
EXsum - An XML Summarization Framework

José de Aguiar Moraes Filho
University of Kaiserslautern

67663 Kaiserslautern, Germany
aguiar@informatik.uni-kl.de

Theo Härder
University of Kaiserslautern

67663 Kaiserslautern, Germany
haerder@informatik.uni-kl.de
ABSTRACT 1
We propose a new framework for the summarization of XML doc-
ument properties called EXsum (Element-wise XML summariza-
tion), which can capture statistical information of all important
XPath axes related to (the nodes having) the same element name in
a document. Compared to conventional summaries, cardinality es-
timates for a richer spectrum of XPath/XQuery expressions can be
provided for query optimization. For the important class of queries
consisting of one or two location steps only, even accurate cardinal-
ities are computed. Besides adequate storage consumption, it pro-
vides fast access times which helps to keep the query optimization
overhead low. Using a collection of XML documents embodying
considerable structural variations, we have empirically analyzed
the EXsum framework by running a large number of experiments in
our XML native database management system called XTC. These
evaluations clearly show the predominance of EXsum as to impor-
tant aspects when compared to competitor approaches.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing.

Keywords
XML synopsis. Cost-based XML query processing. XML summa-
rization. XML databases. Query processing and optimization.

1. INTRODUCTION AND MOTIVATION
To process XML documents effectively and efficiently, suitable
auxiliary structures or meta-data have to be provided to support
such important tasks as formulation of meaningful queries, query
translation and optimization, document storage, as well as concur-
rency control. The oldest proposal called DataGuides [5] primarily
addressed query formulation and provision of some statistical data.
In turn, a so-called path synopsis [6] was used for structure virtual-
ization, i.e., to store only the content part of an XML document
while its structure is recomputed on demand using this path synop-
sis. Another use of the path synopsis is to effectively enable XML

1 Supported by the Rheinland-Pfalz cluster of excellence “Dependable ad-
aptive systems and mathematical modeling” (see www.dasmod.de).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS08 2008, September 10-12, Coimbra [Portugal]
Editor: Bipin C. DESAI
Copyright 2008 ACM 978-1-60558-188-0/08/09...$5.00.
concurrency control [7]. XPath/XQuery translation and optimiza-
tion need specific measures concerning statistical information
about the distribution of document nodes and their axis relation-
ships to provide the query optimizer with estimates as precise as
possible about selectivities of location steps and node cardinalities
of XML subtrees. For that reason, we need in addition to a path syn-
opsis as introduced in [6] a suitable summarization structure, in par-
ticular to support XML query optimization.

This latter task is challenging and still an open issue in database re-
search. Numerous methods exist [1, 2, 4, 9, 10, 12, 16] where the
main focus is on summaries only supporting child (/) and descen-
dant (//) axes of path expressions. Some of these proposals favor
tree-based structures [2, 4, 9] and others extend them to graph-
based structures [10, 16]. So far, an approach widely accepted as
the superior method does not exist. Usually, when a query execu-
tion plan (QEP) is generated, a summary has to be traversed for
each location step—possibly several times—to locate statistical in-
formation in the course of the optimization process. When inappro-
priate data structures are used, such auxiliary tasks can have consid-
erable impact on QEP preparation time, i.e., on the time to derive
sufficiently optimized QEPs.

Usually, summarization structures, as published in the literature,
are incomplete in the sense that they are limited to the estimation of
location steps having type /x and //x only, while other important
axes such as parent, ancestor, or sibling are neglected. Besides
missing structural support, estimation quality often has room for
improvement. Thus, developing a summary for an XML document,
which captures as accurately and completely as possible the distri-
bution of nodes and their axis relationships and, at same time, pro-
vides fast access for the query optimizer, is considered the “holy
grail” of XML cost-based query optimization.

One difficulty in designing suitable XML summaries is due to the
XML document structure itself, which often exhibits a “fuzzy de-
gree” of variability. It normally contains some parts of shallow or
skinny subtrees whereas other parts may have deep or broad ones.
Furthermore, some subtrees may exist having no text values at all
and, at the same time, other subtrees having a plethora of text val-
ues. Another issue is the presence of recursive structures in the doc-
ument. A structural recursion occurs when the same element name
appears several times in a document path. In such cases, summari-
zation of statistical values and, in turn, estimation of location steps
becomes more complex. The situation is even worse when recur-
sion also appears in the path expression (multiple location steps
with the same element reference). In such cases, summary access is
not bounded by the number of location steps in a path expression.

1.1 Related Work
We can roughly classify the published approaches for XML summa-
rization into three categories: table-based [1, 12], tree-based [4, 9],
and graph-based [10, 16]. Table-based approaches only record root-
to-leave paths together with their number of occurrences. Because of
this simple structure, they can be only used to estimate queries re-
stricted to child axis clauses and they cannot provide estimations for
queries having any predicates (e.g., /a/b[./c]). Tree-based and graph-
based approaches can support more complex queries (e.g., such re-
ferring to descendant axes) and some simple predicates (e.g., predi-
cates at the end of a path expression and limited to a single location
step), because the hierarchical summarization structures can imme-
diately support the computation of such estimates.

Most of the tree-based and graph-based methods apply some kind of
search pruning technique (i.e., the summary is only inspected down
to a given level). The main reason for such a pruning is to reduce the
overhead of computing location-step-related estimates. However, it
goes along with lower estimation quality or erroneous decision in-
formation, i.e., an increase of false positive hits may be observed es-
pecially when applied to recursive documents and/or queries. Nor-
mally, for descendant and ancestor axes, the more nodes a summary
contains, the more time has to be spent on structure traversal and es-
timation computation.

Furthermore, there are hardly any approaches which try to summa-
rize content and structure of XML documents [10]. So far, all meth-
ods considered can be hardly extended to capture statistical informa-
tion on value distributions.

While all summarization methods proposed so far closely follow the
structure of the XML document and are oriented towards document
paths, they can, as a consequence, provide only limited axes support.
For example, parent, descendant, previous sibling, and following
sibling axes are not or only marginally supported and may be, there-
fore, approximated by a very low estimation quality. Hence, when
such selectivity information is needed, some kind of guessing or
heuristics are used to decide on an optimization step of a QEP. In
contrast, we use an entirely novel approach by turning the summari-
zation problem upside down and collecting statistical information
per element name and, by doing that, we gain much more expres-
siveness for axes support and other statistical information. Although
we use a completely different structure, we can yet capture the struc-
tural characteristics of an XML document.

Due to its structure, EXsum lends itself to extensibility, that is the
capacity to extend the EXsum framework to capture additional sta-
tistical information of a document, e.g., value distributions of ele-
ment names. This paper does not directly cope with extensibility, but
we can throw a glance at it when we apply EXsum to estimate recur-
sive path expressions and document paths.

Many methods proposed in the literature [1, 2, 4, 9, 10, 12, 16] re-
quire extensive traversals of their data structures when selectivity es-
timates have to be derived. Therefore, they provide unsatisfactory
estimation times burdening the QEP optimization. Furthermore,
they often consume large memory partitions to achieve some estima-
tion quality guarantees. In contrast, estimates based on the EXsum
structure are very fast and rely on a low memory footprint while pro-
viding superior estimation quality. With these features, EXsum has
only minimum impact on the query optimization process.

1.2 Our Contribution
We propose a framework called EXsum that enables the element-
wise XML summarization of axis relationships. In addition to struc-
tural document properties, EXsum can also capture statistical infor-
mation concerning the content of a document. Each EXsum compo-
nent bundles information of all axis relationships for a distinct ele-
ment/attribute name in the document and is therefore called axes
summary per element (ASPE for short). As a consequence, EXsum
enables the cardinality estimation of each location step in a path ex-
pression by only accessing the related ASPE structures instead of
fetching the complete EXsum information when building QEPs.
Thus, EXsum use is bounded by the number of location steps.

In non-recursive XML documents, we can compute for arbitrary
combinations of standard axes (child, descendant, parent, ancestor)

• accurate cardinalities when a unique element name is referenced
in the final axis step of an arbitrarily long path expression or
greatly improve its accuracy when it occurs somewhere in the
middle of it

• always accurate cardinalities for one- and two-step path expres-
sions and

• for n-step path expressions estimated cardinalities derived by in-
terpolation of several EXsum results.

Furthermore, we have extended EXsum to capture axes information
for recursive documents and sketch the way how to derive estimates
from them for non-recursive and recursive path expressions.

Having empirically evaluated the best approaches known so far in
[2, 16] in terms of storage consumption and estimation quality, we
can show that EXsum not only provides much richer estimation ca-
pabilities, but is also at least competitive, if not superior to conven-
tional approaches.

As compared to competitor approaches, we claim four prime differ-
ences (and advantages) for EXsum: fast access time; capacity to only
access selected data partitions for cardinality estimation—as op-
posed to loading the entire summary into main memory; support for
recursive queries; natural extensibility to gather value distributions.

In this paper, we primarily focus on estimating structural aspects of
an XML document. Section 2 details the EXsum structure and its
building process. Section 3 focuses on the estimation methods when
non-recursive documents are present, whereas Section 4 extends
these methods to recursive documents. Section 5 and 6 throw a brief
glance at predicate estimation and EXsum maintenance in case of
dynamic documents. In Section 7, we present an empirical evalua-
tion of our proposal, before we conclude the paper.

2. EXSUM FRAMEWORK
We have designed the EXsum framework to enable the collection of
accurate and complete document statistics. Furthermore, EXsum’s
extensible structure can be configured to match the query character-
istics of specific workloads. According to our experience, child and
descendant use is of prime importance, whereas parent and ancestor
support is less urgently required. The remaining axes (previous (sib-
ling), following (sibling)) are only of minor importance in practical
applications. Therefore, we do not deal with them in the first place.
However, EXsum easily allows to integrate the required statistical
information and estimation procedures.

An EXsum structure can be considered as a set of ASPE nodes where
each ASPE node, in turn, represents a distinct element/attribute
name in an XML document. An ASPE node is a compound of the el-
ement/attribute name, the total number of related node occurrences
in the document, and a varying number of “spokes”—an ASPE node
may be illustrated as a “spoked wheel” (see Figure 1). A spoke can
represent structural (axis) distributions related to the element and
also high-level concepts such as text value distributions and coarse-
grained statistics (e.g., number of physical pages, index entries or
depth, etc.). In other words, EXsum is extensible and configurable to
summarize either structure-only or content-and-structure properties
of an XML document. In the following sections, we detail the meth-
ods used by EXsum for structural summarization of a document and,
in turn, for the related estimation of location step cardinalities.

2.1 Identifying Structural XML Properties
Usually, a path synopsis is kept to capture path-related information
and often summary information for all elements and attributes of a
document. To further explain its purpose, we refer to an XML doc-
ument fragment (see Figure 2a) having a sufficiently rich structure
needed for our discussion. In a path synopsis, all path instances of
the document having the same sequence of element names are rep-
resented as a path class. For our document example, the path synop-
sis is illustrated in Figure 2b.

A cyclic-free XML schema captures all information needed for the
path synopsis; otherwise, this data structure can be constructed while
the document is stored. As shown in the following, such a concise
description of the document structure is a prerequisite for effective
query optimization and the other tasks sketched in Section 1. Be-
cause path instances of the same path class are often repeated very
frequently, usually a path synopsis can be kept in a small memory-
resident data structure (see also Table 1). For example in the popular

dblp document, one of the dominating path classes /dblp/paper/au-
thor has ~570,000 instances.

EXsum aggregates all statistical information per distinct element
name. Although we have 14 elements in the path synopsis, only six
distinct element names occur. Element names that occur more than
once in the path synopsis are called homonyms. A unique element
name such as a, c, or u in the path synopsis results in an unambigu-
ous ASPE, which makes axes estimation very simple in some cases.
In turn, a homonym-free document has only unique element names
in its path synopsis, is non-recursive by definition, but may be an ex-
ception. In the typical case, a document contains a varying degree of
homonyms, but most of its paths are recursion-free, i.e., homonyms2

do not occur in the same path class. Hence, our reference document
in Figure 2 is recursion-free. In contrast, we have to deal with recur-
sive paths in a document as soon as an element name occurs more
than once in a single path class.

2.2 Element-wise XML Summarization
To explain our approach, we refer to the document in Figure 2a with
six distinct element names. Thus, EXsum has six ASPE nodes where
the total number of elements with name x occurring in the document
(occ(x)) is always recorded in the center of ASPE(x). Further, each
of its spokes carries names and occurrences of all elements partici-
pating in the given axis relationships with x. This kind of recording
is used to step-wise compute estimates for consecutive location steps
of an XPath/XQuery [13, 14] expression. At building time of a path
synopsis and an EXsum structure—typically in parallel when storing
an incoming document sent by a client—, all statistical information
contained in the ASPE nodes is derived. Depending on the types of
queries anticipated, only spokes for the desired axes estimation sup-
port may be appended. Without loss of generality, we illustrate on a
recursion-free document the building process for an EXsum struc-
ture with 4-spoke ASPE nodes including child, descendant, parent,
and ancestor axes, respectively.

The document is traversed in document order where, when visiting
a node with element name x, all its axis relationships (as far as speci-
fied for EXsum) are recorded in ASPE(x). In that way, we derive
step by step the exact number of occurrences per axis this element
participates in.

Element X :
#occurrences

Parent

Ancestor

DescendantChild

Index Stats

Value distribu-
tions

Other Info

Other Info

Figure 1. Possible structure of an ASPE node

2 dplp has 41 element names where 32 are homonyms resulting in 146 nodes
for the path synopsis. Hence, the avg. repetition of a homonym is more
than 4. The numbers for element names, homonyms, and path synopsis
nodes are (100, 6, 264) and (70, 12, 111) for swissprot and nasa, respec-
tively. Because nasa has only a share of 6% homonyms, the estimation
procedure should be particularly simple and accurate. In all cases, the data
structure for the path synopsis remains very small.

a

c tc p

t

spp p p p p

p s s

p p s

spt t

a)

p p

s sp

p

Figure 2. Sample XML document (fragment) and corresponding path synopsis

p u u

p

u

a

tc p

p

t s

s

st

b)

p

p

u

p

Because we do not capture the order among the document nodes, we
can locally process each node visited and summarize its axis rela-
tionships using a stack S which keeps, at any point in time, the path
of the current node visited to the root. For example, when the root is
visited, its element name a is pushed onto S. Furthermore, it causes
the allocation of ASPE(a) and the recording of all axes information
that can be evaluated at that time. In the next step, a node with ele-
ment name c is located and pushed onto S. Because ASPE(c) is not
present, it is created and the related axes information is added to a
and c. In the subsequent step, a node with element name t is visited.
Again, t is pushed onto S, ASPE(t) is created, and the axes informa-
tion for t and its path elements c and a is completed.

Consider the general case, here described after having visited the
seventh node in document order (leaf with element name p, see
Figure 2a). Because S represents the path to the current node, we can
—after p is pushed onto S—immediately update in ASPE(p) the axes
information of p: parent(s), anc(c), anc(a), and increment the related
counters. Furthermore, using S, the axes information of the remain-
ing path elements can also be maintained: in ASPE(s) for child(p),
in ASPE(c) for desc(p), and in ASPE(a) for desc(p). Note that infor-
mation for the child (parent) axis is kept separately from that of the
descendant (ancestor) axis to enable higher flexibility when axis-
wise estimation of location steps is performed. In summary, when an
element x is pushed onto S, the element frequency counter of
ASPE(x) is incremented. Furthermore, if S contains a path of n ele-
ments, n-1 child/desc counters and n-1 parent/anc counters have to
be maintained. When a leaf node of document D is encountered, the
top-most entry (current element) of S is popped and the preorder tra-
versal of D is continued with the next node not visited so far. The
progress of the building process including stack S and the summary
information for five ASPEs allocated after having visited the seventh
node is shown in Figure 3.

When the document is fully traversed, EXsum building is complete,
as shown in Figure 4. Note, when referring to descendant or ancestor
axes in the estimation process, we need to consider the separated sta-
tistics for child and parent axes, too, because child ⊆ descendant or
parent ⊆ ancestor always hold.

3. RECURSION-FREE PATHS
Because the kind of elements in the document (leading to unique-
name or homonym-free documents or recursive paths) and, in turn,
the number and type of location steps critically influence the quality
of cardinality computations for path expressions, we have to make a
suitable classification for the way cardinality can be determined.3

No matter what axis relationship is referred to in non-recursive doc-
ument paths, the cardinality of all path expressions, which consist of
a single axis step only, can be accurately determined. If //x is the first
location step, then occ(x) directly delivers the cardinality of //x, i.e.,

the number of document nodes having element name x. The same in-
formation can be derived by accessing the ASPE of the root element
and adding the values for x in the child and descendant spokes. Path
expression /x refers to the root element of a document. When access-
ing ASPE(x), we have to check whether or not its parent spoke is
empty. If a parent is found, occ(/x) is necessarily 0, otherwise it must
be 1. As an example evaluated on the document of Figure 2a, //p and
/p deliver cardinalities 17 and 0, respectively. The other types of re-
lationships (axes) hardly make sense w.r.t. root and can, therefore,
be neglected.

Let us first focus on documents using / or // in the location steps. To
estimate the cardinality of n-step path expressions (n > 2), we al-
ways have to know the kind of element names involved in the cur-
rent location step. Therefore, the path synopsis has to be checked be-
fore the related ASPE node is inspected. Normally, we proceed step
by step in a path expression until the last axis step (end step) is
reached.

3.1 Unique Element Names
The simplest case occurs when the end step of an arbitrary long path
expression refers to a unique element name z. No matter what axis
references occur in the path expression, we immediately inspect
ASPE(z) and—after having checked that the entire path expression
matches with the path synopsis (some path instances are satisfying
the path expression)—deliver occ(z) as the accurate cardinality in-
formation. For example, /a/t/s/p/u or //s/p/u or //t//p/u can be evalu-
ated in this way and all deliver by referring to Figure 4 cardinality 3.
Note, the existence of unique element names—to be verified using
the path synopsis—are most valuable for cardinality estimation.
When referenced in some of the intermediate location steps, it can be
used to begin the estimation “in the middle” starting with precise
cardinality information. Assume some subtrees containing element
name p are appended to the u nodes in the document of Figure 2a:
then the estimation of //t//s//u//p would begin at ASPE(u) and return
(for this example) accurate cardinality information.

3.2 Expressions with One or Two Steps
The construction principle of EXsum exactly covers two-step path
expressions containing child and descendant axes. As an important
property, the element-wise summarization, therefore, delivers accu-
rate cardinalities for them, when the evaluation starts from the root

Figure 3. An intermediate EXsum state during the building process

a
c
s

S
p

a:1
c:1

t:1C
hi

ld

D
es

c

Parent

Ances

p:3
s:1 c:1

t:1
a:1

C
hi

ld

D
es

c

Parent

Ances

p:2
s:1

p:1
t:1

c:1

C
hi

ld

D
es

c

Parent

Ances
a:1 c:1

s:1

p:3

c:2

C
hi

ld

D
es

c

Parent

Ances
a:3

s:1

c:1

C
hi

ld

D
es

c

Parent

Ances
a:1

p:1

3 In the XSeed approach [15], path queries are classified into simple path ex-
pressions (linear paths containing /-axes only), branching path expressions
including branching predicates (but also limited to /-axes), and complex
path expressions containing branching predicates and /- or //-axes. Because
estimation complexity and accuracy is much more related to the kind of
element names (unique, homonymous, recursive) and the length of the path
expressions (number of node tests), we use an entirely different classifica-
tion which is more oriented towards whether the expression cardinalities
can be computed or only estimated (using interpolation heuristics).

or a unique element name. When evaluating two-step path expres-
sions, we access the corresponding ASPE node of the first location
step and follow the spoke referenced by the second location step to
read the accurate path expression cardinality. Consider path expres-
sion //c/p. For the first step (//c), we directly access ASPE(c) and
then follow the axis information for /p. If the spoke child of node c
with p exists (as in Figure 4), we deliver the exact cardinality 3.
Thus, the optimizer can correctly estimate that there are 3 elements
in the expression result. A little more complex is the computation of
//c//p, because we have to include the matches for /p in the second
location step. In this case, the optimizer correctly estimates 15 ele-
ments in the expression result. Note, in all such cases, we access just
a single ASPE node and inspect one or two spokes to return accurate
cardinality information.

To summarize our discussion so far, EXsum delivers accurate cardi-
nality results for all path expressions on homonym-free documents
and for path expressions with one and two location steps on recur-
sion-free document paths. We believe that these cases, where the
EXsum structure reflects the document structure, cover the lion’s
share of all practically relevant estimation requests. For n-step path
expressions (n>2), however, EXsum cannot always guarantee accu-
rate estimation results. The structure of ASPE nodes does not cap-
ture the complete root-to-leaf paths of the document. Instead, it
keeps axis relationships between pairs of element names and repre-
sents their distribution on the basis of element names. Therefore, we
need a mechanism to approximate such expression cardinalities.

3.3 Cardinality Estimation of Multi-step Paths
When a unique element name is not encountered in the path expres-
sion, we proceed location step by location step from left to right.
Consider a three-step path expression //c/s/p addressing the docu-
ment in Figure 2a. For the first two location steps (//c/s), we follow
the child spoke of ASPE(c) and find that s exists for this axis and has
cardinality 4. To evaluate the subsequent location step (/p), we have
to access ASPE(s) and follow the child spoke. Only if the value for
s derived from //c/s, i.e., occ(//c/s), is equal to the value for s deliv-
ered by ASPE(s), we know that all s elements of the document are
under //c and children of c elements. Hence, we can continue with
accurate cardinality determination for //c/s/p. Applied to the docu-
ment in Figure 2a, occ(//c/s) = 4 and ASPE(s) = 7, which means that
three s elements are not reachable by the paths of //c/s. Obviously,
EXsum cannot provide exact cardinalities in this case, because there
may be s elements, not included in //c/s, but counted in ASPE(s) and,
therefore, used for s/p. This problem always occurs when the path
expression evaluation has to be continued via other ASPEs, that is,
for an n-step path (n>2) n–2 times.

To cope with such situations, we decompose the path expression,
e.g., //x/y//z, in overlapping two-location-step fractions and need a

kind of heuristics, e.g., interpolation, to combine their results. To
evaluate the partial expressions //x/y and y//z, we access ASPE(x)
and ASPE(y) (whose values are equivalent to occ(//x) and occ(//y),
respectively) and follow the ASPE axes for the second axis steps to
obtain occ(//x/y) and occ(//y//z). Because not all y nodes of //y//z find
a matching partner in the y nodes of //x/y, we assume uniform ele-
ment distribution for the z nodes to enable a straightforward combi-
nation of estimates for such partial expressions. By using the ratio
C1/C2, we linearly interpolate the number of occurrences of the sub-
sequent step y//z to estimate occ(//x/y//z). For that, C1 is given by
occ(//x/y) and C2—equivalent to occ(//y)—is recorded as value of
ASPE(y); thus, C1≤ C2 always holds. This interpolation could be
applied step by step, such that we gain an estimation heuristics for n-
step path expressions. If more accurate information is present (e.g.,
by mining entire paths), it is used instead.

Estimating occ(//c/s/p) from the document in Figure 2a, we obtain
by deriving C1 = 4 and C2 = 7 from EXsum as the interpolated car-
dinality C1/C2*(occ(s/p)) = 4/7*(13), whereas the actual cardinality
for the path expression //c/s/p is 9.

3.4 Estimating Parent and Ancestor Axes
Parent and ancestor axes are frequently evaluated in two situations.
The first one occurs when using predicates. For example, when re-
trieving all nodes p under s having a node t as ancestor, the XPath
expression //s/p[./ancestor::t] can be specified. In this case, a for-
ward axis access in the main clause (//s/p) is accompanied by a re-
verse axis access for the evaluation of the predicate ([./ancestor::t]).
Hence, for each forward instance of //s/p in the document, a back-
ward navigation has to determine whether or not the forward in-
stance evaluates to True for the given predicate. Other scenarios,
where parent or ancestor axes are helpful, occur when IDREFs, used
in the main clause, refer to other subtrees and predicates are needed
to check for particular parents or ancestors.

The second and more general situation, in which parent and ancestor
axes are evaluated, occurs when the user is not quite aware of the
XML document structure, but he knows some relationships among
nodes. For example, he knows that there is a parent relationship be-
tween nodes from u to p. Furthermore, he wants to retrieve all nodes
p satisfying such a constraint, i.e., all nodes p which are parent of u
nodes. However, he does not know the specific root-to-leaf paths in
the document leading to p nodes as parents of u. An XPath expres-
sion solving this situation is //u/parent::p. On the other hand, if the
user would know that all p parents of u nodes are reached by path
(a,t,s), he could directly locate them by /a/t/s/p[./u].

To show that EXsum is more expressive than its competitors while
confronted with these complex situations, we discuss a heuristics
how estimates can be derived for path expressions containing loca-

Figure 4. Complete EXsum structure for the sample document

c:2
t:3 p:3

s:4 p:12

a:2

C
hi

ld

Parent

D
es

c

s:2
a:1

t:1 p:1
c:2 p:16

C
hi

ld

D
es

c

t:3 s:7
u:3

t:4
s:3 p:4

a:1

C
hi

ld

Parent

D
es

c

u:3

c:3

a:3
Ances

p:17
u:3

t:4

a:1

C
hi

ld

Parent

c:12

c:3

Ances

s:13

s:7
p:13

t:3

C
hi

ld

Parent

D
es

cu:3

c:4

a:7
Ances

c:2

u:3

t:3

p:3
Parent

s:3 a:3
Ances

a:16

tion steps for ancestors and/or parents. While the EXsum construc-
tion principle counts the existing nodes when summarizing the child
and descendant axis relationships, this does not hold for parent and
ancestor axis relationships. Several (or all) of those relationships
may refer to the same document node. Thus, our estimation algo-
rithm needs more sophistication. Assume //x/parent::y. The parent
spoke of ASPE(x) delivers the logical parent relationships from
nodes x to y (lpr(x–>y)) which means that we potentially have (from
the perspective of x) up to lpr(x–>y) parent nodes y. On the other
hand, ASPE(y) gives us the number of existing nodes y. Therefore,
we can infer MAX as the maximum number of parent nodes: If
lpr(x–>y) > ASPE(y) then MAX = ASPE(y) else MAX = lpr(x->y).
Furthermore, the child spoke of ASPE(y) delivers the logical child
relationships from y to x (lcr(y–>x)), which correspond to existing
nodes x, together with those relationships of the remaining child
nodes summarized as lcr(y–>r). Using these factors and a kind of
uniform distribution assumption, we can provide the heuristics:
occ(//x/parent::y) = MAX/(lcr(y–>r) + lcr(y–>x))) * lcr(y–>x). A
similar rationale can also be applied for ancestor axes, but, of course,
with a greater error probability. In this way, we may also supply es-
timates for parent/ancestor axes in all path expressions with not
more than two location steps on non-recursive documents. Hence,
occ(//p/parent::s) delivers 7, which can be checked in Figure 4.

For n-step path expressions (n > 2), we again apply an interpolation
heuristics similar to that derived in Section 3.3. For example, a path
expression including both ancestor and parent axes is //u/ances-
tor::s/parent::t. Having a 3-step path expression, we have to com-
bine the results coming from two estimates for C1 = occ(//u/ances-
tor::s) and C3 = occ(s/parent::t). The number of existing s nodes ex-
pressed by C2 is used as the interpolation factor: C1/C2 * C3. For
location step //u/ancestor::s, we yield C1 = 9/16. With C2 = occ(s)
= 7 and C3 = occ(s/parent::t) = 3, our heuristics delivers 27/112 as
the final estimate.

3.5 Estimating the Remaining Axes
Axes such as preceding (sibling) and following (sibling) are consid-
ered exotic and hardly appear in real-world applications. In general,
their estimation is elusive, because these axes refer to relative posi-
tions of node instances. Hence, the data structures needed would ex-
plode when collecting statistics for them and would not be maintain-
able. Indeed, nobody has ever tried to give estimates for these axes.
Nevertheless, we only want to point out here that EXsum carries
some information which could be used and would be helpful, at least
for the upper document levels. Because the root (a) is the first node
in document order, counting all relationships in ASPE(a) delivers
the number of following elements. When the expression /c/follow-
ing-sibling::p has to be estimated, we identify via ASPE(c) the par-
ent of c and, in turn, figure out via the child spoke of ASPE(a) that
there is no sibling p. Of course, we often need to apply some heuris-
tics at lower levels. For example, expression /t/preceding-sibling::c
could be estimated by accessing the root ASPE(a) and finding in the
child spoke that there is only a single t which has two c nodes as sib-
lings. Because order information is not available, the number of c
nodes in the role of preceding/following sibling has to be guessed.

4. DEALING WITH RECURSION
Documents such as treebank are considered exotic outliers, i.e.,
highly recursive documents are not frequent in practice and do not
deserve first-class citizenship. However, some degree of recursion

may be anticipated in (a small class of) documents. Thus, we have a
look at recursiveness for reasons of generality and extend our meth-
od to support summarization on documents exhibiting a limited kind
of structural recursion, too.4 General recursion, however, seems to
be elusive and does not allow for a meaningful estimation process
which could deliver approximations of sufficient quality.

The concept of recursion level (RL) was introduced in [16] and ex-
plained for the case where only a single element name could recur in
a path. Recursion levels were defined as: Given a rooted path in the
XML tree, the maximum number of occurrences of any label (ele-
ment name) minus 1 is the path recursion level (PRL). The recursion
level of a node in the XML tree is defined to be the PRL of the path
from root to this node. Thus, given a rooted path (a,c,s,s,t) of the
document in Figure 6a, the RL of the first s node is 0 and that of the
second s node is 1, whereas the PRL of this path is 1. RL was applied
in XSeed to capture parent-child relationships in recursive paths.

4.1 Extending EXsum by Recursion Levels
We have extended the RL concept to capture for the nodes recurring
in a path the ancestor and descendant relationships, too. To smooth-
ly integrate RL information into the EXsum framework, we have
slightly modified the ASPE node structure. For each spoke repre-
senting a structural distribution, we compute the recursion level of
each distinct element in the spoke (see sketch in Figure 5). If recur-
sion is not present in the document, the recursion level indicators
could be dropped, resulting in the format shown in Figure 4. If recur-
sion occurs in some paths, only the spokes of the elements affected
need to carry the recursion level indicators.

Figure 6 is derived from Figure 2 to illustrate the differences needed
for the application of recursion levels5. As in Section 3, we use stack
S for separately capturing the axis relationships of the current node.
Assume the current state of S = [a, c, s, s, s, p] where for the top el-
ement p the incremental changes to EXsum have to be found. To up-
date EXsum with the axis relationships of p, we have to consider the
recursion levels of the elements in S: a: RL=0; c: RL=0; s: RL=0; s:

4 [15] states that recursive XML documents represent the most difficult cases
for path query processing and cardinality estimation and that none of the
existing approaches addressed this problem and, in particular, the effects
of recursion over the accuracy of cardinality estimation. Claiming that rec-
ognizing and capturing recursion is a unique feature of the XSeed kernel,
N. Zhang, however, only presents a limited solution.

5 Only element names appearing in recursive paths could be represented in
this extended format and empty recursion levels could be omitted. To fa-
cilitate reading, we have chosen a uniform structure for all element names.

Element X:
#occurrences

Parent

Ances

Desc

Child

Figure 5. Recursion levels in EXsum

E: (RL=0, vi; RL=1, vj; ...)
E: (RL=0, vk; RL=1, vl; ...)

E: element name

. . .

E: (RL=0, vn; RL=1, vf; ...)
E: (RL=0, vd; RL=1, vg; ...). . .

E: (RL=0, va; RL=1, ve; ...)
E: (RL=0, vb; RL=1, vc; ...). . .

E: (RL=0, vs; RL=1, vp; ...)
E: (RL=0, vu; RL=1, vv; ...). . .

RL=1; s: RL=2. Moreover, from p’s point of view, (s: RL=2) is par-
ent, whereas the other elements in S are ancestors. Hence, occ(p) of
ASPE(p) is increased by 1. Then in ASPE(p), the target elements of
p’s relationships—the parent axis for (s: RL=2) and the ancestor axis
for (s: RL=1), (s: RL=0), (c: RL=0), and (a: RL=0)—are increment-
ed by 1. Furthermore, the axis relationships of the remaining ele-
ments in S have to be maintained, because an element p at RL=0 (as
the target element of these relationships) becomes a new child resp.
descendant for them. Therefore in ASPE(s), the child axis is incre-
mented for (p: RL=0). Furthermore, value 1 is added to (p: RL=0)
and again to (p: RL=0) in the descendant axes of ASPE(s). In
ASPE(c) and ASPE(a), the descendant axes are each incremented by
1 for (p: RL=0).

Because EXsum extended with recursion levels now captures axis
distributions in a more fine-grained way, we can explore the RL
property for path expression estimation. Note, however, our ele-
ment-wise summarization is partially confused by recurring ele-
ments such that a kind of redundant counting (or overestimation) is
provoked. For example, the four resp. three leaf elements p in
Figure 6a are captured as descendants resp. children of s (for
s:(RL=0) and s:(RL=1) resp. s:(RL=2)). In contrast, the recursion in
path a/c/s/p/s/t does not cause any imprecision. Hence, this redun-
dant counting is guided by the recursion pattern and, therefore, it is
not easy to remove it by an adjusted EXsum building algorithm (and
beyond the considerations in this paper). As a consequence, our ap-
proach—while delivering accurate results for the initial two location
steps for recursion-free documents—will compute guaranteed re-
sults for recursive paths only for the first location step.

4.2 Cardinality Estimates by Recursion Levels
Capturing summary information for recursive documents is clumsy
and more cumbersome. In addition, it implies some evaluation com-
plexity. Here, we only consider the case where a single element re-
curs in a path, e.g., s in Figure 6. Our discussion is meant to sketch
the problems rather than to present a solution.

Consider the estimation of //c//s. The cardinality is computed by fol-
lowing the child and descendant spokes in ASPE(c) and summing up
the values over all recursion levels of s, yielding occ(//c//s) = 8. In

contrast, //c/s would follow the child spoke of ASPE(c) and only ag-
gregate the child relationships related to all recursion levels of s, re-
sulting in occ(//c/s) = 4. Path expression //s/p yields an accurate an-
swer, whereas //s//p delivers a substantial overestimation: occ(//s/p)
= 13 and occ(//s//p) = 21, which could be corrected by measures de-
pending on the recursion pattern.

Of course, interpolation has to be used for n > 2 steps. For example,
to estimate a 3-step path expression //c/s/p, we yield occ(//c/s) = 4
(used as C1) for the first two steps. To continue the evaluation with
s/p, ASPE(s) delivers 8 (used as C2) and its child spoke p:(RL=0,
13). Again, the only way to combine both cardinalities is to assume
uniform distribution such that (C1/C2)*occ(s/p) = (4/8)*13 delivers
the estimate.

4.3 Handling Recursive Path Expressions
Recursion can also occur in path expressions making the estimation
even more difficult (and imprecise). Nevertheless, we have applied
the RL concept to the estimation of recursive queries, too.

For recursive path expressions, we follow the definition in [15]: A
path expression is recursive with respect to an XML document if an
element in the document could be matched by more than one node
test in the expression. Referring to this definition, it is easy to see
that path expressions only consisting of /-axes (or parent axes) are
not recursive. However, //s//s is a recursive path expression on the
XML tree in Figure 6a, because a recursively occurring s node could
be matched by both node tests at a node recursion level RL>0.
Hence, recursive path expressions always involve at least one //-axis
(or ancestor axis) and are usually applied to recursive documents. In
some cases, recursive sub-expressions such as //*//* or //*/s may also
address non-recursive documents.

Consider the estimation of //s//s. The cardinality is estimated by fol-
lowing the child and descendant spokes in ASPE(s) and summing up
the values over all recursion levels of s, yielding an overestimation
of occ(//s//s) = 6. In contrast, occ(//s/s) = 3 delivers the accurate car-
dinality.

In the same way, cardinalities for n-step path expressions have to be
approximated based on interpolation. Additionally, specific infor-

Figure 6. Extended XML document (a) and EXsum structure capturing recursion (cut-out) (b)

s:8

Ances

Parent

Child
Desc

p:(RL=0, 13)

b)a

cc

t

p p p p

p s s

p p

a)

s sp

p

s:(RL=0, 0; RL=1, 1; RL=2, 2)
t:(RL=0, 1)

p:(RL=0, 8)

s:(RL=0, 0; RL=1, 1; RL=2, 2)
t:(RL=0, 1)

s:(RL=0, 3)
c:(RL=0, 4)
a:(RL=0, 8)

s:(RL=0, 1; RL=1, 2)
c:(RL=0, 4)

t:4

Ances

Parent

Child
Desc

c:(RL=0, 3)

s:(RL=0, 0; RL=1, 2)
c:(RL=0, 1)

c:2

Ances

Parent

Child

Desct:(RL=0, 1)

p:(RL=0, 2)
s:(RL=0, 4)

a:(RL=0, 2)

p:(RL=0, 13)
s:(RL=0, 0; RL=1, 2; RL=2, 2)

t:(RL=0, 3)

p:15

Ances

Parent

Child
Desc

a:(RL=0, 15)
s:(RL=0, 4; RL=1, 4)
c:(RL=0, 13)

s:(RL=0, 9; RL=1, 0; RL=2, 3)
c:(RL=0, 2)

. . .

p p

st s

pp p

s

a:(RL=0, 4)

s:(RL=0, 3)p

t s

t p:(RL=0, 1)

p:(RL=0, 1)

p:(RL=0, 1)t:(RL=0, 1)

p:(RL=0, 1)

t:(RL=0, 1)

t:(RL=0, 1)

mation concerning the recursion levels has to be applied. As a final
example, //s/s/p is estimated. Being a recursive 3-step path expres-
sion, the cardinality is derived by following the child spoke of
ASPE(s) and summing the values over all recursion levels of s,
yielding occ(//s/s) = 3. Furthermore, occ(s/p) delivers 13. With the
interpolation factor of ASPE(s) = 8, the estimation is 3/8*13.

5. A LOOK AT PREDICATE ESTIMATION
The set of possible predicates in XQuery is so rich and complex that
a single structure would not suffice to encompass all possibilities.
Basically two kinds of predicates may appear in XQuery statements:
value predicates and path predicates where both are represented in
brackets ([]). The former has the traditional meaning inherited from
relational databases in which techniques as histograms [8] and q-
Grams [11] can be applied. The latter is a novel feature of XQuery
and is on our focus. Of course, XQuery allows the coexistence of
both kinds of predicates in a path expression.

Predicates (also called existential predicates) may contain one or
more path expressions, e.g., /a/c[./s]/t and //s[./s and .//s/t]. A path
expression qualifies a path instance only, if the included predicate
evaluates to True. If the predicate, in turn, contains several path ex-
pressions logically connected by AND, then all path expressions
must be evaluated to True.

To estimate the cost of QEPs, we need to know the selectivity of
predicates for which we use a specific calculation method: Path Re-
lated Selectivity (PRS) is defined by the following expression:

In this formula, the function Card estimates the cardinality of a set
of location steps according to the mechanism explained in Sections
3 and 4.2. PRS tries to estimate the selectivity of a predicate by di-
viding the estimated cardinality of the location steps in the predicate
clause by the estimated cardinality of the location steps in main path
expression, which is close to the XQuery/XPath definitions.

To better explain this method, consider the path expression //s[.//s/t]
and Figure 6. For the main path expression (//s), the factor Card(|/
v1/.../vn|) is translated to a cardinality Card(|//s|) = 8. For the predi-
cate estimation, we apply the techniques sketched in Section 4.2.
The estimated cardinality of factor Card(|/v1.../vn[vn+1]|) results in
Card(|//s[.//s/t]|) = 6/8*1. By using PRS, the estimated selectivity of
this predicate is (6/8)/8 = 0.09.

6. DYNAMIC XML DOCUMENTS
After having considered non-recursive and recursive documents and
the related estimation of path expressions, we want to mention that
the statistical information needed has to be maintained in the case of
dynamic documents. In contrast to competitor approaches [2, 16],
EXsum therefore provides another strong asset. Its building mecha-
nism can be easily extended to dynamic XML documents such that
we can always guarantee up-to-date statistics. Because the deriva-
tion of axes information is independent of the document order and
only relies on the path from the root to the current node to be modi-
fied, we may incrementally proceed with the building mechanism, as
described in Section 2.2. Each node insertion separately increments
the axis relationships it participates in the corresponding EXsum el-
ements. For each node to be deleted, EXsum can be updated in a con-
text-free way by just decrementing all axis relationships involved.

7. EXPERIMENTS
To determine the practical use of our proposal, we have performed a
number empirical experiments using the well-known set of XML
documents listed in Table 1 and whose results were analyzed regard-
ing estimation time, sizing, and accuracy. To evaluate the estimation
accuracy, we have built, for each document, a query workload and
computed estimates of query results thereby contrasting actual and
estimated values.

7.1 Documents and Query Workload
In Table 1, column #nodes represents the total number of nodes in a
document according to the DOM specification [14]. Column #el-
em.names indicates that the number of distinct element/attribute
names is very small compared to the total number of nodes. Hence,
documents typically have a very repetitive structure. Columns
max.depth and avg.depth give some hints on the variability of docu-
ments. For example, we can consider swissprot as quite a regular
document, because its average depth is close to its maximum depth.
In contrast, treebank is quite an irregular one. Within this spectrum,
the other documents are less regular.

We have built a query workload as follows. For all documents ex-
cept treebank, we have generated all possible queries encompassing
only child axes. We have randomized the generation of queries
whose path expressions contain the remaining axes, i.e., descendant,
parent, and ancestor, and queries with predicates. For treebank, we
have randomly generated queries having four axes and predicates. In
total, we have experimented with approximately 3,000 queries.

The empirical exploration of our approach is based on an EXsum
structure with four spokes (as illustrated in Figure 5) and compares
the results against those achieved by XSeed [16] and LH [2] as the
main competitors. XSeed uses a graph structure to capture statistics
of XML document paths and necessarily accepts—because of prun-
ing the graph search—false positive hits in the computation of esti-
mation results. Because of its structure, XSeed is one of the most
compact summaries proposed in the literature. LH is a tree-based
summary which is enhanced by histograms to compress the element
distributions at each level. By intensively evaluating it using End-bi-
ased histograms [8], we have shown that, in terms of estimation
quality, LH certainly belongs to the superior methods known, i.e., it
delivered the lowest estimation errors among all summaries com-
pared [3].

PRS /v1/…/vn vn 1+[]() Card /v1/…/vn vn 1+[]() Card /v1/…/vn()⁄=

Table 1. Characteristics of documents considered
doc-
name

description size in
MB

#nodes
(inner /text)

#elem.
names

max.
depth

avg.
depth

observation

dblp Comp. Sc.
index

330.0 9,070,558 /
8,345,289

41 7 3.39 middle size,
less regular,

non-recursive

nasa Astron.
data

25.8 532,967
/

359,993

70 9 6.08 small size,
less regular,

non-recursive

swiss-
prot

Protein
data

109.5 5,166,890 /
2,013,844

100 6 4.07 middle size,
quite regular,
non-recursive

tree-
bank

Wall Street
Journal

86.1 2,437,667 /
1,391,845

251 37 8.44 middle size, com-
pletely irregular,
highly recursive

Because LH and XSeed cannot support the estimation of parent and
ancestor axes, we have compared EXsum against them with queries
encompassing only child and descendant steps as well as predicates
having the same kinds of steps.

All empirical experiments were run on a platform consisting of a 2-
GHz Pentium Centrino Duo processor with 1GB main memory, run-
ning under Windows XP SP2. For that purpose, we have implement-
ed and integrated all methods to be compared into our native
XDBMS XTC [7], which is written in Java 6. Throughout the per-
formance measurements, we used 512 MB of main memory for the
Java Virtual Machine and 16 MB for the XTC buffer.

7.2 Estimation Time Analysis
A particular advantage of EXsum is that, in the worst case, the num-
ber of ASPE nodes to be accessed is equal to the number of axis
steps, even for recursive queries. Because we have implemented the
ASPE nodes as hash tables, the time complexity for each access is in
O(1). As a consequence, our approach generally achieves low esti-
mation times, as illustrated in Figure 7.

Contrary to EXsum, XSeed and LH only provide low estimation
times for non-recursive documents, which are typically not greater
than 75 msec. However, XSeed reaches up to 10 seconds for the es-
timation of cardinalities concerning queries which address the tree-
bank document. For the same kind of estimation tasks, LH only re-
quires on the average 300 msec.

EXsum, in contrast, consumes on average 25 msec for the estimation
support of a query considering all documents (including treebank).
Indeed, it required not more than 56 msec for cardinality estimation
in the worst case. This demonstrates that EXsum scales well for any
type of XML document and provides the minimum impact on the
query optimization process.

7.3 Sizing Analysis
For the summaries compared, we require more than 3 – 5 orders of
magnitude less storage space than for the full document, except for
treebank, which reaches only 2 – 3 orders of magnitude. For exam-
ple in almost all documents, the summary sizes vary between
0.001% and 0.2% of the document sizes (Figure 8b). Even for tree-
bank, the summary structures only consume 0.1% and 0.2% of the
document size using XSeed and EXsum, respectively. XSeed exhib-
its the least space consumption for highly recursive documents, thus
outperforming EXsum and LH (0.8%) for such documents.

Figure 8 shows that all summaries are compact enough to enable
memory-resident use, although they may consume hundreds of kilo-
bytes. Regarding the main-memory buffer to keep statistical data re-

quired for the estimates supporting the query optimization process,
EXsum exhibits the lowest memory footprint. While competitor
structures have to be entirely kept in main memory, EXsum loads
only the needed ASPE nodes. Consider treebank as a kind of bad
case, for which EXsum requires 740 bytes on average per ASPE
node (Figure 8a). As ASPE nodes, loaded on demand to memory,
are bounded by the number of axis steps, the estimation of a path ex-
pression on treebank with ten axis steps (covering, possibly, more
than half of the treebank depth) would consume less than 8KB.
Hence, according to our observations, EXsum needs 10 to 100 times
less memory than that required for XSeed (70KB) and LH (700KB)
for the estimation process.

7.4 Accuracy Analysis
To measure the accuracy of the methods compared, we use the
NRMSE (normalized root mean square error) metric which is de-
fined by the formula:

,

where n is the number of queries in the query workload, e is the es-
timated result size and a is the actual result size. NRMSE measures
the average error per unit of the accurate result size.

To analyze the estimation accuracy (see Figure 9), we have applied
to each document a reference workload, involving different types of
queries. With a smaller memory footprint than the competitors, EX-
sum reaches at least comparable and often more accurate estimation
results. For example, EXsum has an estimation error close to zero for
swissprot (quite a regular document). For treebank, it provides an es-
timation error with almost one order of magnitude less than XSeed.
For dblp and nasa, EXsum is comparable to the others.

For queries with reference to parent and ancestor axes, we cannot
cross-compare EXsum’s estimation quality to that of the competi-

Figure 7. Estimation times

10

102

nasadblp swissprot treebank

A
ve

ra
ge

 E
st

im
at

io
n

Ti
m

e
m

ill
is

ec
 (l

og
 sc

al
e) XSeed

LH
EXsum

104

103

Figure 8. Storage consumption related to the document size

10-4

10-3

1

nasadblp swissprot treebank

% of doc size
(log scale) XSeed

LH
EXsum

10-1

10-2

b)a)
doc-
name

Ø bytes per
ASPE node

dblp 198.78
nasa 163.69
swis-
sprot 179.45

tree-
bank 739.71

Σi 1=
n ei ai–()2() n⁄ 

  Σi 1=
n ai() n⁄()÷

Figure 9. Accuracy analysis (reference workload)

10-3

10-2

10

nasadblp swissprot treebank

N
R

M
SE

 (l
og

 sc
al

e)

XSeed
LH

EXsum
1

10-1

102

tors. To give some indicative hints, we have evaluated the subset of
queries having parent and ancestor axes in our workload (e.g., //i/an-
cestor::sup/parent::title on dblp) and plotted the estimation errors
obtained for the four documents in Figure 10. Hence, EXsum
achieves an impressive accuracy for these types of queries, too, and
confirms its quality also for axes not supported by the competitors.

8. CONCLUSION
In this paper, we proposed a framework to summarize XML data
called EXsum which can, due to its expressiveness, support the car-
dinality estimation of all important document axes. Note, Exsum de-
livers accurate cardinalities for the most common cases (i.e., unique
element names in the end step of and one- and two-step path expres-
sions). We have also extended EXsum to cope with recursive docu-
ment paths based on the concept of recursion levels. In addition, the
EXsum framework is extensible to incorporate other types of statis-
tical information.

EXsum consumes slightly more storage space than the competitor
approaches for non-recursive documents. However, the entire stor-
age consumption reaches at most 0.2% of the document size, even
for highly recursive documents. Moreover, as queries are evaluated
by only loading the required ASPE nodes on demand, EXsum
achieves the lowest memory footprint for evaluating queries, even
when these queries refer to a large part of the document (e.g., des-
cendant/ancestor axes). Providing fast access time, EXsum keeps the
query optimization overhead low, even for the estimation of com-
plex queries addressing recursive document paths.

Our experiments have shown that, regarding estimation quality, EX-
sum yields very accurate estimation results, both for non-recursive
or highly recursive path expressions. For the latter, EXsum delivers
an estimation error almost one order of magnitude less than that of
XSeed (so far, the most compact summary) and comparable to that
of LH (so far, the most accurate one). All these properties make EX-
sum at least comparable and often superior to its competitors.

Motivated by these results, we will extend our research in three di-
rections. First, we want to explore the summarization of text values
in XML documents (together with structural summarization). Sec-
ond, we will further explore the estimation of the ’remaining’ axes,
such as following (sibling) and preceding (sibling), in differing con-
texts of path expressions. Last but not least, we plan experiments
with EXsum in real cost-based XML query optimization scenarios to
support QEP construction.

REFERENCES
[1] Aboulnaga, A., Alameldeen, A. R., and Naughton, J. F.: Esti-

mating the Selectivity of XML Path Expressions for Internet
Scale Applications. In Proc.VLDB Conf., 591-600 (2001)

[2] Aguiar Moraes Filho, J. and Härder, T.: Accurate Histogram-
based XML Summarization. In Proc. ACM SAC, Vol. II, 998-
1002 (2008)

[3] Aguiar Moraes Filho, J. and Härder, T.: Tailor-Made XML
Synopses, in: Proc. 8th Int. Baltic Conf. on Databases and In-
formation Systems, Tallinn, Estonia, 25-36 (2008)

[4] Freire, J., Haritsa, Jayant R., Ramanath, M., Roy, P., and Sim-
eon, J.: StatiX: making XML count. In Proc. ACM SIGMOD
Conf., 181-191 (2002)

[5] Goldman, R. and Widom, J.: DataGuides: Enabling Query For-
mulation and Optimization in Semistructured Databases. In
Proc. VLDB Conf., 436-445 (1997)

[6] Härder, T., Mathis, C., and Schmidt, K.: Comparison of Com-
plete and Elementless Native Storage of XML Documents. In
Proc. IDEAS Symp., 102-113 (2007)

[7] Haustein, M. P. and Härder, T.: An Efficient Infrastructure for
Native Transactional XML Processing. Data & Knowledge
Engineering 61:3, 500-523 (2007)

[8] Ioannidis, Y. and Poosala, V.: Histogram-based Solutions to
Diverse Database Estimation Problems. IEEE Data Engineer-
ing Bulletin 18:3, 10-18 (1995)

[9] Lim, L., Wang, M., Padmanabahn, S., Vitter, Jeffrey S., and
Parr, R.: XPathLearner: An On-Line Self Tuning Markov His-
togram for XML Path Selectivity Estimation. In Proc. VLDB
Conf., 442-453 (2002)

[10] Polyzotis, N. and Garofalakis, M.: Structure and Value Synop-
ses for XML Data Graphs. In Proc. VLDB Conf., 466-477
(2002)

[11] Surajit C., Venkatesh G., and Gravano, L.: Selectivity estima-
tion for string predicates: overcoming the underestimation
problem. In Proc. ICDE Conf., 227-238 (2004)

[12] Wang, W., Jiang, H., Lu, H., and Yu, J. X.: Bloom Histogram:
Path Selectivity Estimation for XML Data with Updates. In
Proc.VLDB Conf., 240-251 (2004)

[13] XPATH XML Path Language 2.0. W3C Candidate Release
(Nov. 2005)

[14] XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C Recom-
mendation (Jan. 2007)

[15] Zhang, N.: Query Processing and Optimization in Native XML
Databases, Ph. D. thesis, Technical Report CS-2006-29, Uni-
versity of Waterloo (Aug. 2006)

[16] Zhang, N., Özsu, M. T., Aboulnaga, A., and Ilyas, I. F.: XSeed:
Accurate and Fast Cardinality Estimation for XPath Queries.
In Proc. ICDE Conf., 61-66 (2006)

Figure 10. Accuracy obtained for parent/ancestor axes

10-3

10-2

nasadblp swissprot treebank

N
R

M
SE

 (l
og

 sc
al

e)
EXsum1

10-1

