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Introduction
All positive integers can be written in only one way as a

product of powers of primes:

n = 2a2 3a 35a5 .... p
ap

.                           (1)

The number of distinct divisors of n is, since each power of a prime
factor can include zero,

d n)( = a
2( +1) a

3( +1) a
5( +1)... a

p( +1).       (2)

When n=12, for example, eqs. 1 and 2 yield 12 = 2^2 3^1 so d(n)=
(2+1) (1+1) = 6.  The divisors of 12 can be readily enumerated as
{1,2,3,4,6,12}.

The divisor function d(n) has been of great interest to number
theorists for a long time.  It fluctuates wildly from one integer to the
next, and one might think it would be quite unpredictable.  However,
it is actually possible to derive some simple rules about its average
behavior.  One result, for example,  is that the average of the number
of divisors of n from 1 to N is approximately ln[N].

Prime numbers, of course, have the minimum number of
divisors possible:  2 (1 and the prime number itself).  It is natural to
examine the numbers at the other end of the range--the numbers
that have the highest possible number of divisors.  These numbers
were first studied by S. Ramanujan and a number of interesting
results were demonstrated.

Highly composite numbers
The definition of a highly composite number (integer) is that it

is a number that has a larger number of divisors than any number
less than itself.  For example, 12 is a highly composite number,
because it has 6 divisors while every number less than 12 has a
smaller number of divisors: e.g. 10, 8 and 6 have 4 divisors, 9 has



only 3, etc.  The sequence of highly composite numbers starts out as
2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, etc.
The 100th number published by Ramanujan is 3212537328000
which has 8192 divisors. while the average number of divisors of all
the numbers up to this one is about 29.  

It is easy to show that composite numbers have some
interesting simple properties.  For example, for n to be highly
composite, none of the prime factors in eq. 1 can be omitted.  Thus,

k = 243673

cannot be highly composite (5 is omitted) because

k ' = 243653

has the same number of factors as k, by virtue of eq. 2, but is smaller
than k.   Also, by similar reasoning, k' cannot be highly composite
either, because

k '' = 263453

is obviously smaller than k' and has the same number of factors as
k'.

Clearly, for n to be highly composite, we must have

a
2
≥ a

3
≥ a

5
≥ a

7
... ≥ 1.

Ramanujan gave a list of the first one hundred of these
numbers (with one error of omission), which he found "by trial".
There are several outstanding conjectures about the properties of the
sequence of highly composite numbers and it would be of some
interest to have a method of generating them automatically.  A very
simple algorithm, in the form of a sieve, is

n:=2;  nd:=2;
label1:  n:=n+1;
if divisors(n) ≤ nd  then  goto label1;
else nd:=divisors(n), print n, goto 1;

will in principle print out all of the highly composite numbers.
However, this is much too slow for even moderately large n and it



quickly runs out of steam.  Highly composite numbers are relatively
rare:  there are (roughly) only 10 per decade.  Therefore speeding
the sieve up by an order of magnitude will therefore result in only
an additional 10 highly composite numbers.  To calculate the
thousandth highly composite number by the brute force sieve using
a computer that tested one number per picosecond would still take
many times (10^45 or so times!) the age of the universe.

The challenge is to discover a much faster algorithm that can
yield highly composite numbers far larger than those already
tabulated.

Some preliminary observations
It is instructive to examine a short section of the known highly

composite numbers:



n pwrs of
primes

hc(n)/hc(n-1)

85 63221111 28/23
86 731111111 46/35
87 54221111 105/92
88 532111111 23/21
89 442111111 3/2
90 64221111 28/23
91 632111111 23/21
92 542111111 3/2
93 732111111 4/3
94 642111111 3/2
95 532211111 7/6
96 633111111 10/7
97 442211111 21/20

They are  listed here in a compact way--only the powers of the
successive primes are shown, e.g., for n=85, the highly composite
number is

26335272111131171191 = 97772875200.

There are several things worth noting.  The prime having the highest
power is 2, and the power of the highest prime is unity.  Ramanujan
proved that this is nearly always true,with only two exceptions: 4
and 36.  Unfortunately, the highest prime factor does not increase
monotonically with n. The ratios of  successive highly composite
numbers  are always rational numbers greater than one.  The ratios
are also easily seen to be less than or equal to two:  multiplying any
highly composite number by two always gives a larger number with
a larger number of divisors. Thus, given a highly composite number
n, we are guaranteed to always have at least one in the range
between n and 2n.

The algorithm
A method for calculating successive highly composite numbers

can be devised from these observations.  The essential part is to get
hc(n+1) from the previous one, hc(n) by multiplying it by a suitable
ordered (increasing) list of rational numbers {r}, where each member
of {r} is greater than one and less than or equal to two. The number



of divisors of each of the products is calculated and compared to the
number of divisors of hc(n);  the first one with a greater number of
divisors is hc(n+1).

The interesting part is to calculate a suitable list {r}.  We
consider first the case where the highest prime factor, p, does not
change from hc(n) to hc(n+1).  It is useful to factor hc(n) into two
parts:  a highly variable one, which we denote v,  and a part that is
the same for both hc(n) and hc(n+1), which is defined as

s = p
i

i =1

m

∏ ,

where m is the ordinal number of the highest prime factor.  The
other, more variable part, is given by

v = hc(n) / s.

For example for n = 85

s(85) = 2 ⋅3⋅ 5 ⋅7 ⋅11⋅13 ⋅17 ⋅19
and

v(85) = 25325171

If a maximum largest power (of 2) is assumed to be g (say 8,
for example), then it is easy to generate a list of numbers like v with
the constraint that the successive powers are non-increasing:

do i=g to 1 step -1
do j=i to 1 step -1
do k=j to 1 step -1
do l=k to 1 step -1
v(i,j,k,l)= 2^i 3^j 5^k 7^l
end do

When g is not too large, nor the number of prime factors under
consideration, f,  (f=four in the case here) too many, the list of v's is
not so large as to be unmanageable.  It is not hard to show that the
number of terms in v is



n =
(i + g)

i =1

f

∏
f !

.

Following the example along, when g=8 and f=4, this list has 495
terms in it.  It can be narrowed to just those that are larger than
v(85), and smaller than or equal to two times v(85).  Multiplying
each member of the list of v's by s, then ordering it gives a list, V0,
of numbers that are candidates for hc(n+1).  In the example, this
gives a list of only 11 elements.

Sometimes the largest prime factor in hc(n+1) is larger than
that in hc(n). To cover this possibility a small modification of the
procedure is required.  The same list of v's is used, but the search is
narrowed to just those that are between  rp and 2 rp  where  rp =
v(85)/pp, and pp is the next prime after p.  Multiplying the list of v's
by s pp will give a list Vp, which in the example given, has 7
members.

Similarly, when the largest prime factor in hc(n+1) is smaller
than in hc(n), the search is narrowed to just those that a are between
rm and 2 rm, where rm = v(85) pm, and pm is the prime before p.
Multiplying the list of v's by s/pm will give a list Vm.  For the
example given it has 17 members.

Each of these three lists are then combined (Union) and has
only 35 members for the example) into one list, ordered and
searched for the first one having a larger number of divisors than
hc(n) to give, finally hc(n+1).  For the example, the correct result is
found on the 13th try.  Narrowing the search in this way minimizes
the time and memory requirements, but is still clearly exhaustive of
all of the possibilities, provided g and f are chosen to be large
enough.  Proper limits on these are discussed in the appendix.
 The above process can then be repeated to give hc(n+2).  In
principle a new list of v's, with increased values for g and/or f may
be assumed to get it.  In practice it is better to make the list of v's
large enough in the beginning to encompass the range of interest,
and use the same list over and over again until done, or a larger list
must be calculated.  Thus f=4 and g=6 gives a list sufficiently large to
calculate all of the one hundred highly composite numbers given by
Ramanujan.  On a PowerMac 7100/66, using the Mathematica
program language, the calculation of the first 100 takes only about
10 s.  The complete listing of the algorithm is given in Appendix II.



Properties of the calculated highly composite numbers
The final results of the calculation of 1000 terms in the series

of highly complex numbers is shown in Fig. 1.  The complete table is
too long to show here, but we may note briefly that the l000th highly
composite number is found to have 76 digits:   it is

50739595324912050170305529996630230464563024879813409718878962795046826080000,

and it has 109586090557440  divisors.  This can be compared to the
average number of divisors up to this number, which is
approximately ln[hc(1000)) = 177.

The powers of the successive primes of this number is also
interesting.  It can be written in a compact form:

86432222111111111111111111111111111111;

That is, 28 36 54 73  .... 157 163.
Examination of the numbers in the entire range computed

shows that the first three exponents (of 2, 3 and 5) in all of the
numbers larger than the 517th one are strictly decreasing.
Ramanujan showed that in very large highly composite numbers, we
would have a2 > a3 > a5 ... > aλ (strictly decreasing exponents) when
ln(p) > 8 λ2 (ln(λ))3.  For λ = 5, this would make p huge.  Evidently the
strictly decreasing exponents occurs far earlier than predicted by
this inequality.

We can make use of this fact to decrease the size of the list of
v's required for still larger numbers, and speed up the algorithm too.

The calculation of the 1000 highly composite numbers took
only about 2000 seconds on the PowerMac, but took a fair amount of
memory--24 M of RAM with 45 M of virtual memory.  The list of v's
required for the last 100 terms had over 48,000 entries.



Although the hc(n) appear on this scale to be a smooth function
of n, the ratio of successive numbers, shown in Fig. 2 illustrates the
variation more clearly.  The ratios, of course generally decrease with
increasing n, as may be expected from the decreasing slope in Fig. 1.



hc[n+1]
  hc[n]

The density of the highly composite numbers is also of some interest.
Here we define the number of highly composite numbers less than x
to be Q[x].  For example, for z=100, Q[x]=8, and for z=1000, Q[x] = 14.
Fig.1 shows the density as a function of the natural logarithm of x as
discrete points.  For comparison, the solid line shows the function

Q x( ) = ln(x)1+c
,

which was first shown by Erdos to give a lower bound on Q(x).   Here
c is an undetermined constant greater than zero.  The solid line is
drawn with c= 1/3.

Summary
We have shown an algorithm to quickly calculate highly

composite numbers and have used it to extend the list of known
highly composite numbers from the 100, previously published, up to
1000.





Appendix I.

Correct bounds f and g
The values of f and g to be used for a larger range of desired

highly composite numbers can determined as follows.  Ramanujan
has shown that there is a connection between the power of two, a2
and the largest prime  factor, p in a highly composite number:

log(p)
log(2)

 
  

 
  ≤ a

2
≤ 2

log( p
+
)

log(2)
 
  

 
  ,

where [] stands for the integral part.  Thus, for our example of the
85th highly composite number, p=19 and pp=23 gives a2 between 4
and 8, compared to the actual value of 6.  When p=23 and pp=29 the
formula also gives a2 between 4 and 8.  Therefore g = 8  is good
enough to certainly get the next higher highly composite number.

The number, f, of factors in v that is large enough to cover all
of the possibilities involves a somewhat more obscure function.



Λ λ , p( ) = 1/ (2 logλ /log p −1)[ ]
Here λ is a prime less than p, and, as before, p is the largest prime
factor of hc(n).  For values of           λ     greater than some critical
value           Λ        equals unity.  The critical value of l therefore
determines the size of f, the number of prime exponents that is not
one.  This is shown in fig. 1 as dashed line.  The number actually
found in the sequence of the first 1000 highly composite numbers is
shown in Fig. 1.
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