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ABSTRACT

System software, especially operating systems, tends to be
highly configurable. Like every complex piece of software, a
considerable amount of bugs in the implementation has to
be expected. In order to improve the general code quality,
tools for static analysis provide means to check for source
code defects without having to run actual test cases on
real hardware. Still, for proper type checking a specific
configuration is required so that all header include paths are
available and all types are properly resolved.

In order to find as many bugs as possible, usually a “full
configuration” is used for the check. However, mainly because
of alternative blocks in form of #else-blocks, a single configu-
ration is insufficient to achieve full coverage. In this paper, we
present a metric for configuration coverage (CC) and explain
the challenges for (properly) calculating it. Furthermore, we
present an efficient approach for determining a sufficiently
small set of configurations that achieve (nearly) full coverage
and evaluate it on a recent Linux kernel version.

1. INTRODUCTION

Much system software employs compile time configuration
as a simple and widely used technique for configuration
management, which allows tailoring with respect to a broad
range of supported hardware architectures and application
domains. A prominent example is the Linux kernel, which
provides more than 11,000 configurable features.

Technically, static configurability is mostly implemented
by means of the C Preprocessor (CPP) [9], despite all the
disadvantages (“#ifdef hell”) this approach is known for [5, 8].
In the case of Linux (2.6.35), the result are more than 84,000
#ifdef-blocks spread over 28,000+ source code artefacts.
These numbers are subject to constant growth; they have
practically doubled over the last five years [11].

From the maintenance point of view, compile-time config-
urability imposes big challenges with respect to configuration
coverage (CC). With this term we denote the coverage of
software quality measures (such as unit tests or the use of
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static bug-finding tools) with respect to the configuration-
conditional parts of the source code.

1.1 Problem Statement

One often hears statements like “we have tested this with
Linux, it works.” (Yes, but which configuration?) “Our tool
has found 47 bugs in Linux!” (That is impressive, but how
much of Linux did you actually analyze?). Even though static
configurability by conditional compilation is omnipresent
in system software, the community seems to be somewhat
agnostic of the CC issue:

1. There is a plethora of literature and tool support (such
as GCOV) to implement, for instance, unit tests that
reach a certain coverage criteria (such as decision cov-
erage: every edge in the control flow graph is taken at
least once). However, the available methods and tools
generally understand coverage from the compiler’s per-
spective — they (implicitly) assume that preprocessing
(thus, static configuration) has already happened. The
problem of CC is completely ignored.

. Many great papers (e.g., [2, 4, 10]) have been pub-
lished about applying static bug-finding approaches
to Linux and other pieces of system software. In all
cases the authors could find (and eventually fix) a sig-
nificant number of bugs. It is, however, remarkable,
that the issue of CC is not mentioned at all in these
papers; in most cases the authors do not even state the
configuration(s?) they have analyzed.

(1.) has practical implications on the every-day work of
software developers: A Linux developer, for instance, who
has modified a bunch of files for some maintaining task
would probably want to make sure that every edited line
of code does actually compile and has been tested before
submitting a patch. However, deducing a set of configurations
that covers all relevant compilation-conditional parts of the
source is a sometimes difficult, but always tedious and error-
prone task. Our initial findings show that some files (such as
kernel/sched_fair.c) require seven different configurations
to cover all conditional parts — and this is probably just a
lower bound, as we do not yet include header files in our
analysis.

With respect to (2.): Private communication with some of
the authors revealed that with Linux the common approach
is to use a standard configuration (x86 with either defconfig
or allyesconfig). This is perfectly acceptable — their goal
was to find bugs and they have found bugs [1]. However,
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how many additional bugs could possibly be found with full
coverage? Given that allyesconfig is the de-facto standard
for testing things with Linux: What is its actual coverage?

1.2 About this Paper

We think that configurability as a system property is a
significant (and widely underestimated) concern for the com-
plete software development cycle. In the VAMOS® project
we aim to mitigate this situation by developing new methods
and tools to deal with configurability-induced complexity.
In a recent paper [11] we have shown that by better tool
support, many configurability-related source-code defects
(such as dead #ifdef-code) and bugs can be found upfront.
Our findings led to fixes for 20 new bugs and the removal
of 5,000+ superfluous lines of #ifdef-code in Linux 2.6.36.
The work presented in this paper continues this line of re-
search: We describe an approach to measure the effective
CC of Linux configurations. We have extended our UNDER-
TAKER tool to automatically generate Linux configurations
for a given source file in order to achieve full CC. In our
preliminary results we thereby achieve a CC of 94 percent,
whereas allyesconfig reaches a CC of only 78 percent.

2. HOW TO MEASURE CONFIGURATION
COVERAGE IN LINUX

Technically, the CPP-statements of a C program describe a
meta-program that is executed by the C Preprocessor before
the actual compilation by the C compiler takes place. In
this meta-program, the CPP expressions (such as #ifdef —
#else — #endif) correspond to the conditions in the edges of
a loop-free? control flow graph (CFG); the thereby controlled
fragments of C-code (i.e., the bodies of #ifdef-blocks) are
the statement nodes (Figure 2). On this CFG, established
metrics, such as statement coverage or path coverage, can
be applied. In this paper, we go for statement coverage and
define configuration coverage (CC) as the fraction of selected
configuration-conditional blocks divided by the number of
available configuration-conditional blocks. (In the longer
term we aim for path coverage; this is more thoroughly
discussed in Section 5.)

Not every CPP identifier that is used in some #ifdef-
expression does actually describe a configuration-conditional
block. For instance, the identifiers used for #include guards
do not contribute to configurability. In order to get a sound
analysis of the configuration-controlled CPP-based variability
in Linux, we restrict the analysis to those flags that can be
controlled by KCONFIG (the configuration front-end of Linux).
Fortunately, this is relatively easy, as it is a convention in
Linux to prefix all configuration-related CPP identifiers with
the string CONFIG_. We therefore limit our analysis to blocks
with CPP expressions that reference at least one CONFIG_xxx
identifier. We furthermore restrict our initial analysis to one
architecture, namely arch-x86. Figure 1 shows the progres-
sion of configuration-conditional blocks over the last 6 years
of Linux development for this architecture.

Linux ships with a number of predefined default config-
urations in the source tree. As pointed out in Section 1.1,
we assume that tools for static analysis have generally be
applied on one of these reference configurations of Linux
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Figure 1: Progression of user controlled variability
in Linux (arch-x86) in the last six years

(allyesconfig in the best case), ignoring any user-induced
variability.

Figure 1 presents the CC of allyesconfig over the last
six years of Linux kernel development. Because of alternative
features (which manifest as #else-blocks in the code) gen-
erally there is no configuration that selects all configuration-
conditional blocks. However, depending on the kernel version,
the CC of allyesconfig has always been in the range of
60 to 70 percent: This is not too bad — with more and
more features being added to Linux, we had expected this
number to decrease over time. We also had expected it to
be somewhat lower in general. Still, when assuming that
most Linux kernels are tested with a configuration based on
allyesconfig, code that is not covered by this configuration
is generally less tested and therefore is more likely to contain
bugs.

The numbers presented so far, however, do not represent
the full picture in two respects:

Firstly, as we have shown in previous work [11], not ev-
ery seemingly configuration-conditional block is actually
configuration-conditional. The Linux source code contains
many (thousands!) dead blocks — conditional blocks that
are never selected, as their presence condition contains a
contradiction — either within the source code itself (such as
an #ifndef CONFIG_FOO block nested into an #ifdef CON-
FIG_FO0O block) or in conjunction with the constraints defined
by the KcoNFiG-models. These “technically unreachable”
blocks should not be considered with respect to CC. Luck-
ily, our UNDERTAKER tool [11] can be employed to detect
global and architecture-specific dead blocks. When applying
our tools to Linux 2.6.35, we observe that the actual CC of
allyesconfig increases to nearly 78 percent.

Secondly, we do not yet analyze the variability brought
in by the header files. The effects of this limitation are
difficult to judge (we are working on this), however, it might
be significant: There is a coding guide line that variability
should be implemented as far as possible in the headers.
Instead of polluting the implementation with repetitions
of the same #ifdef-block again and again, developers are
encouraged to put this code into a conditionally defined
macro. If this approach is used for the implementation of
many alternative features the actual CC of allyesconfig
will be lower.

In any case, however, higher or even full CC is desirable.
In the following section we discuss how to efficiently create a
set of configurations in order to achieve full CC.



#ifdef CONFIG_DISCONTIGMEM Block 1
static inline int pfn_to_nid(unsigned long

pfn)
{
#ifdef CONFIG_NUMA Block 2
return((int) physnode_map [(pfn) /
PAGES_PER_ELEMENT]) ;
#else Block 3
return O;
#endif
}
#endif Block 1
Block 1
+ DISCONTIGMEM
L
Block 2 R Block 3
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Figure 2: The internal structure of the conditional
blocks are translated in a tree-like graph. The
dashed edges represent nesting while double edges
represent alternatives. Each node contains the pres-
ence condition PC of the block it represents.

3. APPROACH

We represent the structure of CPP blocks in a tree-like graph
with two types of edges: nesting of blocks and #if-#elif
cascades. Figure 2 illustrates this representation.

The goal of the approach is to find a set of configurations
that maximizes the CC with respect to statement coverage.
Since a thorough code test requires all blocks to be selected
at least once, ideally, a minimal set of configurations is used
in order to reduce testing effort. Note that the minimal set
is not well-defined; there can be more than one minimal set
of configurations for a given source file.

The minimal amount of configurations that when accu-
mulated select all blocks could be calculated by solving the
graph coloring problem on the “conflict graph”: All nodes
represent a conditional block. When two blocks cannot be
selected at the same time (e.g., because of the CPP structure
or constraints from the KCONFIG model), an edge between
the blocks is added that represents the conflict. The minimal
number of configurations is the number of colors required so
that that two adjacent nodes have different colors. This is
NP hard and, hence, unfeasible to be applied in a general-
purpose development tool that scales to the size of Linux.
Therefore we seek for heuristics to get a suboptimal, but yet
sufficiently useful solution for real-world use-cases.

The structure of CPP blocks and the identifiers used in
their expressions are translated into a propositional formula
such that each CPP identifier and each conditional block is
represented as a propositional variable. For each conditional
block, we call the condition under which the block is se-
lected the presence condition of the block. The presence
condition is influenced by two factors: First, the structure
and semantics of the CPP language impose constraints on the
presence condition of each block. Second, extra constraints
apply that come from the constraints as expressed by the
KCONFIG models. In order to incorporate these extra con-
straints, we reuse the model extractors from [11]. In the
following algorithms, the presence condition of a given block
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1: function NAIVECOVERAGE(IN) > List of blocks
2: R < empty set > Found Configurations
3: B + empty set > Selected Blocks
4: DPgre /\Z}N PC(b) b all presence conditions in file
5: for all b in IN do

6: continue if b€ B > already processed
7 r + sat(Pgie A D)

8: if r.failed() then > dead block
9: B+ BU{b} > mark as processed
10: else
11: B + B U r.selected_blocks()
12: R < R U {r.configuration()}
13: end if
14: end for
15: return R
16: end function

Figure 3: Naive Variant

b is determined by the function PC(b). The function Pgie is
the formula that conjugates the presence conditions of all
conditional blocks given as input. Conjugated with a block b,
this formula determines a valid configuration of blocks and
CONFIG_ identifiers that select the block b.

On this basis, we have developed two algorithms that
calculate a set of configurations that (accumulated) selects
all blocks:

The first algorithm is depicted in Figure 3. The general
idea is to iterate over all blocks (Line 5) and use a SAT solver
to generate a configuration that selects the current block
(Line 7). As the most expensive operation is the number of
SAT queries, covered blocks in already found configurations
are skipped (Line 6). The set B collects the already covered
blocks (Line 11). The resulting set R contains the found
configurations. This algorithm therefore requires n SAT calls
in the worst case.

As a further optimization, the SAT solver is tweaked to try
to enable as many propositional variables as possible while
looking for satisfying assignments for the formula, which
increases the amount of selected blocks per configuration.

On the basis of this simple algorithm, Figure 4 shows an
improved version of the approach that more aggressively
minimizes the number of configurations and hence, improves
the quality of the results. Here, the inner loop (Line 7)
collects as many blocks as possible to the working set WS
so that there is a configuration that covers all blocks in the
working set. Blocks that obviously conflict with some other
block of the working set, such as #else blocks of an already
selected #if block, are skipped in Line 9. Line 10 verifies
that there is configuration, such that all blocks of the current
working set and the current block are selected. Otherwise the
block is skipped. For the found working set of “compatible”
blocks, a configuration is calculated similarly to the simple
variant (Line 19f) and added to the resulting set R (Line 21).
This results in n? SAT calls for the worst case.

4. RESULTS

We have implemented both algorithms in the UNDERTAKER
toolchain® as an additional command-line option. An en-
hanced version of the model extractor from [11] extracts
the constraints from KCONFIG. As SAT solver, the PICOSAT

3http://vamos.informatik.uni-erlangen.de
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1: function GREEDYCOVERAGE(IN) > List of blocks
2: R < empty set > Found Configurations
3 B + empty set > Selected Blocks
4: Dgre /\I}N PC(b) b all presence conditions in file
5: while IN.size() != B.size() do

6 WS <+ empty set > reset working set of blocks
7 for all b in IN do

8: continue if b€ B > already processed
9: continue if b conflicts WS

10: T sat(b ANWS A @ﬁ]e)

11: if r.failed() then

12: if W S.empty() then > dead block
13: B+ BU{b} > mark as processed
14: end if

15: else

16: WS« WSU{b} > Add to working set
17: end if

18: end for

19: r + sat(WS A Pgie)

20: B + B Ur.selected_blocks()

21: R + R U {r.configuration()}

22: end while

23: return R

24: end function

Figure 4: Greedy Variant

config HOTPLUG CPU
bool "Support for ..."
depends on SMP && ...
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Figure 5: Principle of Operation

package? is used. Given a single source file as input, UNDER-
TAKER calculates (partial) configurations that maximize the
configuration coverage for this specific file. This allows pro-
grammers participating in large projects, such as the Linux
kernel, to focus on the specific parts of the kernel that they
currently work on.

We run a preliminary prototype of our tool chain to ana-
lyze CC of the Linux v2.6.35 kernel. The whole experiment
was done under consideration of the constraints of the x86
architecture. Table 1 summarizes the results. Out of 10,365
.c files, we identify 3,163 files that contain configuration-
conditional blocks. On these files, our tool calculates in total
4,505 (naive version) and 4,435 (greedy version) configura-
tions. Generating the configurations took about 5 minutes
minutes for the naive version and about 15 minutes for the
greedy version of the algorithm on a standard quadcore work-
station (Intel Core 2, 2.83 Ghz). However, all times where
measured in single-thread operation.

The generated configurations do not include selections for
items without constraints on the current file. For full con-

“http://fmv.jku.at/picosat/
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Analyzed files 10,365
Files with variability 3,163
Rate of files with variability 30.52%
Sum of all (partial) configurations (naive) 4,505
Sum of all (partial) configurations (greedy) 4,435
Approach worked on #files 2,970
Approach failed on #files 193
Configuration expansion success rate 93.90%
Sum of configuration controlled conditional blocks 16,444
Sum of blocks selected by allyesconfig 11,511
Sum of all blocks selected by undertaker-coverage 13,844
Coverage allyesconfig (non-dead-corrected) 70.00%
Coverage undertaker (non-dead-corrected) 84.19%
Dead blocks 1,778
Selectable blocks (excluding dead blocks) 14,666
Selected by allyesconfig 11,511
allyesconfig coverage 78.49%
Covered by undertaker (“greedy” algorithm ) 13,844
undertaker coverage 94.40%
undertaker coverage / allyesconfig coverage 1.20

Table 1:
arch-x86.

CC-Analysis Results with Linux 2.6.35,

figurations, the resulting partial configurations need to be
supplemented with the remaining items. The selection of
the remaining items is irrelevant. For this expansion pro-
cess, we reuse the KCONFIG infrastructure. In practice, this
process is cumbersome as KCONFIG in some cases silently
overwrites user choices instead of signaling incompatible item
selections. Due to technicalities of our approximations of
the KCONFIG model [13], our preliminary implementation
fails to process some files (< 7%). The problematic files
tend to contain complicated CPP expressions on which the
allyesconfig coverage resulted in a coverage of only 50 per-
cent. In comparison, the CC of allyesconfig is 70 percent
and uses 3163 compiler invokations. With our approach,
the resulting partial configurations increase the CC to 84
percent and require 4530 compiler invocations. This means
with investing 30 percent more static analysis runs the CC
improves by 14 percent.

These numbers, however, do not take dead blocks into
account: As described in Section 2, a considerable amount of
blocks cannot be selected by any configuration, which skews
the comparison. Therefore, we used the UNDERTAKER tool
to detect such dead blocks and subtract them from the total
number of selectable blocks. While this increases the CC
in both cases, we see that in this comparison, our approach
achieves 1.2 times better coverage (78.49% to 94.40%).

S. DISCUSSION

Header-induced Variability.

Even though our current implementation reaches a sig-
nificantly higher CC than allyesconfig, it fails to cover
a remaining six percent of valid configuration-conditional
blocks. One reason for this is that our current implementa-
tion does not take constraints into account that derive from
#define and #undef statements in header files. In order to
integrate these extra constraints, a sound implementation of
a partial preprocessor such as [3] or [12] would be necessary.
We are currently looking into integrating such techniques
in our approach. First quick experiments with [3] indicate
that with a partial expansion of header-induced macros, our
approach achieves up to 99 percent coverage and is 2.5 times
better than allyesconfig.
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Figure 6: Relative amount of source files for which
CC is reached with n configurations

Comparison of the Algorithms.

The histograms in Figure 6 show that for more than 90 per-
cent of the files in Linux CC can be reached by at most two
configurations. We can therefore conclude that the imple-
mented heuristics yield reasonably small solutions. In direct
comparison, the greedy algorithm produced about 1.5 per-
cent fewer configurations than the naive variant in total, but
takes more than twice the run time, which is not worth the
effort in the general case. However, whereas for the greedy
variant, no file requires more than 7 configurations to reach
CC, the naive variant requires up to 16 configurations in a
few cases. Hence, it would be worthwhile to always start with
the naive algorithm and fall back to the greedy algorithm
only when the resulting number of configurations passes by
a certain threshold (e.g. five).

Coverage Criteria and Related Work.

The approach presented in this paper generates a set of
configuration that achieve statement coverage. While many
syntactical and semantical problems can already be found by
statement coverage, some issues might still be missed. For
instance, consider two conditional blocks, one containing a
function definition and the other a corresponding function
call: The selection of the second block requires the presence
of the first one. If the presence conditions of the two blocks
do not imply this constraint, the configuration sets generated
by the approach presented in this paper may or may not
miss a configuration where this constraint is violated.

In order to cover such problems, stronger coverage condi-
tions are necessary. In order to completely type-check all
configurations, every possible path must be tested. However,
full path coverage, would probably require too many configu-
rations to be usable in practice. Since most type checking
problems in C are some kind of “definition-use” violation, pair-
wise combinatorial testing, like presented in [6] for features
of a software product line, might be a pragmatic alternative.
This is a topic of further research.

Palix [7] tries to reproduce a ten year old analysis on Linux
in order to investigate the evolutionary development of Linux
across the last decade. As the old experiment misses to state
the exact configuration that was used, the environment could
only be approximated. Hereby, the paper indirectly discusses
CC in the sense that the selected configuration can (and does)
affect the results of static analysis tools considerably. We take
this anecdote as call for further integration of configuration
consistency checks into static analysis tools.

6. SUMMARY AND FUTURE WORK

We have introduced and discussed the problem of con-
figuration coverage (CC) in preprocessor-configured system
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software. CC is defined as the fraction of conditional blocks
that can be selected in a source file. An analysis on the Linux
kernel shows that the generally applied allyesconfig config-
uration selects only 78 percent of all configuration-conditional
#ifdef blocks.

As the remaining code is likely to be less tested, we propose
an approach that efficiently calculates a set of configurations
to reach (nearly) full coverage. In the future, these resulting
configurations can be used to systematically apply static
analysis tools on code that is impossible to analyze with a
single configuration. We invite other researchers to suggest
suitable tools to verify the hypothesis that such code tends
to contain more bugs.
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