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Abstract—In this paper, we propose a Multi-Manifold 
Discriminant Analysis (MMDA) method for face feature 
extraction and face recognition, which is based on graph 
embedded learning and under the Fisher discirminant analysis 
framework. In MMDA, the within-class graph and between-
class graph are designed to characterize the within-class 
compactness and the between-class separability, respectively, 
seeking for the discriminant matrix that simultaneously 
maximizing the between-class scatter and minimizing the 
within-class scatter. In addition, the within-class graph can 
also represent the sub-manifold information and the between-
class graph can also represent the multi-manifold information. 
The proposed MMDA is examined by using the FERET  face 
database, and the experimental results demonstrate that 
MMDA works well in feature extraction and lead to good 
recognition performance. 
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I.  INTRODUCTION 

In the past several decades, many feature extraction 
methods have been proposed. The most important ones are 
principle component analysis (PCA) and linear discriminant 
analysis (LDA) [1]. Since un-supervised learning may not be 
able to model the underlying structure and characteristics of 
different classes, discriminant features are often obtained by 
supervised learning. LDA [1] is the representative approach 
to learn discriminant subspace. Unfortunately, it cannot be 
applied directly to small sample size (SSS) problems [2] 
because the within-class scatter matrix is singular. Face 
recognition is a typical SSS problem and many works have 
been proposed to use LDA for face recognition [3-8]. Recent 
studies have shown that the face images possibly reside on a 
nonlinear sub-manifold [9-11]. Many manifold-based 
learning algorithms have been proposed for discovering the 
intrinsic low-dimensional embedding of the original data. 
Among the various methods, the most well-known ones are 
isometric feature mapping (ISOMAP) [9], local linear 
embedding (LLE) [10], and Laplacian Eigenmap [11]. 
Experiments have shown that these methods can find 
perceptually meaningful embedding for facial or digit images 
and other artificial and real-world data sets. However, how to 
evaluate the maps remains unclear. He et al. [12] proposed 
the Locality Preserving Projections (LPP), which is a linear 
subspace learning method derived from Laplacian Eigenmap. 
In contrast to most manifold learning algorithms, LPP 
possesses a remarkable advantage that it can generate an 

explicit map. This map is linear and can be easily computed, 
like PCA and LDA. The objective function of LPP is to 
minimize the local scatter of the projected data. Yang et al. 
[14] developed an Unsupervised Discriminant Projection 
(UDP) technique for dimensionality reduction. UDP 
characterizes the local scatter as well as the nonlocal scatter, 
seeking for a projection that simultaneously maximizes the 
nonlocal scatter and minimizing the local scatter.  

The basic assumption of manifold learning is that the 
high-dimensional data can be considered as a set of 
geometrically related points lying on a smooth low-
dimensional manifold. Each object space is usually a sub-
manifold. Different object spaces are usually a multi-
manifold. LPP and UDP are un-supervised method in nature, 
and multi-manifold information is partly considered in LPP 
and UDP. In this paper, we develop a novel method, namely 
multi-manifold discriminant analysis (MMDA), for feature 
extraction and pattern recognition. In MMDA, we construct 
two graphs to characterize the within-class compactness and 
the between-class separability, and give the criterion function 
for calculating the projection matrix. The within-class 
compactness and the between-class separability also can be 
characterized by the within-class Laplacian matrix and the 
between-class Laplacian matrix, respectively, which are 
associated with the within-class matrix, between-class matrix 
under the Fisher discriminant analysis framework. We seek 
for the projection matrix by simultaneously maximizing the 
between-class Laplacian scatter matrix and minimizing the 
within-class Laplacian matrix. 

II. A MULIT-MANIFOLD DISCRIMINANT ANALYSIS 

METHOD (MMDA) 

A. Idea 

In LDA, the between-class scatter matrix is more 
determined by the larger distances between class means, so 
the influence of the distances between class means is ignored 
in LDA. And each sample in each class has different 
contribution to within-class scatter matrix, which is also 
ignored in LDA. To overcome these drawbacks, we propose 
a multi-manifold discriminant analysis method for face 
feature extraction and recognition. 

The idea of MMDA is to keep the class labeling after 
embedding or subspace learning. In other words, in the 
derived low dimensional MMDA subspace, we expect that 
the points are still close if they are from the same class, and 
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the points from different classes are as far from each other as 
possible. To this end, we define two types of graphs in 
MMDA: within-class graph  and between-class graph , 

with N nodes and c nodes respectively. 
wG bG

Denote the sample dataset as  
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Obviously, for any ix , jx  and parameter , t 0 1ijC   

always holds. In addition, the weight function is a strictly 
monotonically decreasing function with respect to the 
distance between two points ix  and jx .  

The within-class graph-preserving criterion is  
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 represent the affinity weight in each class, 

 represent a point’s importance in its class. 

According to matrix , we can get the weighted center of 

class :  

wcD

wkD

    1
(k i

kiii

m
D

 
)kii kiD x                             (4) 

Then we can get all the class weighted centers 
  

1 2[ , , , ]cM m m m  , which can be more respective than the 

original mean of the each class. 
Each class has its own manifold structure and different 

classes could reside on different manifolds. For recognition, 
it would be necessary to distinguish between classes from 
different manifolds. To achieve an optimal recognition, the 
recovered embeddings corresponding to different manifolds 
should be separated as much as possible in the final 
embedding space.  

For the between-class graph , based on the weighted 

centers of each class, we only consider the point pairs of 
bG

M . 
An edge is constructed between nodes im  and jm  with 

weight being set as 
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The between-class graph-penalizing criterion is  
                     arg                               (6) max T
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 is the Laplacian matrix,  is a diagonal 

matrix with 
bD

ijj
B  being the column (or row) sum of 

, B ijB  is the weighted coefficient between nodes im  and 


jm  and it adjusts the influence of the distance between 

nodes im  and jm . 

According to graph embedding, MMDA should satisfy 
the following two optimization criteria: 
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We can further re-write the criteria as follows: 
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From the framework of Fisher discrimiant analysis, in the 
MMDA subspace, the within-class Laplacian scatter can be 
formulated as: 
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(or row) sum of . For non-Gaussian or manifold-value data, 
we can process them by using local patches because non-
Gaussian data can be approximately viewed as locally 
Gaussian and a curved manifold can be viewed as locally 
euclidean [35, 36]. 
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It is obvious that w  and b  are nonnegative 

symmetrical matrix. To maximize the between-class 
Laplacian scatter and minimize the within-class Laplacian 
scatter in the MMDA subspace, the objective function can be 
defined as: 
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It can be concluded that our proposed method is a graph 
embedded learning method and it is under the Fisher 
discrimiant analysis framework. Therefore, we call the 
proposed method multi-manifold discriminant analysis 
(MMDA). 

B. The algorithm 

The proposed MMDA based feature extraction algorithm 
can be summarized as follows: 
Step1. Use PCA to transform the original image into a low 
dimensional subspace. Denote by  the transformation 

matrix of PCA. 
PCAW

Step2. In the PCA subspace, construct the similarity matrix 
, within-class Laplacian scatter matrix C w  and the 

weighted class center M  using Eqs. (1-4). 
Step3. Construct the between-class Laplacian scatter matrix 

b  using Eqs. (5) and (10), then calculate the eigenvectors 

 of 1 2[ , , , ]dP p p p 1( )w b   corresponding to first d  

largest nonzero eigenvalues. 
Step4. The final projection matrix is . PCA= *T TW P W

III. EXPERIMENTS 

The FERET face database is a result of the FERET 
program, which was sponsored by the US Department of 
Defense through the DARPA Program [14,15]. It has 
become a standard database for testing and evaluating state-
of-the-art face recognition algorithms. The proposed method 
was tested on a subset of the FERET database. This subset 
includes 1,400 images of 200 individuals (each individual 
has seven images). This subset involves variations in facial 
expression, illumination, and pose. In our experiment, the 
facial portion of each original images was automatically 
cropped based on the location of the eyes and the cropped 
images was resized to 40  pixels. Some examples images 
of one person are shown in Fig.1. 

40

 
 
 
 
 

Figure 1.  Images of one person in FERET database. 

 
In the experiment, we used the first l  ( 2,3,4,5,6l  )  

images per class for training and the remaining images for 
testing. We used PCA (eigenface), LDA (Fisherface), LPP, 
LPCA, LLD and the proposed MMDA for feature extraction 
and comparison. In PCA and the PCA stage of LDA, LPP, 
LLD and MMDA, we preserved nearly 95 percent image 
energy to select the number of principal components. In LPP, 
the number of the nearest neighbors was set as 1l  , and the 
final dimension is set the same as that in PCA. Finally a 
nearest neighbor classifier with cosine distance is employed. 
The final recognition rates are given in Table1, from which 

we can find that the proposed method has the top recognition 
rate. 

 

TABLE I.  RECOGNITION RATE ON FERET DATABASE 

 l=2 l=3 l=4 l=5 l=6 

PCA 0.4760 0.4150 0.5017 0.4000 0.3050

LDA 0.6600 0.5925 0.7067 0.7000 0.5900

LPP 0.4040 0.3575 0.4667 0.6125 0.6700

LPCA 0.5270 0.4925 0.6133 0.6875 0.7200

LLD 0.6350 0.5700 0.7033 0.7125 0.7150

Proposed 0.6720 0.5975 0.7233 0.7250 0.7500

 
From Table1, we can find that our proposed method 

(MMDA) outperforms the other methods and LLD has a 
better recognition rate than LDA.  Each class lies on a 
manifold space and different classes may reside on different 
manifold spaces. MMDA simultaneously characterizes the 
sub-manifold information and multi-manifold information, 
which is important for classification. There are strong pose, 
expression and illumination variations in FERET face 
databases. Different training samples have different 
contributions to the mean of each class, which is explicitly 
considered in MMDA and useful to characterize the sub-
manifold information and multi-manifold information. 
Compared to LPP, MMDA uses the class label information 
and does not need to choose the number of nearest neighbors. 
Compared to LDA, MMDA considers the contribution of 
each training sample to the class center, which is important 
to characterize the within-class scatter; MMDA considers the 
influence of the distances between class centers. 

IV. CONCLUSIONS 

Many manifold learning based feature extraction 
methods have been proposed. To model multi-manifolds for 
classification purpose, it is important to uncover the 
embeddings corresponding to different manifolds and, at the 
same time, to make different embedding separated as much 
as possible in the final embedding space. The proposed 
MMDA is based on graph embedded learning and is under 
the Fisher discriminant analysis framework. The 
experimental results on benchmark FERET face databases 
show that MMDA outperforms many existing representative 
subspace learning methods. 
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