 
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expected to be coded by the occlusion dictionary only. Consequently, the classification can be performed 

based on the reconstruction residuals using the coding coefficients over the training face dictionary. Such a 

scheme has shown to be effective in overcoming the problem of face occlusion.  

The success of SRC boosts the research of sparsity based FR, and many works have been consequently 

reported. Gao et al. [28] proposed the kernel sparse representation for FR and image classification, while FR 

with continuous occlusion and misalignment via sparse representation have been presented in [29][33][34]. 

Elhamifar et al. [30] discussed classification using structure sparse representation to exploit the block 

structure of the dictionary, and Yang et al. [31] proposed a robust sparse coding model with a maximum 

likelihood estimator like fidelity term. Moreover, learning a discriminative dictionary under the sparse 

representation framework for classification has also attracted much attention. Zhang and Li [40] introduced 

discrimination information into the algorithm of K-SVD [39] by learning a linear classifier; Jiang et al. [41] 

further enhanced dictionary’s discriminative ability by adding label consistent information. Very recently, 

Yang et al. [42] imposed Fisher discrimination criterion on the coding residuals and coefficients, and 

proposed a Fisher discrimination dictionary learning method. 

Although the SRC based FR scheme proposed in [10] is very creative and effective, there are two issues 

to be further addressed. First, the features of Eigenface, Randomface and Fisherface tested in [10] are all 

holistic features. Since in practice the number of training samples is often limited, such holistic features 

cannot effectively handle the variations of illumination, expression, pose and local deformations. The claim 

made in [10] that feature extraction is not so important to SRC actually holds only for holistic features. 

Second, the occlusion matrix proposed in [10] is an orthogonal matrix, such as the identify matrix, Fourier 

bases or Haar wavelet bases, etc. However, the number of atoms required in the orthogonal occlusion matrix 

is very high. For example, if the dimensionality of features used in SRC is 3000, then a 3000×3000 

occlusion matrix is needed. Such a big occlusion matrix makes the sparse coding process very 

computationally expensive, and even prohibitive. These two issues are not fully solved by the sparsity based 

FR improvers [28-34][40-42]. For instance, only holistic features are considered in [29-34][40-42], FR with 

occlusion is ignored in [28][32][33], and no occlusion dictionary is learned in [40-42]. 
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In our previous work [38], the Gabor features were adopted for SRC and a Gabor occlusion dictionary 

was learned under the sparse representation framework. Although the so-called Gabor-based SRC scheme 

improves much the accuracy and efficiency of original SRC, the l1-norm sparsity constraint on the coding 

coefficients still makes it time consuming. Very recently, Zhang et al. [32] showed that it is the collaborative 

representation mechanism (i.e., representing the query image collaboratively by samples from all the classes) 

but not the l1-norm sparsity constraint on coding coefficients that makes SRC effective for FR. In light of 

this finding, in this paper we propose a Gabor-feature based robust representation and classification (GRRC) 

scheme for FR, which will not only be robust to face occlusion but also have much higher computational 

efficiency than the previous methods such as Gabor-based SRC.  

The Gabor filter was first introduced by David Gabor in 1946 [14], and was later shown as models of 

simple cell receptive fields [15]. The Gabor filters, which could effectively extract the image local 

directional features on multiple scales, have been successfully and prevalently used in FR [16][17][18]. Very 

recently, Zhou et al. [47] proposed to combine the perceptual features by Gabor filtering with diffusion 

distance for FR; Du et al. [48] proposed to perform FR with non-uniform multilevel selection of Gabor 

features instead of the uniform down-sampling of Gabor features; a local Gabor based FR with improved 

accuracy by the selection of Gabor jets was presented in [49]; and multimodal FR using Gabor feature was 

presented in [50]. All of these methods lead to state-of-the-art results. The local Gabor features are less 

sensitive to variations of illumination, expression and poses than the holistic features such as Eigenface and 

Randomface [10]. In the proposed GRRC, the use of Gabor kernels will not only improve much the FR 

accuracy, it will also allow us to learn a compact occlusion dictionary to deal with face occlusions. 

Compared with the occlusion dictionary used in SRC, the number of atoms is significantly reduced (often 

with a ratio of 40:1 ~ 50:1 in our experiments) in the Gabor occlusion dictionary (GOD) used in GRRC. 

Particularly, it is found that the coding coefficients over the compact GOD can be regularized by l2-norm, 

instead of the l1-norm adopted in Gabor-based SRC [38]. This significantly reduces the computational cost 

in coding occluded face images. Our experiments on benchmark face databases clearly validate the 

performance of the proposed GRRC method. 
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The rest of the paper is organized as follows. Section 2 briefly reviews SRC, collaborative representation 

based classification (CRC) and Gabor filters. Section 3 presents the proposed GRRC algorithm. Section 4 

conducts experiments. Section 5 gives some discussions and Section 6 concludes the paper.  

Table 1 summarizes the abbreviations used throughout the paper. 

 

Table 1: Abbreviations used in this paper. 

Abbreviation Meaning 
FR Face Recognition 
GOD Gabor Occlusion Dictionary 
GRR Gabor-feature based Robust Representation 
GRRC Gabor-feature based Robust Representation based Classification 
GRRC_Lp GRRC with lp-norm regularization 
SRC Sparse Representation-based Classification 
CRC Collaborative Representation based Classification 

 

 

2. Related Work 

2.1. Sparse representation based classification (SRC) 

The sparse representation based classification (SRC) method was presented in [10] for robust face 

recognition (FR). Denote by ,1 ,2 ,[ , ,..., ] i

i

m n
i i i i n

×= ∈ℜA s s s  the set of training samples of the ith object class, 

where si,j, j=1,2,…,ni, is an m-dimensional vector stretched by the jth sample of the ith class. For a test sample 

0
m∈ℜy  from the ith class, intuitively, y0 could be well approximated by the linear combination of the 

samples within Ai, i.e., 0 , ,1
in

i j i j i ij
α

=
≈ =∑y s Aα , where ,1 ,2 ,[ , ,..., ] i

i

nT
i i i i nα α α= ∈ℜα  is the coding vector. 

Suppose we have K object classes, and let A=[ A1, A2,…, AK] be the concatenation of the n training samples 

from all the K classes, where n=n1+n2+…+ nK, then the linear representation of y0 can be written in terms of 

all training samples as y0≈Aα, where α=[α1;…,αi;…; αK]=[0,…,0, ,1 ,2 ,, ,...,
ii i i nα α α ,0,…,0]T.  

In SRC without occlusion, first y0 is sparsely coded on A via l1-minimization 

{ }2
0 2 1

ˆ arg min λ= − +α y Aα α α  (1)

where λ is a scalar constant. Then classification is made by 
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( ) { }0identity arg min i ie=y  (2)

where ( )0 2
ˆi i ie δ= −y A α , ( ) ( ) ( )1ˆ ˆ ˆ ˆ; ; ; ;i Kδ δ δ= ⎡ ⎤⎣ ⎦α α α α , and ( ) : inn

iδ ⋅ ℜ →ℜ  is the characteristic 

function which selects the coefficients associated with the ith class.  

In SRC with occlusion or corruption, the test sample y is rewritten as 

[ ]0 0 0 , e
e

⎡ ⎤
= + = + = =⎢ ⎥

⎣ ⎦
y y e A e A A B

α
α ω

α
 (3)

where [ ] ( ), em n n
e

× += ∈ℜB A A , and the clean face image y0 and the corruption error e0 have sparse 

representations over the training sample dictionary A and occlusion dictionary em n
e

×∈ℜA , respectively. In 

[10], the corruption dictionary Ae was set as an orthogonal matrix, such as identity matrix, Fourier bases, 

Haar wavelet bases, and so on. The sparse coding coefficient ω could be solved via l1-minimization like Eq. 

(1) and the classification is done via Eq. (3) with ( )
2i i i e ee δ= − −y A Aα α . 

 

2.2. Collaborative representation based classification (CRC) 

Though it was claimed in [10] that the l1-norm sparsity imposed on coding coefficient α in Eq. (1) is the key 

for the success of SRC, recently it has been shown in [32] that it is the collaborative representation (CR) 

mechanism, but not the l1-norm sparsity on α, that truly makes SRC effective for face classification. Using 

l2-norm to regularize α leads to similar FR results. The robustness to outliers in SRC actually comes from 

the use of l1-norm to model the coding error, i.e., ||αe||1. Without considering the robustness to outliers, the 

coding model of collaborative representation for classification (CRC) [32] is 

{ }2 2
1 0 2 2

ˆ arg min λ= − +y Aαα α α  (4)

The classification of CRC is performed by checking which class yields the minimal regularized coding error, 

which is similar to that of SRC. 

It is shown in [32] that CRC has very competing performance with SRC in FR without occlusion but with 

much faster speed. However, the standard CRC in Eq. (4) does not aim to deal with FR with occlusion. 

Compared to CRC [32] which has no occlusion dictionary, in this paper Gabor occlusion dictionary is learnt 
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to effectively handle occluded portions in facial images. In addition, the use of Gabor features instead of 

original image intensity also enhances much the discrimination of face representation. 

 

2.3. Gabor features 

The Gabor filters (kernels) with orientation μ and scale ν are defined as [17]:  

( ) ( )
2 2 2 2, ,

2

2, 2
, 2

k z ik zk
z e e eμ ν μ νσμ ν σ

μ νψ
σ

− −= −  (5)

where z=(x,y) denotes the pixel, ||.|| denotes the norm operator, and the wave vector kμ,ν is defined as 

,
ik k e μφ

μ ν ν=  with kν =kmax/f ν and 8μφ πμ= . kmax is the maximum frequency, and f is the spacing factor 

between kernels in the frequency domain. In addition, σ determines the ratio of the Gaussian window width 

to wavelength. 

Convolving image Img with a Gabor kernel ψμ,ν outputs ( ) ( ) ( ), ,G z Img z zμ ν μ νψ= ∗ , where “*” denotes 

the convolution operator. The complex Gabor filtering coefficient Gμ,ν(z) can be rewritten as 

( ) ( ) ( )( ), , ,expG z M z i zμ ν μ ν μ νθ= ⋅  

with Mμ,ν being the magnitude and θμ,ν being the phase. It is known that magnitude information contain the 

variation of local energy in the image. As a multi-scale and multi-orientation feature extraction technique, 

Gabor filtering generates highly redundant features, and thus it is necessary to down-sample the filtering 

outputs to reduce the Gabor feature dimension as well as the time and space complexity. In [17], the 

augmented Gabor feature vector χ is defined via uniform down-sampling, normalization and concatenation 

of the Gabor filtering coefficients: 

( ) ( ) ( )( )0,0 1,0 7,4; ; ;ρ ρ ρ=χ a a a  

where ( )
,
ρ
μ νa  is the concatenated column vector of magnitude matrix ( )

,M ρ
μ ν  down-sampled by a factor of ρ.  
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3. Gabor-feature based robust representation and classification 

3.1. Gabor-feature based robust representation 

Images from the same face, taken at (nearly) the same pose but under varying illumination, often lie in a 

low-dimensional linear subspace known as the harmonic plane or illumination cone [12][20]. This implies 

that if there are only variations of illumination, SRC can work very well. However, SRC with the holistic 

image features is less effective when there are local deformations of face images, such as certain amount of 

variations of expressions and pose. 

The augmented Gabor face feature vector χ, which is a local feature descriptor, can not only enhance the 

face feature but also tolerate image local deformation to some extent. So we propose to use χ to replace the 

holistic face features for face representation, and the Gabor-feature based representation without face 

occlusion is 

( ) ( ) ( ) ( ) ( )0 1 1 2 2 K KΧ Χ Χ Χ= + + + =y A A A Aχ β β β β  (6)

where ( ) ( ) ( ) ( )1 2 KΧ Χ Χ Χ= ⎡ ⎤⎣ ⎦A A A A , ( ) ( ) ( ) ( ),1 ,2 ,, , ,
ii i i i nΧ ⎡ ⎤= ⎣ ⎦A s s sχ χ χ , [ ]1 2; ; ; K=β β β β . 

When the query face image is occluded, similar to SRC, an occlusion dictionary with Gabor features 

could be introduced to code the occlusion components, and the Gabor-feature based robust representation 

could be formulated as:  

( ) ( ) ( ) [ ] ( ), e eΧ Χ Χ= ; =⎡ ⎤⎣ ⎦y A A Bχ β β ω  (7)

where X(Ae) is the Gabor-feature based occlusion dictionary, and βe is the coding vector of the input Gabor 

feature vector χ(y) over X(Ae). 

For the convenience of expression, we call the representation in either Eq. (6) (for FR without occlusion) 

or Eq. (7) (for FR with occlusion) the Gabor-feature based robust representation (GRR), and the 

representation vector in the GRR model can be solved by 

( ) ( ){ } ( ) ( ){ }2 2
0 2 2

min or min
p pl l

Χ λ Χ λ− + − +y A y Bβ ωχ β β χ ω ω  (8)
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where 
pl

•  means the lp-norm, and p=1 or 2 in our paper. In the case of occlusion, the selection of 

occlusion dictionary X(Ae) has a big affect on the performance of GRR, and thus one key issue is how to 

define X(Ae) to make the GRR effective and efficient.  

 

3.2. Discussions on occlusion dictionary 

SRC [10] is successful in solving the problem of face occlusion by introducing an occlusion dictionary Ae to 

code the occluded face components; however, one drawback of SRC is that the number of atoms in the used 

occlusion dictionary is very big. More specifically, the identity matrix was employed in SRC so that the 

number of atoms equals to the dimensionality of the image feature vector. For example, if the feature vector 

has a dimensionality of 3000, then the occlusion dictionary is of size 3000×3000. Such a high dimensional 

dictionary makes the sparse coding very expensive, and even computationally prohibitive. Suppose the size 

of the dictionary is m×n, then the empirical complexity of the commonly used l1-regularized sparse coding 

methods (such as l1_ls [24], l1_magic [25], and MOSEK [26]) to solve Eq. (1) is O(m2nε) with ε ≈ 1.5 

[24][13]. So if the number of atoms (i.e., n) in the occlusion dictionary is too big, the computational cost will 

be huge, especially in dealing with FR with occlusion. 

 

   

Orientation: 2        3                    4

Gabor

      

(a)                                    (b) 

Figure 1: Gabor feature extraction. (a) Multi-scale and multi-orientation Gabor filtering. (b) The uniform 
down-sampling of Gabor filtering responses. 
 

 
By using Gabor features for face representation, the feature dictionary A and the occlusion dictionary Ae 

in Eq. (3) will be transformed into the Gabor feature dictionary X(A) and the Gabor-feature based occlusion 

dictionary X(Ae) in Eq. (7). Fortunately, X(Ae) is compressible. This can be easily illustrated by Fig. 1. 
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Fig. 1(a) illustrates the process of Gabor filtering. It is easy to see there are a rich amount of 

redundancies in the filtering responses across different scales and orientations. Therefore after the band-pass 

Gabor filtering, a uniform spatial down-sampling with a factor of ρ is conducted to form the augmented 

Gabor feature vector χ, as indicated by the red pixels in Fig. 1(b). The spatial down-sampling is performed 

for all the Gabor filtering outputs along different orientations and on different scales. Therefore, the number 

of (spatial) pixels in the augmented Gabor feature vector χ is 1/ρ times that of the original face image; 

meanwhile, at each location, e.g., P1 or P2 in Fig. 1(b), there is a set of directional and scale features 

extracted by Gabor filtering in the neighborhood (e.g., the circles centered on P1 and P2). Certainly, the 

directional and scale features at the same spatial location have some correlation, and there are often some 

overlaps between the supports of Gabor filters, which make the Gabor features at neighboring positions also 

have some redundancies. 

Considering that “occlusion” is a phenomenon of spatial domain, a spatial down-sampling of the Gabor 

features with a factor of ρ implies that we can use approximately 1/ρ times the occlusion bases to code the 

Gabor features of the occluded face image. In other words, the Gabor-feature based occlusion dictionary 

X(Ae) can be compressed because the Gabor features are redundant as we discussed above. To validate this 

conclusion, we suppose that the image size is 50×50, and in the original SRC the occlusion dictionary is an 

identity matrix 2500 2500×= ∈ℜeA I . Then the Gabor-feature based occlusion matrix X(Ae) 2560 2500×∈ℜ , where 

the dimensionality of augmented Gabor feature is 2560 with ρ=39.06, μ={0,…,7}, ν={0,…,4}. Fig. 2 shows 

the singular values of X(Ae). Obviously, although all the basis vectors of identity matrix I (i.e., Ae) have 

equal importance, only a few (60, with energy proportion of 99.67%) singular vectors of X(Ae) have 

significant singular values, as shown in Fig. 2. This implies that X(Ae) can be much more compactly 

represented by using only a few atoms generated from X(Ae), often with a compression ratio about ρ:1. For 

example, in this experiment we have 2500/60=41.7≈ρ=39.06. Next we present an algorithm to compute a 

more compact occlusion dictionary. 
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Figure 2: The singular values (left: all the singular values, right: the first 60 singular values) of Gabor 
feature-based occlusion matrix. 
 
 
3.3. Gabor occlusion dictionary (GOD) computing 

Now that X(Ae) is compressible, we propose to compute a compact occlusion dictionary from it with suitable 

regularization on the coefficients. Here a compact dictionary, denoted by m n×∈ℜD , refers to a dictionary 

which has much less columns (i.e., the so-called atoms) than rows (i.e., n<<m). From the view of handling 

occlusion, a compact occlusion dictionary means that the learnt dictionary atoms have lower correlation and 

stronger ability in representing face occlusions. In addition, the coding speed would be much faster because 

of the reduced size of occlusion dictionary. We call the computed compact occlusion dictionary Gabor 

occlusion dictionary (GOD) and denote it as Г. Then we could replace X(Ae) by Г in the GRR based FR. 

For the convenience of expression, we denote by 1( ) [ , , ] e

e

m n
n

ρΧ ×= = ∈ℜeZ A z z  the original Gabor-

feature based occlusion matrix, with each column zi being the augmented Gabor-feature vector generated 

from each atom of Ae. The compact occlusion dictionary to be computed is denoted by 

1 2[ , ,..., ] m q
q

ρ ×= ∈ℜd d dΓ , where q can be set as slightly less than ne/ρ in practice. It is required that each 

occlusion basis dj, j=1, 2, …, q, is a unit column vector, i.e. 1T
j j =d d . Since we want to replace Z by Г, it is 

expected that the original dictionary Z can be well represented by Г with the representation coefficients 

being regularized via lp-norm regularization. Obviously, p=1 means that we require sparse representation on 

the learnt GOD. Inspired by the success of l2-norm regularization in CRC [32], we can also use l2-norm 

coefficient regularization. With such considerations, the objective function for determining Γ is defined as:  

{ }2arg min
pF l

J ζ= − +Γ,Λ Γ,Λ Z ΓΛ Λ  s.t. 1,T
j j j= ∀d d  (9)
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where Λ is the representation matrix of Z over dictionary Γ, ζ is a positive scalar that balances the F-norm 

term and the lp-norm term (here p=1 for 
1
⋅ and p=2 for 2

F
⋅ ).  

Table 2: Algorithm of Gabor occlusion dictionary computing. 

Algorithm of Gabor occlusion dictionary (GOD) computing 
1. Initialize Γ 

We initialize each column of Γ as a random vector with unit l2-norm. 
2. Fix Γ and solve Λ 

By fixing Γ, the objective function in Eq. (9) will be reduced to 

{ }2arg min
pF l

J ζ= − +Λ Λ Z ΓΛ Λ  (10)

The minimization of Eq. (10) for p=1 can be achieved by the l1-norm minimization techniques. In 
this paper, we use the algorithm in [24]. The minimization of Eq. (10) for p=2 could be efficiently 
solved since has a closed-form least square solution [32]. 

3. Fix Λ and update Γ 
Now the objective function is reduced to 

{ }2arg min
F

J = −Γ Γ Z ΓΛ  s.t. 1,T
j j j= ∀d d  (11)

We can write matrix Λ as Λ=[β1;β2,…,βp], where βj, j=1,2,…,q, is the row vector of Λ. We update 
the occlusion bases one by one. When updating dj, all the other columns of Γ, i.e., dl, l≠j, are fixed. 
Then JΓ in Eq. (11) is converted into 

2
arg min

j j l l j jl j F
J

≠
= − −∑d d Z d β d β  s.t. 1T

j j =d d     (12)

Let l ll j≠
= −∑Y Z d β , Eq. (12) can be written as  

2
arg min

j j j j F
J = −d d Y d β  s.t. 1T

j j =d d            (13)

Using Langrage multiplier, 
j

Jd
 is equivalent to  

( ), arg min ( )
j j

T T T T T
j j j j j j j jJ trγ γ γ= − − ⋅ + ⋅ − +d d Yβ d d β Y d β β d  (14)

where γ is a scalar variable. Differentiating 
,j

J γd  with respect to dj, and let it be 0, we have  

( ) 1T T
j j j j γ

−
= −d Yβ β β  (15)

Since ( )T
j j γ−β β  is a scalar and γ is a variable, the solution of Eq. (15) under constrain 1T

j j =d d  is 

2

T T
j j j=d Yβ Yβ  (16)

Using the above procedures, we can update all the vectors dj, and hence the whole set Γ is updated. 
4. Output Γ 

Go back to step 2 until the values of JΓ,Λ in adjacent iterations are close enough, or the maximum 
number of iterations is reached. Finally, output Γ. 
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Eq. (9) is a joint optimization problem of the occlusion dictionary Γ and the representation matrix Λ. 

Like in many multi-variable optimization problems, we solve Eq. (9) by optimizing Γ and Λ alternatively. 

The optimization procedures are described in the following Table 2. Based on our experiments, the random 

initialization of the dictionary affects little the learned GOD as well as the final face recognition accuracy. In 

general, about 10 iterations are needed to stop the algorithm of GOD. 

It is straightforward that the above GOD computing algorithm converges because in each iteration JΓ,Λ 

will decrease. Fig. 3 illustrates an example of GOD on the AR database [21]. Based on our experiments, on 

other datasets the algorithm of GOD learning also converges quickly. Consequently, in GRR we use the 

GOD Г to replace the X(Ae) in Eq. (7). Finally, the coding problem in GRRC with face occlusion is 

( ){ } [ ] [ ]2

2
min where ( ) , ;

pl
Xλ− + = =Γ Γ Γ Γ Γ Γy B B Aω χ ω ω Γ ω β β  (17)

 

1 2 3 4 5 6 7 8
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Iterations

J Γ
, Λ

 

Figure 3: Illustration of the convergence of the proposed Gabor occlusion dictionary (GOD) computing 
algorithm on the AR database. A GOD with 100 atoms is computed from the original Gabor-feature based 
occlusion matrix with 4980 columns. The compression ratio is nearly 50:1. 
 

3.4. GRR based classification (GRRC) 

The SRC scheme [10] assumes that the face image representation residual is sparse, and thus uses the l1-

norm to characterize the representation coefficients associated with the occlusion dictionary, i.e., the identity 

matrix. Because the number of atoms in the identity matrix is very big (equal to the dimensionality of face 

image), it is necessary to impose the l1-norm sparsity on the coding coefficients for a robust and unique 

representation, yet this makes the complexity of SRC very high. However, when Gabor feature is adopted, a 
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compact GOD Γ (with only about 1/40 times the size of the identity matrix) can be learnt, and thus it may 

not be necessary to use the l1-norm sparsity to regularize the coding coefficients over the dictionary anymore.  

For a given face Gabor feature χ(y), often its dimensionality is much higher than the number of atoms in 

dictionary BΓ =[X(A) Г] after GOD computing, which means that the dictionary BΓ is not over-complete, and 

hence the system 

( )χ ≈ Γ Γy B ω  (18)

is generally an over-determined system. This implies that the solution of Eq. (18) is stable even without any 

regularization. Although Eq. (18) is stable even without any regularization, a suitable the regularization (e.g., 

l2-norm) could make the representation more stable. In addition, the regularization will make the 

representation coefficients smaller, which would make the coefficients associated with wrong class have 

lower value. This increases the discrimination of representation coefficients, which benefits the final face 

recognition. In this paper we test the results by using both l1-norm and l2-norm to regularize the coding 

coefficients. We name the GRR based classification (GRRC) with l1-norm regularization GRRC_L1, and the 

GRRC with l2-norm regularization GRRC_L2. The GRRC algorithm is summarized in Table 3. 

 

Table 3: Algorithm of GRR based Classification (GRRC). 

Algorithm of GRRC 
1. Input: Gabor feature dictionary X(A), GOD Γ, and the Gabor feature χ(yo) (for testing sample without 

occlusion) or χ(y) (for testing sample with occlusion).  
2. Solve the lp-minimization (p=1 or 2) problem (the Lagrange formulation): 

{ }2

2
ˆ arg min ( ) ( )

p
o l

X λ= − +y Aββ χ β β  (19)

or (let [ ]Γ Γ= ;ω β β ) 

[ ]{ }2

2
ˆ arg min ( ) ( )

pl
X

ΓΓ Γ Γλ= − +ωω χ Γ ω ωy A  (20)

Where ˆ ˆˆ [ ]Γ Γ= ;ω β β  and λ is a positive scalar that balances the coding residual and regularization 
strength. 

3. Compute the residuals 
( ) ( ) ( )

2

ˆ( ) , for 1, , .i o o i ir X i Kδ= − =y y Aχ β                       (21)

or 
( ) ( ) ( )

2

ˆ ˆ( ) , for 1, , .i i ir X i Kδ= − − =y y AΓχ Γβ β                     (22)

4. Output identity(yo)=argmini ri(yo) or identity (y)=argmini ri(y). 
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3.5. Time complexity 

The empirical complexity of the commonly used l1-regularized sparse coding methods is O(m2nε) with ε ≈ 

1.5 [24][13], while the time complexity of l2-norm regularized coding is only O(mn) [32] for that the coding 

projection matrix could be computed offline, where m is facial feature dimensionality and n is the number of 

dictionary atoms. For GRRC, in Fourier domain it is very fast to extract Gabor features, whose time 

complexity could be negligible compared with that of l1-norm regularized sparse coding.  

In the case of FR without occlusion, n is the number of training samples. Therefore, GRRC_L1 has 

similar computational burden to SRC, but GRRC_L2 has much lower time complexity than GRRC_L1 and 

SRC. For FR without occlusion, there is a fast version of SRC, namely SRC using Hashing [46]. This 

method is usually faster than the original SRC because the used random projection matrix is very sparse. So 

GRRC_L1 would have a little higher time complexity than SRC using Hashing, but GRRC_L2 is still much 

faster than SRC using Hashing. 

In the case of FR with occlusion, it is easy to get that the time complexity of GRRC_L1 is 

O(m2(n+m/ρ)ε), where ρ≈40. This is much lower than SRC whose time complexity is O(m2(n+m)ε). 

Obviously, GRRC_L2’s time complexity is O(m(n+m/ρ)) and it is the fastest one among the three methods. 

 

4. Experimental results 

In this section, we present experiments on benchmark face databases to demonstrate the superiority of 

GRRC to SRC. Before giving the detailed experimental results, we discuss the selection of Gabor features 

and regularization of GOD computing in Section 4.1. To evaluate more comprehensively the performance of 

GRRC, in Section 4.2 we first test FR with little deformation; then in Section 4.3 we demonstrate the 

robustness of GRRC to expression and pose variation; finally in Section 4.3 we test FR against block 

occlusion and real disguise. In our implementation of Gabor filters, the parameters are set as Kmax=π/2, 

2,f =  σ=1.5π, μ={0,…,7}, ν={0,…,4} by our experiences and they are fixed for all the experiments. The 

parameter λ in GRRC should be set as a small positive value to make the representation more stable and the 
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coding coefficient regularized. A large value of λ would make the regularization too strong so that the signal 

representation fidelity can be reduced, resulting in the decrease of recognition accuracy. In the experiments, 

λ in GRRC is fixed as 0.0005 for FR without and with occlusion. We also give the results of GRRC with 

λ=0.001 for FR without occlusion to show that GRRC is very robust to parameter’s value. In addition, all 

the face images are cropped and aligned by using the location of eyes, which is provided by the face 

databases (for Mulit-PIE, we manually locates the positions of eyes).  

In the following tables of this section, the results of competing methods with reference numbers are 

cropped from the original papers. All the other results are computed by us with reporting their best 

recognition rates. 

 

4.1. Gabor features and regularization of GOD computing 

1) Gabor features: In GRRC, we adopt the Gabor magnitude as the augmented facial features. Here we also 

evaluate other Gabor features, such as Gabor real parts, Gabor imaginary parts, and the concatenation of 

Gabor real and imaginary parts. We replace Gabor magnitude features in GRRC_L2 by these Gabor features, 

and test their performance on the AR database (the detailed experimental setting is described in Section 4.2). 

Table 4 lists the recognition rates. It is easy to see that the features of Gabor real parts (denoted by 

GRRC_L2 (Real parts)), Gabor imaginary parts (denoted by GRRC_L2 (Imaginary parts)) and their 

concatenation (denoted by GRRC_L2 (Real + Imaginary)) do not lead to good results. This demonstrates that 

Gabor magnitude (denoted by GRRC_L2 (Magnitude)) is more discriminative in the Gabor feature-based 

representation scheme. The results by SRC [10] and CRC [32] schemes with holistic PCA features are also 

listed in the Table for comparison.  

 

Table 4: Face recognition rates (%) with different Gabor features on AR database. 

Dimension 130 300 540 
PCA+SRC 89.7 93.3 93.5 
PCA+CRC 90.0 93.7 93.9 
GRRC_L2 (Real parts) 84.3 89.4 91.4 
GRRC_L2 (Imaginary parts) 85.8 91.0 93.3 
GRRC_L2 (Real + Imaginary) 85.0 91.4 93.6 
GRRC_L2 (Magnitude) 93.1 96.8 97.3 
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Figure 4: Recognition rates by using l1-norm and l2-norm regularized GOD computing in the experiment of 
FR with random block occlusion. 
 

2) Regularization on GOD computing: In the GOD computing algorithm (refer to Table 2), we 

regularize the coding coefficient by lp-norm with p=1 or 2. Here we use an FR experiment on Extended Yale 

B[19][20] with random block face occlusion (about 45% occlusion) to discuss the selection of lp-norm. The 

detailed experimental setting will be presented in the experiments of FR with random block occlusion in 

Section 4.4. We set the parameter ζ in the model (Eq. (9)) of GOD computing as 0.005. The recognition 

rates of lp-norm regularized GOD computing versus different regularization parameters λ in coding (Eq. (20) 

with l1-norm regularization) of the classification stage are shown in Fig. 4. It can be seen that there is not 

much difference in recognition accuracy between l1-norm and l2-norm regularization in GOD computing. 

The reason is that the redundancy of Gabor feature transformation (analyzed in Section 3.2) makes the learnt 

GOD dictionary compact so that the GOD dictionary is obviously over-determined. An over-determined 

dictionary itself could stably represent the testing sample even without regularization, while the l1-norm or 

l2-norm constraint on coding coefficient in GRRC could make the representation more stable and make the 

coding coefficients more discriminative. Therefore, the l1-norm and l2-norm regularizations will lead to 

stable occluded face representation and similar recognition results. Considering that the recognition rates by 

l1-norm and l2-norm regularized GOD computing are similar, we prefer to use the l2-norm regularized one 

for its fast speed. In our paper, the parameter ζ in GOD computing is set as a small scalar, e.g., 0.001. 

In order to give an intuitive illustration of the leant GOD, we plot the 1st, 51st, 101st and 151st atom of l1-

norm regularized GOD in Fig. 5. We could see that the learnt GOD atoms are roughly periodic signals, 
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which have 40 repeated patterns, and each pattern corresponds to one orientation on one scale of the Gabor 

feature (the Gabor feature is the concatenation of 40 down-sampling Gabor magnitudes). The original 

occlusion dictionary (i.e., the identity matrix) has clear spatial meaning, e.g., each atom is a unit vector 

representing one pixel of the image. However, the size of such an occlusion dictionary is too big (e.g., 

8064×8064 in this experiment). Because the spatial size of the augmented down-sampling Gabor feature is 

greatly reduced and occlusion is a phenomenon in spatial domain, the number of atoms in GOD could be 

greatly reduced. The learnt GOD not only has much smaller size (e.g., 8940×200), but also have very clear 

spatial meaning, i.e., on each down-sampled Gabor magnitude feature, the corresponding atom of GOD is a 

local basis to represent the scale and orientation information at that location. Therefore, GOD is much more 

efficient to handle occlusion. 
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Figure 5: The 1st, 51st, 101st, and 151st atoms of the learnt Gabor Occlusion Dictionary. 
 

4.2. Face recognition with little deformation 

We evaluate the proposed GRRC scheme on four representative facial image databases: Extended Yale B 

[19][20], AR [21], Multi-PIE [27] and FERET[22][23]. We compare GRRC with SRC [10], CRC [32], 

Linear Regression for Classification (LRC) [37], linear Support Vector Machine (SVM) and Nearest 

Neighbor (NN) methods. If no specific instruction, for all the competing methods we use PCA to reduce the 

feature dimension. 
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1) Extended Yale B Database: The Extended Yale B database consists of 2,414 frontal-face images of 38 

individuals, captured under various laboratory-controlled lighting conditions [19][20]. For each subject, we 

randomly selected half of the images for training (i.e., 32 images per subject), and used the other half for 

testing. The images are normalized to 192×168, and the dimension of the augmented Gabor feature vector of 

each image is 19760 (40×26×19). The results of all the methods versus the feature dimension are listed in 

Table 5. It can be seen that GRRC is better than SRC, CRC and other methods in all the dimensions except 

that SRC is slightly better GRRC_L2 in the dimension of 56. This shows that the l1-norm sparse constraint 

will be more effective than the non-sparse l2-norm constraint in classification when the discrimination of 

feature (e.g., 56-dimensional) is not high and the dictionary (e.g., with the size of 56×1206) is an over-

complete matrix. GRRC_L2 has similar performance to GRRC_L1 when the dimension is greater than 56. 

On this database, the maximal recognition rates of the competing methods are 99.2% for GRRC_L1, 99.1% 

for GRRC_L2, 97.9% for SRC, 98.0% for CRC, 96.4 for SVM, 95.7% for LRC, and 92.0% for NN. In 

addition, it can be seen that GRRC is not sensitive to the value of λ. 

 
Table 5: Face recognition results (%) on the Extended Yale B database. For GRRC, r1 (r2) means that r1 is 
the recognition rate for λ=0.0005, and r2 for λ=0.001. 

 56 120 300 504 
SRC 92.6 95.6 97.4 97.9 
CRC 88.6 95.4 97.4 98.0 
NN 81.4 89.2 91.9 92.0 
LRC 94.1 94.7 95.4 95.7 
SVM 92.6 95.3 96.3 96.4 
GRRC_L1 92.7(92.7) 95.6(96.2) 97.9(97.9) 99.0(99.2) 
GRRC_L2 90.5(90.5) 96.3(96.3) 98.4(98.4) 99.1(99.1) 

 

2) AR database: The AR database consists of over 4,000 frontal images from 126 individuals [21]. For 

each individual, 26 pictures were taken in two separate sessions. As in [10], in the experiment we chose a 

subset of the dataset consisting of 50 male subjects and 50 female subjects. For each subject, the seven 

images with illumination change and expressions from Session 1 were used for training, and the other seven 

images with only illumination change and expression from Session 2 were used for testing. The size of 

original face image is 165×120, and the Gabor-feature vector is of dimension 12000 (40×20×15). The 

comparison of GRRC and the competitors are shown in Table 6. Again we can see that GRRC performs 

much better than all the other methods under all the dimensions, especially with more than 3% improvement 
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when the dimension is lager than 54. On this database, the maximal recognition rate of GRRC_L1, 

GRRC_L2, SRC, CRC, SVM are 97.1%, 97.3%, 93.5%, 93.9% and 88.8%, respectively. 

 
Table 6: Face recognition results (%) on the AR database. For GRRC, r1 (r2) means that r1 is the recognition 
rate for λ=0.0005, and r2 for λ=0.001. 

 54 130 300 540 
SRC 80.0 89.7 93.3 93.5 
CRC 80.5 90.0 93.7 93.9 
NN 67.8 70.1 71.2 72.1 
LRC 75.4 76.0 70.7 76.7 
SVM 77.5 82.7 87.3 88.8 
GRRC_L1 86.0(86.0) 94.0(94.0) 96.7(96.6) 97.1(97.1) 
GRRC_L2 82.7(82.7) 93.1(93.1) 96.7(96.7) 97.3(97.3) 

 

Table 7: Face recognition results (%) on the Multi-PIE database. For GRRC, r1 (r2) means that r1 is the 
recognition rate for λ=0.0005, and r2 for λ=0.001. 

 SRC CRC NN LRC SVM GRRC_L1 GRRC_L2 
Session 2 93.9 94.1 86.4 87.1 85.2 97.3(97.5) 97.1(97.2) 
Session 3 90.0 89.3 78.8 81.9 78.1 96.7(96.7) 96.8(96.8) 
Session 4 94.0 93.3 82.3 84.3 82.1 98.6(98.6) 98.7(98.7) 

 

Table 8: Face recognition results (%) on the FERET database. For GRRC, r1 (r2) means that r1 is the 
recognition rate for λ=0.0005, and r2 for λ=0.001. 

 SRC CRC NN SVM GRRC_L1 GRRC_L2 
Fb 86.9 85.4 87.1 87.1 95.7(95.6) 95.6(95.6) 
Fc 77.3 75.8 73.2 73.2 97.4(97.4) 94.8(95.4) 
Dup1 51.6 51.5 47.8 47.8 77.7(78.0) 79.1(78.9) 
Dup2 33.3 35.5 23.9 23.9 75.6(76.5) 78.6(78.6) 

 

3) Large-scale Multi-PIE database: The CMU Multi-PIE database [27] contains images of 337 subjects 

captured in four sessions with simultaneous variations in pose, expression, and illumination. In the 

experiments, all the 249 subjects in Session 1 were used. For the training set, we used the 14 frontal images 

with illuminations {0,1,3,4,6,7,8,11,13,14,16,17,18,19} and neutral expression. For the testing sets, 10 

typical frontal images of even-number illuminations taken with neutral expressions from Session 2 to 

Session 4 were used. The image size is cropped and normalized to 100×82, and the Gabor feature vector is 

of the dimension of 8320 (40×16×13). We use PCA to reduce the dimensionality of the input feature to 300. 

Table 7 lists the recognition rates in three tests by the competing methods. The results validate that GRRC 

methods get the best in accuracy, at least 3% higher than that of SRC and CRC in session 2 and about 5% 
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higher than that of SRC and CRC in other sessions. NN, LRC and SVM can not get good recognition 

accuracy (lower than 90%) in this database, much lower than SRC, CRC and GRRC. 

 
4) Large-scale FERET database: The FERET database [22][23] is often used to validate an algorithm’s 

effectiveness because it contains many kinds of image variations. By taking ‘Fa’ subset as a gallery, the 

probe subsets ‘Fb’ and ‘Fc’ were captured with expression and illumination variations. Especially, ‘Dup1’ 

and ‘Dup2’ consist of images that were taken at different times with more than one year interval. Here we 

should note that in the Gallery set ‘Fa’, each subject only has one sample, which is very challenging for SRC 

and GRRC because usually they usually need several samples for each subject to construct the subspace. 

The image size is cropped and normalized to 150×130, and the Gabor feature vector is of dimension 21000 

(40×25×21). For all the competing methods, we used LDA to reduce the original feature dimensionality to 

428 for LDA could achieve better performance than PCA in this challenging dataset. Table 8 shows the face 

recognition results on FERET database. It is surprised that SRC and CRC have higher accuracy than NN and 

SVM except for ‘Fb’ even only one sample for each subject in the training set. GRRC methods achieve the 

best performance with over 95% recognition rates in ‘Fb’ and ‘Fc’ and about 78% in ‘Dup1’ and ‘Dup2’. It 

can also be seen that for ‘Fb’, GRRC has at least 8% improvements compared to other methods, while with 

about 20%, 27% and 43% improvements for ‘Fc’, ‘Dup1’ and ‘Dup2’, respectively. According to the recent 

state-of-the-art FR results on the FERET database, e.g., Xie et al. ’s method [45], further improvement could 

be achieved if more discriminative features, e.g., fused Gabor magnitude and phase feature [45], are utilized 

in the framework of GRRC. 

From the experimental results in Extended Yale B, AR, Multi-PIE and FERET, we could see that GRRC 

is very robust to the value of λ and GRRC_L1 and GRRC_L2 have very similar performance (the gap usually 

is less than 0.5% in high dimensional feature), showing that GRRC_L2 is very suitable for the practical FR 

systems due to its fast speed and good performance. Besides, the improvements brought by GRRC on the 

AR, Multi-PIE, and FERET are much bigger than that on the Extended Yale B database. This is because 

mostly there is only illumination variation between the training images and testing images, and the number 

of training samples (i.e., 32) in the Extended Yale B database is also high. Thus the original SRC and CRC 

work well on it. However for the more challenging cases (e.g., the training and testing samples of the AR, 
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Multi-PIE and FERET have much more variations, including time, illumination, etc., but with very limited 

number of training samples), the local feature based GRRC is much more robust than the holistic feature 

based SRC, CRC, SVM, LRC and NN in this case. 

 

4.3. Face recognition with pose and expression variations 

In this section, we verify the robustness of GRRC to pose and expression variations on the pose subset of 

FERET database [22][23] and expression subset of Multi-PIE [27]. 

1) FERET pose database: Here we used the pose subset of the FERET database [22][23], which includes 

1400 images from 198 subjects (about 7 each). This subset is composed of the images marked with ‘ba’, 

‘bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’, and ‘bk’. In our experiment, each image has the size of 80×80 and the dimension 

of Gabor feature is 6760 (40×13×13). Some sample images of one person are shown in Fig. 6. 

Five tests with different pose angles were performed. In test 1 (pose angle is zero degree), images 

marked with ‘ba’ and ‘bj’ were used as the training set, and images marked with ‘bk’ were used as the 

testing set. In all the other four tests, we used images marked with ‘ba’, ‘bj’ and ‘bk’ as gallery, and used the 

images with ‘bg’, ‘bf’, ‘be’ and ‘bd’ as probes, respectively. Here we use 350-dimension Eigenfaces as the 

input feature. Table 9 lists the results of different methods for various face poses. Obviously, we can see that 

GRRC has much higher recognition rates than SRC and other methods. In particular, when the pose 

variation is moderate (0o and ±15o), about 20% improvement is achieved by GRRC compared to SRC. We 

could also see that GRRC_L2 performs very similarly to GRRC_L1. It is undeniable that GRRC’s 

performance also degrades much when pose variation becomes large (e.g. ±25o). Nevertheless, GRRC can 

much improve the robustness to moderate pose variation, and thus it could tolerate registration error (e.g., 

pose variation, misalignment) to some extent. 

 

                   
    ba: gallery   bj: expression  bk: illumination   be: +15        bf: -15       bg: -25       bd: +25 

Figure 6: Some samples of a subject on the pose subset of the FERET database. 
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Table 9: Face recognition results (%) on the pose subset of the FERET database. For GRRC, r1 (r2) means 
that r1 is the recognition rate for λ=0.0005, and r2 for λ=0.001. 

Pose (degree) -25 -15 0 15 25 
SRC 32.5 70.5 83.5 57.5 28.0 
CRC 21.0 62.5 74.5 40.0 17.0 
NN 10.5 54.0 78.5 39.0 17.5 
LRC 11.5 58.0 75.5 40.5 20.0 
SVM 14.5 61.5 80.5 43.5 20.0 
GRRC_L1 41.5(42.0) 95.5(95.5) 99.0(99.0) 89.0(89.5) 44.5(45.0) 
GRRC_L2 41.0(41.0) 95.5(95.5) 99.0(99.0) 91.5(91.5) 44.0(44.0) 

 

2) Multi-PIE expression subset: All the 249 subjects in Session 1 were used as training set in this 

experiment. To make the FR more challenging, four subsets with both illumination and expression variations 

in Sessions 1, 2 and 3 were used for testing. For the training set, as in [34] we used the 7 frontal images with 

extreme illuminations {0, 1, 7, 13, 14, 16, 18} and neutral expression (refer to Fig. 7(a) for examples). For 

the testing set, 4 typical frontal images with illuminations {0, 2, 7, 13} and different expressions (smile in 

Sessions 1 and 3, squint and surprise in Session 2) are used (refer to Fig. 7(b) for examples with surprise in 

Session 2, Fig. 7(c) for examples with squint in Session 2, Fig. 7(d) for examples with smile in Session 1, 

and Fig. 7(e) for examples with smile in Session 3). We used the Eigenface with dimensionality 900 as the 

face feature. 

 
 

 
(a) 

    
(b)                                  (c) 

    
(d)                                  (e) 

Figure 7: A subject in Multi-PIE database. (a) Training samples with only illumination variations. (b) 
Testing samples with surprise expression and illuminations in Session 2. (c) Testing samples with squint 
expression and illuminations in Session 2. (d) and (e) show the testing samples with smile expression and 
illumination variations in Session 1 and Session 3, respectively. 
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Table 10: Face recognition rates on Multi-PIE expression database. For GRRC, r1 (r2) means that r1 is the 
recognition rate for λ=0.0005, and r2 for λ=0.001. 

 Smile-S1 Smile-S3 Surprise-S2 Squint-S2 
SRC 94.1 60.9 55.0 57.2 
CRC 92.4 56.7 49.2 52.7 
NN 89.4 46.3 40.5 50.3 
LRC 90.4 49.8 40.1 52.1 
SVM 88.9 46.3 25.6 47.7 
Hash+OMP 92.2 50.2 42.3 51.8 
Hash+L1 87.2 50.0 46.4 56.2 
GRRC_L1 97.7(97.4) 73.4(73.3) 81.8(82.4) 87.5(87.8) 
GRRC_L2 97.3(97.3) 74.2(74.2) 82.2(82.2) 88.0(88.1) 

 

Table 11: Average time (second) comparison for sparse representation-based FR methods 
 

Method SRC Hash+OMP Hash+L1 GRRC_L1 GRRC_L2 
Running Time 1.398 1.061 2.644 0.2423+1.400 0.2423+0.046 

 

Table 10 lists the recognition rates in four testing sets by the competing methods, including SRC using 

Hasing [46] (e.g., Hash+OMP and Hash+L1). It can be seen that GRRC achieves the best performance in all 

tests and SRC performs the second best. It can also be seen that SRC using Hashing has lower recognition 

rates than SRC, which may result from its use of random projection matrix for dimensionality reduction. In 

addition, all the methods achieve their best results when Smile-S1 is used for testing because the training set 

is also from Session 1. The highest rates of GRRC_L1 and GRRC_L2 are 97.4% and 97.3%, respectively, 

more than 3% improvement over the third best one, SRC. From testing set Smile-S1 to set Smile-S3, the 

variations increase because of the longer data acquisition time interval and expression changes (refer to Fig. 

7 (d) and Fig. 7 (e)). The recognition rates of GRRC_L1 and GRRC_L2 drop by 24.1% and 23.1%, 

respectively, while those of SRC, CRC, NN, LRC and SVM drop by 33.2%, 35.7%, 43.1%, 40.6% and 

42.6%, respectively, which validates that GRRC is much more robust to face variation than the other 

methods. For the testing set of Surpise-S2 and Squint-S2, GRRC has about 30% improvement over all the 

other methods. Meanwhile, for all the four tests, GRRC with l1-norm constraint or l2-norm constraint on 

coding coefficients has similar performance. 

The running time of GRRC, SRC, and SRC using Hashing [46] (e.g., Hash+OMP and Hash+L1) is 

compared in Table 11. Here the Gabor feature extraction for GRRC is 0.2423 second. From Table 11, it is 
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very clear that GRRC_L2 is the fastest one, about 4 times faster than Hash+OMP, the second fastest method. 

GRRC_L1’s running time is still lower than Hash+L1. 

From the experiments on FR with local deformation (e.g., pose and expression variations), we could see 

that there is almost no difference between GRRC with λ=0.001 and GRRC with λ=0.0005, showing that 

GRRC is very robust to the value of λ. GRRC is much superior to the other methods, including SRC and 

CRC. This not only shows that collaborative representation based classification strategy with l1 or l2 norm 

regularization is more powerful than other classifiers, such as NN, LRC and SVM, but also demonstrates 

that Gabor magnitude features are more robust to the variations of pose and expression. 

 

4.4. Recognition against occlusion 

In this sub-section, we test the robustness of GRRC to face occlusions, including block occlusion and real 

disguise. FR with random block occlusion is performed on the Extended Yale B database [19][20], while FR 

with real disguise is performed on the AR database [21]. 

1) FR with random block occlusion: As in [10], we chose Subsets 1 and 2 (717 images, normal-to-

moderate lighting conditions) for training, and Subset 3 (453 images, more extreme lighting conditions) for 

testing. In accordance to the experiments in [10], the images were resized to 96×84, and the occlusion 

dictionary Ae in SRC is set to an identity matrix. 

With the above settings, in SRC the size of matrix B in Eq. (3) is 8064×8761. In the proposed GRRC, 

the dimension of augmented Gabor-feature vector is 8960 (40×16×14, ρ≈40). The GOD Γ is then computed 

using Algorithm in Table 2. In the experiment, we set the number of atoms in Γ to 200 (i.e., p=200, with 

compression ratio about 40:1), and hence the size of dictionary BΓ in Eq. (17) is 8960×917. Compared with 

the original SRC, the dictionary size of GRRC is reduced from 8761 to 917. 

 



26 
 

  
0 10 20 30 40

0.5

0.55

0.6

0.65

0.7

0.75

Class index

R
ep

re
se

nt
at

io
n 

re
si

du
al

  
      (a)              (b)                       (c)                    (d) 

Figure 8: An example of face recognition with block occlusion. (a) A 30% occluded test face image y from 
the first class of Extended Yale B. (b). Uniformly down-sampled Gabor features χ(y) of the test image. (c). 
Estimated residuals ri(y), i = 1, 2, …, 38. (d). One sample of the class to which the test image is classified. 

 

Table 12: The recognition rates (%) of different methods under different levels of block occlusion. 

Occlusion ratio 0% 10% 20% 30% 40% 50% 
SRC[10] 100 100 99.8 98.5 90.3 65.3 
CRC 100 99.8 96.7 86.3 74.8 61.0 
PCA+NN[10] 92.5 90.7 84.0 73.5 61.5 45.0 
GRRC_L1 100 100 100 100 96.5 87.4 
GRRC_L2 100 100 100 100 97.1 84.1 

 

As in [10], we simulated various levels of contiguous occlusion, form 0% to 50%, by replacing a 

randomly located square block in each test image with an unrelated image, whose size is determined by the 

occlusion percentage. The location of occlusion was randomly chosen for each test image and is unknown to 

the computer. Fig. 8 illustrates the classification process by using an example. Fig. 8 (a) shows a test image 

with 30% randomly located occlusion; Fig. 8 (b) shows the augmented Gabor features of the test image. The 

residual of GRRC_L2 are plotted in Fig. 8(c), and a template image of the identified subject is shown in Fig. 

8(d). The detailed recognition rates of GRRC, SRC, CRC and PCA+NN (used as the baseline) are listed in 

the Table 12. We see that GRRC can correctly classify all the test images when the occlusion percentage is 

less than or equal to 30%. When the occlusion percentage becomes larger, the advantage of GRRC over 

SRC is getting higher. Especially, GRRC_L1 can still have a recognition rate of 87.4% when half of image is 

occluded, while SRC and CRC only achieve a rate of 65.3% and 61.0 respectively. PCA+NN gets the worst 

results for it does not consider the occlusion. We could also see that good performance is still achieved when 

the representation coefficients on Gabor occlusion dictionary are regularized by l2-norn in GRRC_L2. 

2) FR with real disguise: A subset from the AR database was used in this experiment. This subset 

consists of 1199 images from 100 subjects (14 samples each class except for a corrupted image w-027-

14.bmp), 50 male and 50 female. 799 images (about 8 samples per subject) of non-occluded frontal views 
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with various facial expressions were used for training, while the others for testing. The images are resized to 

83×60. So in original SRC, the size of matrix B in Eq. (3) is 4980×5779. In the proposed GRRC, the 

dimension of Gabor-feature vectors is 5200 (40×13×10, ρ≈38), and 100 atoms (with compression ratio 50:1) 

are computed to form the GOD by Algorithm in Table 2. Thus the size of dictionary BΓ in Eq. (17) is 

5200×899, and the dictionary size is reduced from 5779 to 899 for GRRC. 

We consider two separate test sets of 200 images (1 sample each session and each subject, with neural 

expression). The first test set contains images of the subjects wearing sunglasses, which occlude roughly 

20% of the image. The second test set is composed of images of the subjects wearing a scarf, which occlude 

roughly 40% of the images. The results by GRRC, SRC, CRC, PCA+NN and SVM are listed in Table 13 

(where the results of SRC and PCA+NN are copied from the original paper [10]). We see that on faces 

occluded by sunglasses, GRRC achieves a recognition rate of 93.0%, over 5% higher than that of SRC, 

while for occlusion by scarves, the proposed GRRC_L1 (GRRC_L2) achieves a recognition rate of 79% 

(77.5%), about 20% higher than that of SRC. It is surprising that CRC gets 90.5% in the scarf case but with 

very low recognition accuracy in sunglass case. SVM gets bad performance for that it cannot learn the 

occlusion information from the training set without occlusion. 

In [10], the authors also partitioned the image into blocks for face classification by assuming that the 

occlusion is continuous. Such an SRC scheme is denoted by SRC-p, with the CRC scheme denoted by CRC-

p. Here, after partitioning the image into several blocks, we calculate the Gabor features of each block and 

then use GRRC to classify each block image. The final classification result is obtained by voting. We denote 

by GRRC-p the GRRC with partitioning. In experiments, as [10] we partitioned the images into eight (4×2) 

blocks of size 20×30. The Gabor-feature vector of each block is of dimension 800, and the number of atoms 

in the computed GOD Γ is set to 20. Thus the dictionary B in SRC is of size 600×1379, while the dictionary 

BΓ in GRRC is of size 800×819. The recognition rates of SRC-p, CRC-p and GRRC-p are also listed in 

Table 13. We see that with partitioning, GRRC can lead to recognition rates of 100% on sunglasses and 99% 

on scarves, also better than SRC and CRC. 
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Table 13: Recognition rates (%) on the AR database with disguise occlusion (‘-p’: partitioned, ‘-sg’: 
sunglasses, and ‘-sc’: scarves). 
 

 Sunglass Scarf 
SRC (SRC-p) [10] 87  (97.5) 59.5  (93.5) 
CRC (CRC-p) [32] 68.5 (91.5) 90.5  (95) 
PCA+NN [10] 70.0 12.0 
SVM 66.5 16.5 
GRRC_L1 (GRRC-p_L2) 93.0  (100) 79.0  (99) 
GRRC_L2 (GRRC-p_L2) 93.0  (100) 77.5  (99) 

 

3) Running time comparison: The recognition rates and running time of the proposed GRRC and SRC 

on a more challenging FR experiment with real disguise are compared here. A subset of 50 males and 50 

females are selected from the AR database. For each subject, 7 samples with no occlusion from session 1 are 

used for training, with all the remaining samples with disguises for testing. These testing samples (including 

3 sunglass samples in Session1, 3 sunglass samples in Session 2, 3 scarf samples in Session 1 and 3 scarf 

samples in Session 2 per subject) not only have disguises, but also have variations of time and illumination. 

The image size and the extraction of Gabor feature of GRRC remains the same as before. Here λ=0.005 for 

GRRC and the programming environment is Matlab version R2011a. The desktop used is of 1.86 GHz CPU 

and with 2.99G RAM. All the l1-minimization problem is solved by using the fast solver: ALM [43][44]. 

The recognition rates and running time of GRRC and SRC are listed in Table 14. The recognition rates of 

GRRC in all cases are much higher than SRC and CRC, especially with over 7% improvement on FR with 

sunglasses of session 1, and at least 43% in FR with scarf. It can also be seen that GRRC_L1 is slightly 

better in FR with scarf, while GRRC_L2 slightly better in FR with sunglasses. Fig. 9 plots the representation 

coefficients and residuals of a sample from class 1. As shown in Fig. 9(b), the sample is wrongly classified 

by GRRC_L1 though the coefficients are sparse (see Fig. 9(a)). Although the representation coefficients of 

GRRC_L2 are dense (Fig. 9(c)), the sample is correctly classified, as shown in Fig. 9(d). 

The running time of SRC per testing sample is about 12 seconds, while GRRC_L1 only needs about 1.5 

seconds. However, this is still long for practical FR system. With l2-norm regularization on the Gabor 

feature representation coefficients, the running time of GRRC_L2 is only about 0.3 second, where 0.29 

second is the running time of Gabor feature extraction. Although CRC is the fastest one, its recognition rate 
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is also very low, similar to that of SRC. The speedup of GRRC_L2 and GRRC_L1 over SRC are 37.09 and 

7.98 times, respectively. 

 
Table 14: Recognition rates (%) and average running time (second) of GRRC and SRC on FR with disguise. 
 

 Sunglass-S1 Scarf-S1 Sunglass-S2 Scarf-S2 Average time Speedup 
SRC 83.3 48.7 49.0 29.0 12.278 -- 
CRC 78.0 52.3 44.7 29.3 0.084 146.2 

GRRC_L1 90.7 95.3 50.3 87.3 1.539 7.98 
GRRC_L2 92.3 95 51.7 84.3 0.331 37.09 
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(a)                     (b)                       (c)                       (d) 

 
Figure 9: Representation coefficient and residual of a sample from class 1. (a) and (c) plot the coefficients 
of GRRC_L1 and GRRC_L2, respectively; (b) and (d) illustrate the representation residual associated to each 
class by GRRC_L1 and GRRC_L2, respectively. 

 
 

It can be seen from the FR experiments with occlusion that GRRC could achieve much higher 

recognition accuracy than SRC and CRC. More importantly, with Gabor transformation, the occlusion 

dictionary could be compressed, which reduces significantly the number of unknown parameters and the 

computational burden. It should be noted that GRRC_L2 which regularizes the coding coefficients by l2 

norm could achieve very competing performance as GRRC_L1. This is because Gabor magnitude features 

could make original sparse representation in original image domain into a dense representation in the 

transformed domain. 

 

5. Discussion of regularization on coding coefficients 

In this section, we discuss the effect of feature dimension on the regularization (l1-norm or l2-norm) of 

coding coefficient. Fig. 10 plots the recognition rates of GRRC_L1 and GRRC_L2 versus different feature 

dimensionality with the same experiment setting on Mulit-PIE database in Section 4.3. The number of 
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dictionary atoms is 3486 (14×249). From Fig. 10, we get that when the feature dimension is too low 

compared to the number of dictionary atoms, GRRC_L1 has better performance than GRRC_L2. However, 

as the feature dimensionality increases, their recognition rates will become close. This result can be easily 

explained by the fact that when the feature dimension is much lower than the number of dictionary atoms, 

the dictionary is more over-complete, and thus the sparsity constraint on the representation coefficients is 

more reasonable. When the feature dimension is comparable to the number of dictionary atoms, especially 

for the problem of FR where high correlation exists in the dictionary, l2-norm regularized GRRC has very 

competing performance with GRRC_L1, implying that the time-consuming sparsity constraint on the coding 

coefficients is not necessary. 
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Figure 10: Recognition rates of GRRC_L1 and GRRC_L2 versus feature dimensionality in FR with 
expression variations. (a) FR with smile in session 1 for testing. (b) FR with smile in session 3 for testing. (c) 
FR with surprise in session 2 for testing. (d) FR with squint in session 2 for testing. 
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6. Conclusion 

In this paper, we proposed a Gabor-feature based robust representation and classification (GRRC) scheme 

for face recognition, and proposed an associated Gabor occlusion dictionary (GOD) computing algorithm to 

handle the occluded face images. Apart from the improved face recognition rate, one important advantage of 

GRRC is its compact occlusion dictionary, which has much less atoms than that of the original SRC scheme. 

More importantly, the coding coefficients on the learnt GOD could be regularized by l2-norm instead of the 

commonly used l1-norm. This greatly reduces the computational cost of coding. We evaluated the proposed 

method on different conditions, including variations of illumination, expression and pose, as well as block 

occlusion and disguise occlusion. The experimental results clearly demonstrated that the proposed GRRC 

has much better performance than SRC, leading to much higher recognition rates while spending much less 

computational cost. This makes it much more practical to use than SRC in real world face recognition. 
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