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Abstract

The material below covers two lectures on the beautiful and influential concept of zero-
knowledge proofs. This notion, introduced by Goldwasser, Micali and Rackoff [GMR85] formal-
izes the idea of a proof that “yields nothing but its validity” El

We will start by describing a simple running example, which will allow us to abstract away
some basic properties. This will lead to the concept of Y-protocols, and their application to
construct secure identification schemes. Next, we will move to cryptographic applications. In
particular we will show how to use zero-knowledge proofs to construct efficient (and provably
secure) identification and signature schemes. Finally, we will formalize the definition of zero-
knowledge and survey the main results about constructing zero-knowledge proofs for all NP.

The topics covered and the exposition, are inspired by [Dam10, HL10, Ven12|. Comments,
questions and corrections can be sent by email to:

Daniele Venturi
Via Salaria 113, 00198 Rome, Italy
website: http://wwwusers.di.uniromal.it/~venturi
email: venturi@di.uniromal.it.
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Figure 1: The Schnorr protocol for proving “knowledge” of a discrete logarithm.

1 A Running Example

We start by introducing a protocol due to Schnorr [Sch89], and later abstract away several properties
that will be useful in the sequel.

1.1 The Schnorr Protocol

Let p be a prime, and take a generator g of a subgroup G of Z; of prime order g. We should think
of G as a group where computing discrete logarithms is believed to be hard (for proper choice of
the parameters). The Schnorr protocol can be used to “prove knowledge” of a discrete logarithm
x of some value y = g* € G. The protocol is shown in Fig.

1.2 Basic Properties

We now put forward a series of intuitive requirements we would like to be satisfied by the above
protocol. To facilitate generalizing the Schnorr protocol, we will talk about so-called NP relations
R :{0,1}* x {0,1}* — {0,1} naturally defining a language L := {y : Jz s.t. R(y,x) = 1}. We
will refer to Alice as the prover—modelled as a PPT algorithm P—and to Bob as the verifier—
modelled as a PPT algorithm V; the prover holds a witness x for a value y € £, and his goal is to
convince the verifier of this fact via an interactive protocol at the end of which the verifier outputs
a judgement yes/no. We will denote the interaction as P(y,x) = V(y); each interaction yields a
transcript 7 € {0, 1}*, i.e. a sequence of messages (e.g., the values (o, 3,7) in Fig. .

Completeness. The first property we would like to be satisfied is a correctness requirement,

namely, whenever Alice knows a valid witness she should always be able to convince Bob.

Definition 1 (Completeness). We say that (P,V) satisfies completeness relative to an NP relation
R, if for all y € L we have that P(y,z) = V(y) = yes with probability one (over the randomness
of all involved algorithms).

The lemma below says that the Schnorr protocol satisfies completeness.

Lemma 1. The protocol of Fig. |1| satisfies completeness relative to the relation R(g’l_(y,x) =1 iff
y = g° (for g a generator of G).




Proof.
]

Knowledge soundness. The second natural property is that it should be hard to convince Bob of
the validity of a false statement. It turns out that this can be defined in several ways; the definition
below aims at capturing the requirement that in order to convince the verifier it is necessary to
actually know a witness.

Definition 2 (Knowledge soundness). We say that (P,V) is a proof-of-knowledge (PoK) relative
to an NP relation R, if for any (possibly unboundecﬂ) malicious prover P* such that P*(y) =
V(y) = yes with probability larger than €, there exists a PPT knowledge extractor K (with rewinding
black-box access to P*) such that KP™ (y) returns a value x satisfying R(y,x) = 1 with probability

polynomial in €.

The original (slightly more precise) definition is due to Bellare and Goldreich [BG92] (see
also [HL10, Definition 6.3.1]). Let us look again at the protocol of Fig. [l in order to get some
intuition. Roughly, if some P* having sent o could answer two different challenges (3, 3" correctly,
this would mean that it could produce ~,~ such that ¢7 = ¢ - @ mod p and ¢ = % - & mod p.
Dividing one equation by the other, we get that g7~ 7 = = yP- Ch Inod p; since 3 # 3 mod q we get
that (8—/') can be inverted modulo ¢, and thus y = g(V 7)-(B=8)"" mod pyielding x = 6 B’ mod gq.
So loosely speaking, a cheating prover who does not know x can only be able to answer at most
one challenge value correctly, since otherwise the argument we just gave would imply that it was
in fact able to compute = after all.

The above discussion leads to the definition of special soundness, which is tailored to 3-round
interactive protocols.

Definition 3 (Special soundness). Let (P,V) be a 3-round protocol (for a relation R) with tran-
scripts of the form («, 3,7), where the prover speaks first. We say that (P,V) satisfies special
soundness if the following holds: for any y € Lgr and any pair of accepting conversations (v, 3,7)
and (o, 5',7') on input y with 8 # B, we can efficiently compute x such that R(y,z) = 1.

The above discussion yields the following result:
Lemma 2. The protocol of Fig.[1] satisfies special soundness.
The lemma below says that, for 3-round protocols, special soundness implies knowledge soundness.

Theorem 1. Let (P,V) be a 3-round interactive protocol for a relation R, with challenge space
B. Then, if (P,V) satisfies special soundness it also satisfies knowledge soundness whenever |B| =
w(log k) for security parameter k € N.

Proof. Assume there exists (an unbounded) P* such that P [P*(y) = V(y) = yes] > . We construct
a PPT K (using P*) as follows:

Knowledge Extractor K:

1. Choose the coins r <—s {0, 1}* for P*, and sample (3, ' s Z,.

2If we restrict the malicious prover to be computationally bounded, we speak of arguments of knowledge (AoK).



2. Run P* twice, the first time using 8 and the second time using /'

3. In case both runs succeeds, use (o, 3,7) and (o, ',7") to recover z (via special
soundness, see Definition .

Define €, to be the probability that P* succeeds in convincing V upon input y; note that ¢ = Ey[e,].
Now fix y and define ¢, , to be the probability that P* succeeds (for the fixed y) upon input random
coins r. Let H be the 0/1-matrix with a row for each possible random tape for P* and one column
for each possible challenge value. An entry H(r, 5) is 1 if V accepts for random tape r and challenge
B, and 0 otherwise. All we know is that ¢,, is equal to the fraction of 1-entries in H; note that
ey = Erleyr].

Letting R be the total number of choices for the randomness of P*, we can write

P [K succeeds on y] = Z %6%7« <€y,r - |[13’> (1)
1
2
= Er [Ey,r} @ET [Ey,r}
€
- (]E’V’[ y,T])Q ﬁ (2)
_2_fy
Bl

Eq. follows by the fact that 8 # 8’ with all but 1/|B| probability, and Eq. follows by Jensen’s

inequality. Hence, we have obtained

P [K succeeds] > E, [&:5 — } (3)

€
Z 82 IR
|B]
where Eq. follows again by Jensen’s inequality. The theorem now follows by observing that the
above probability is polynomial in ¢ whenever |B| = w(log k). [

Note that the extractor constructed in the proof of the above theorem is not very efficient, in
that to ensure success probability roughly 1/2 we need to run the extractor roughly 1/e? times.
This can be improved to 1/e runs, but we will not show it here. We refer the interested reader
to [HL10, Theorem 6.3.2].

Honest Verifier Zero Knowledge. Until now we did not consider how much information a
proof leaks on the witness. In fact, note that any NP relation has a trivial interactive proof which
consists of transmitting the witness in the clear. We would like to define formally what it means
for a proof to reveal nothing beyond its validity. This will (gradually) lead to the concept of zero
knowledge.

Definition 4 (Honest Verifier Zero Knowledge). We say that (P,V) satisfies HVZK if there exists
an efficient simulator S which can generate a tuple (o, B,7) with the same distribution as the
corresponding tuples in a honest protocol run between Alice and Bob.



Intuitively, the above definition guarantees that honest protocol executions do not reveal any-
thing about the witness as their distribution can be emulated without knowing the witness. Some-
times the simulated distribution is not identical to the real ones, but only computationally in-
distinguishable; this is still fine for applications at the price of a negligible term in the concrete
bounds.

Lemma 3. The protocol of Fig. (1| satisfies perfect HVZK.

Proof. The simulator S, given y € G, simply samples 3, <sZ,, and computes o := g7 - y BTt
is easy to see that such (a,3,7) has the right distribution. To see this, note that £ is uniform
as in a real execution. Furthermore, since g7 is uniform in G and § is also uniform, we get that
a = g7 -y~ P is uniform as in a real execution. Finally v is in both cases a deterministic function
of a and S, concluding the proof. ]

Clearly, HVZK does not say anything about the case where a malicious verifier tries to learn
something on the witness by deviating from the protocol. This extreme adversarial setting leads to
the definition of full-fledged zero knowledge (see Section. We remark that the Schnorr protocol is
not known to be zero knowledge: there might be some efficient malicious strategy that the verifier
may follow which, perhaps after many executions of the protocol, enables it to “steal” the witness.

2 Y-Protocols

By collecting all notions introduced so far, we arrive at the definition of X-protocols which is given
below Pl

Definition 5 (X-protocol). A Y-protocol for a relation R is a 3-round interactive protocol with
transcripts (a, B,7), where the prover speaks first, satisfying the following properties:

Completeness. The same as in Definition [1]
Special Soundness. The same as in Definition[3.

Special HVZK. There exists a PPT simulator S that on input y € L and for all B outputs a
tuple (o, B,7) with the same distribution as the corresponding tuple in a honest protocol run
between Alice and Bob with input y.

By Theorem [I| we know that every 3-protocol with super-logarithmic challenge space is also
a PoK. Moreover, putting together Lemma we also know that the Schnorr protocol is a -
protocol.

Note that Special HVZK allows the simulator to also take as input the challenge, which is not
allowed in HVZK (see Definition . However, most YX-protocols satisfy special HVZK; in particular
the protocol of Fig. [1| does (the proof is left as an exercise). One can also show that any relation
in NP has a (computationa]EI) Y.-protocol, but we will not prove this.

The proof of the statement below is left as an exercise.

Theorem 2. Let (P,V) be a X-protocol for a relation R. Then:

3The terminology Y-protocol was introduced for the first time by Ronald Cramer in his PhD thesis [Cra96].
4This means that the HVZK property holds only computationally, i.e., the simulator’s output distribution is
indistinguishable from the distribution of honest executions.
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Figure 2: The OR trick.

(i) All properties of (P,V) are maintained under parallel composition.

(i) For any £ > 0 there exists a X-protocol with challenges of length € bits.

2.1 OR Proofs

We now explain the OR trick, due to Cramer, Damgard and Shoenmakers [CDS94]. Consider a
relation R (with corresponding language £ := L) with a ¥-protocol (P, V) having ¢-bit challenges.
The protocol of Fig. 2] allows a prover—holding yo,y1 € L, together with a witness x for either
Yo or y—to convince a verifier that either R(yg,x) = 1 or R(y1,x) = 1 without revealing which
is the case. Define the relation Rog, such that Ror((vo0,v1),2)) = 1 iff either R(yo,xz) = 1 or
R(y1,x) = 1. We show the following theorem.

Theorem 3. The protocol of Fig.|9is a X-protocol for the relation Ror. Moreover, for any (possibly
malicious) verifier V*, the probability distribution of conversations between P and V*, where x is
such that R(yy, x) = 1, is independent of b.

Proof. We proceed to verify that the protocol satisfies all properties as required in Definition

Completeness. This follows by completeness of (P, V), and by the fact that if the prover is honest
we always have 8 = By ® 1.

Special soundness. To prove special soundness, consider two accepting conversations on input
(y()? yl)

((Oé(), 041)7/87 (/807'707/317'71))7 ((0407 041)75,7 (B(l)a’)/(l)v 617’71)) such that 5 7& B,'

Since By ® B1 = B # B = B, @ B, it follows that either Sy # B or 81 # B] (or both).
Without loss of generality assume that Sy # /. We can now use special soundness of (P, V)
to compute x from (v, Bo, 8, 70, 70), such that R(yo, z) = 1; clearly z is also a valid witness
for ROR-




Special HVZK. Given § and (yo,y1) the simulator Sor simply chooses (5, 81 at random subject
to Bo @ B1 = B and hence runs the simulator S of the underlying >-protocol twice, on inputs

(Y0, Bo) and (y1, B1).

It remains to prove the second part of the statement. Towards this, consider an arbitrary
verifier V* interacting with (honest) P in the protocol of Fig. [2l We note that the distribution of
conversations has the form ((«g, 1), 5, (50,70, 81,71)), where (ag, 1) are distributed as an honest
prover in (P, V) would choose them (this follows from HVZK of the underlying protocol). Then g
has whatever distribution V* outputs, given g, y1, ag, @1; moreover gy, 81 are random subject to
B = Bo @ f1. Finally, 7o has whatever distribution the honest prover in (P, V) outputs, given that
the input was yg and the first part of the conversation was ag, 5p; a similar conclusion holds for ;.
This is trivial for «, and follows from HVZK of the underlying protocol for v;_;. We conclude that
the distribution is independent of b, as desired. L]

The last property is also known as witness indistinguishability (WI). One can prove that every
Y-protocol satisfies WI, but we will not do this. We refer the reader, e.g., to [Venl2, Lemma
13.7]. The OR trick described above can be generalized to the case where there are polynomially
many relations Rq,..., Ry, and Ror := R1 V-V R,. It is also possible to give a X-protocol for
RanD :=R1 A -+ ARy. The two things together yield X-protocols for any monotone function.

2.2 Witness Hiding

As our next step, we want to formalize what it means for an interactive proof to “hide the witness”
This will require -protocols for so-called hard relations, which we introduce next.

Definition 6 (Hard relation). A relation R is said to be hard if there exists a PPT algorithm Gen
that takes as input a security parameter K € N and outputs a pair (y,z) such that R(y,z) = 1.
Moreover, for all PPT adversaries A, there exists a negligiblcﬂ function v : N — [0, 1] such that

P[R(y,z*) =1: 2" < A(y); (y,x) < Gen(17)] < v(k).

Intuitively the above captures the requirement that it should be hard to find a witness for a
valid statement y € L. Assuming that computing discrete logs in G is hard, for instance, the
relation Rp introduced in Section [I] is hard.

We now argue that the protocol of Fig. has a property known as witness hiding (WH), whenever
the underlying relation is hard. Intuitively we want to say that even a cheating verifier V* cannot,
after running the protocol with an honest prover, learn sufficient information in order to recover a
valid witness.

Definition 7 (Witness hiding). Let R be a hard relation with X-protocol (P,V). We say that
(P,V) is witness hiding if for all PPT \V* there exists a negligible function v : N — [0,1] such that
P [V* wins| < v(k) in the following game:

e Run (y,x) + Gen(1%) and give y to V*.

e V* can run polynomially many executions P(y,z) = V*(y), and learn the corresponding tran-
scripts.

5 A function v : N — [0, 1] is negligible in & if it decreases faster than any inverse polynomial in &, i.e. v(k) = £~*1).



e Finally V* outputs x* and it is said to win if R(y,x*) = 1.
Theorem 4. Let R be a hard relation. The protocol (Por,Vor) of Fig. @ is WH for Ror.
Proof. Assume there exists a PPT V* that wins with non-negligible probability in the game below:

e For a random bit b<s{0,1}, run (yo, o), (y1,21) < Gen(1%), give (yo,y1) to V*, and keep
Tp.

e V* can run polynomially many executions Por(xp, yo,y1) = V*(y0,y1), and learn the corre-
sponding transcripts.

e Finally V* outputs * and it is said to win if Ror((yo,v1),2*) =1 (i.e., either R(yp,z*) =1
or R(yi,z*) =1).

We construct a PPT A using V* to break the hardness of R as follows:
Reduction A:

e At the beginning A receives y, such that (y,z) <— Gen(1%), from its own challenger.

e Run (y,Z) + Gen(1%), sample a random bit b<—s {0,1}, and define y, := y and
y1—p := g. Return (yo,y1) to V*.

e In case V* wants to interact with the prover in Pgg, simply emulate the interaction
honestly (using knowledge of z).

e Whenever V* terminates and outputs x*, output z*.

Notice that, by WI of (Pog, Vor), we have that V* has no information on our choice of b. Since b
was chosen at random, we obtain that R(y, z*) = 1 with probability 1/2. It follows that A succeeds
with non-negligible probability v/2, a contradiction. This concludes the proof. L]

3 Secure Identification

We now sketch an application of what we have seen so far to the context of secure identification
(ID) schemes.

3.1 Detour I: Passive/Active Security

An ID scheme is a tuple of algorithms (Gen, P,V) specified as follows: (i) Algorithm Gen takes
as input the security parameter and outputs a key pair (pk, sk); (ii) (P, V) defines an interactive
protocol—where the prover holds (pk, sk) and the verifier holds pk—at the end of which the verifier
outputs a judgement yes/no. As usual, we say that (P,V) satisfies correctness if P(pk, sk) =
V(pk) = yes with probability one over the choice of (pk, sk) <— Gen(1*) and over the randomness
of all involved algorithms.

The most basic form of security for an ID scheme is called passive security, and intuitively
captures the requirement that it should be hard to convince the verifier without knowing the secret
key (even after observing polynomially many honest executions of the ID scheme).



Definition 8 (Passive security). We say (Gen, P,V) is a passively secure ID-scheme if for all PPT
adversaries A there exists a negligible function v : N — [0,1] such that P[A wins] < v(k) in the
following game:

1. Run (pk, sk) < Gen(1%), and give pk to A.

2. The adversary has access to an oracle returning polynomially many transcripts T of honest
executions P(pk, sk) = V(pk).

3. The adversary interacts with the verifier, and is said to win iff A(pk) = V(pk) = yes.

In active security, it should be hard to impersonate the prover even if the adversary can previ-
ously replace the verifier in polynomially many protocol executions.

Definition 9 (Active security). We say (Gen,P,V) is an actively secure ID-scheme if for all PPT
adversaries A there exists a negligible function v : N — [0, 1] such that P[A wins] < v(k) in the
following game:

1. Run (pk, sk) <— Gen(1%), and give pk to A.

2. The adversary can replace the verifier in polynomially many executions of the protocol, yielding
transcripts T corresponding to P(pk, sk) = A(pk).

3. The adversary interacts with the verifier, and is said to win iff A(pk) = V(pk) = yes.

3.2 Constructions from Y-Protocols

A way to construct an ID scheme, is to use directly a Y-protocol for a hard relation R. The idea
is to generate a pair (y,z) < Gen(1") and to define the public key of a user to be pk := y, while
the secret key is sk := x. An execution of the protocol is then defined by running the underlying
>.-protocol.

Theorem 5. Let (P,V) be a X-protocol for a hard relation R, with challenge space of size |B| =
w(log k). Then (P,V) is a passively secure ID scheme.

Proof. Denote by G the security experiment of Definition |8} Consider a modified game G’ where
the transcripts 7 := («, 3,7) corresponding to honest protocol executions are emulated by running
the HVZK simulator S of the underlying Y-protocol.

By (perfect) HVZK we have that G and G’ are identically distributed, in particular P[A wins in
G’| = P|A wins in G]. We now show that for all PPT A the probability that A wins in G’ is
negligible. By contradiction, assume there exists an adversary A such that P [A wins in G'] is non-
negligible. We construct an adversary B (using A) breaking hardness of the underlying relation.

Adversary B:

e Receive the value y (for the hard relation), set pk := y and give pk to A.
e Run the knowledge extractor KA(y); denote with z* the output of the extractor.

— While running the extractor, whenever A asks to see a honest execution of the
protocol, run 7 := (a, 8,7) + S(y) and return 7 to A.



e Output z*.

By knowledge soundness (which follows by special soundness as |B| = w(logk)), we get that B
outputs a value such that R(y,z*) = 1 with non-negligible probability. This concludes the proof.
O

In case the Y-protocol additionally satisfies the WH property, it turns out the ID scheme actually
achieves active security. The intuition here is that if an adversary A could break active security
with non-negligible probability, by knowledge soundness we could extract a secret key sk* that is
consistent with pk with non-negligible probability; this contradicts the WH property.

Theorem 6. Let (P,V) be a X-protocol (with challenge space of size |B| = w(logk)) for a hard
relation R, that additionally satisfies the witness hiding property. Then (P,V) is an actively secure
ID scheme.

Proof. Assume that there exists an adversary A that wins the active security game with non-
negligible probability. We construct an adversary B (using A) that breaks the witness hiding
property of the underlying Y-protocol.

Adversary B:

e Receive the value y (for the hard relation), set pk :=y and give pk to A.
e Run the knowledge extractor KA (y); denote with #* the output of the extractor.

— While running the extractor, whenever A wants to play the role of the verifier
in an execution of the ID scheme, forward A’s messages to the challenger and
relay back the challenger’s messages to A.

e Output z*.

By knowledge soundness (which follows by special soundness as |B| = w(logk)), we get that B
outputs a value such that R(y,z*) = 1 with non-negligible probability. This concludes the proof.
O

As a corollary, the OR proof from Section directly yields an actively secure ID scheme.

3.3 Beyond Active Security

In practice, active security might not be enough. In particular an adversary could play a man-
in-the-middle between some user and a honest verifier, and just relay communication in order to
impersonate the user to that verifier. In order to avoid this, we need to ensure that not only provers,
but also verifiers, hold certified public keys. See [Dam10, Section 7] for a more in-depth discussion
how this can be achieved.

As a final note, we remark that there are other ways to construct secure ID schemes. We refer
the reader, e.g., to [Venl12, Chapter 11] for a survey. One popular such way is to use a signature
scheme: The verifier challenges the user on a randomly chosen message, and the prover provides a
signature on that message. On the positive side, this approach requires only two rounds (and not
three as for ¥-protocols). On the negative side, a signature could be used later on as a proof of the
fact that a given user talked to the verifier. This problem does not appear when using Y-protocols:
A verifier can always simulate a transcript of the protocol only given the public key, so this cannot
be used as evidence that it really talked to some user.

10



4 The Fiat-Shamir Heuristic

In this section we show a powerful application of X-protocols to the construction of efficient and
provably secure signature schemes. The result is in the random oracle model [BR93] (ROM), which
assumes the existence of a random hash function h < H that answers to every query with a (truly)
random response chosen uniformly from its output domain; if a query is repeated it responds the
same way every time that query is submitted.

4.1 Detour II: Universal Unforgeability

We take a detour and recall the standard security notion for signature schemes. A signature scheme
SS = (KGen, Sign, Vrfy) is triple of algorithms defined as follows: (i) Algorithm KGen takes as input
a security parameter, and outputs a pair (vk, sk) where vk is the public (verification) key and sk
is the secret (signing) key; (ii) Algorithm Sign is randomized, takes as input the signing key sk, a
message m € {0,1}* and random coins 7, and returns a signature o := Sign(m;r); (iii) Algorithm
Vrfy takes as input vk, m, o and outputs a decision bit.

We say that SS satisfies correctness if for all m € {0,1}*, and for all (vk, sk) <—s KGen(1"), we
have that Vrfy(vk, (m, Sign(sk, m))) = 1 with probability one.

As for security, we require that it should be hard to forge a signature on a “fresh” message even
given access to an oracle that signs polynomially many (and adaptively chosen) messages.

Definition 10 (Unforgeability). We say that SS = (KGen, Sign, Vrfy) is unforgeable against chosen-
message attacks if for all PPT forgers F there exists a negligible function v : N — [0,1] such that
P[F wins] < v(k) in the following game:

1. Sample (vk, sk) +—s KGen(1%) and give vk to F.

2. The forger can specify polynomially many signing queries of the form m € {0,1}*; upon each
query it receives back o <—s Sign(sk, m).

3. At some point F outputs a pair (m*,c*) and is said to win if Vrfy(vk, (m*,0*)) =1 and m*
was not asked as a signing query.

4.2 The Fiat-Shamir Transform

The Fiat-Shamir transform [FS86] allows to turn every X-protocol (for a hard relation R) into
a signature scheme. The transformation is depicted in Fig. [3| and can be cast as follows: (i)
Algorithm KGen samples h <sH := {h : {0,1}* — {0,1}}, runs the generation algorithm of the
underlying hard relation to obtain a pair (y,x) such that R(y,z) = 1, and defines vk := (y, h) and
sk := x; (ii) Algorithm Sign emulates a run of the ¥-protocol by computing the challenge § as hash
of the values (y,m,«), and returns («, ) as signature on m; (iii) Algorithm Vrfy first recovers g
computing h(y, m,«), and finally checks that («, 3,7) is valid.

The proof below is facilitated by assuming (P, V) is a passively secure ID scheme (which is the
case whenever the relation R is hard). Recall that this means that no PPT adversary P* (not
knowing a witness) can make the verifier accept, even after observing polynomially many honest
executions of the protocol.
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Alice(vk := (y, h), sk := x) Bob(vk := (y,h))

a s P(z,y)

B = h(m,a,y)

v s P(z,a,p)
a::(a,'y)
—

check: 8 = h(m,a,y)
V(y, (o, 8,7)) = yes

Figure 3: The Fiat-Shamir transformation, turning a -protocol (P,V) into a signature scheme
SSks.

Theorem 7. Let (P,V) be a 3-round passively secure ID scheme, such that the first message «
has conditional min—entropgﬂ w(log k) given the public key y. Then the signature scheme SSks is
universally unforgeable against chosen-message attacks in the random oracle model.

Proof. Correctness follows by the completeness property of the underlying Y-protocol. As for
unforgeability, consider a forger F with non-negligible advantage in the unforgeability game. We
assume F makes g5 signature queries (1m;);c[q,), and g random oracle queries (1, &i,Y)ic[q,]- Wlog.
we can assume that if F outputs (m*,o* := (a*, 8*,~7*)), then it must have queried the random
oracle on (m*,a*,y); in particular, (m;,&;+) = (m*, o*) for some i* € [¢,]. We construct an
adversary P* (using F) breaking passive security of the underlying ID scheme.

Reduction P*:

e Receive the public key y € £, sample j < {1,...,q}, and forward y to F; observe
qs honest executions of P(y,x) = V(y), yielding transcripts (i, Bi, Vi)igq,]-

e Upon input a query (m;, &;,y) to the random oracle (where ¢ # 7), if h(my, &;,y)
is already defined return this value; else return [3’, +s {0, 1}2 .

e Upon input a signature query on message m;, program the random oracle at
h(ai,ms,y) = B;; if the random oracle is already defined at that point, abort.

e Upon input query (m;,d;,y) to the random oracle, forward &; to the challenger,
receiving a challenge Bj; program the random oracle at h(&;,mj,y) = Bj.

e Whenever F outputs m*, (o*, 8*,7*), if (m*, a*) # (11, &;) abort; else, forward ~*
to the challenger.

Define the event Abort to be the event that P* aborts in the third step of the above reduction;
by our assumption on the min-entropy of a we know that P [Abort] < v/(k) for some negligible
function v/. Moreover let Guess be the event that the reduction guesses correctly the index j = i*.
We have,

P [P* wins] > P [F wins A Guess A —Abort]
= (1 — P[Abort]) - P[F wins A Guess|—Abort]
> 1. P[F wins] — v(k),
dhn
a non-negligible quantity. L]
SThe min-entropy of a random variable X is defined as Hoo(X) := — log max, P [X = .
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4.3 The Random Oracle Controversy

Do random oracles exist in the real world? Not that we know. Clearly, a proof is never better than
the assumption from which a statement is proven. So what is a random oracle proof useful for?
The answer to this question is often debated in the community.

On the negative side, there exists (albeit contrived) protocols that are secure in the random
oracle model but can never be secure for any possible instantiation of the hash function. For
instance, Goldwasser and Kalai [GK03] proved that there exists a 3-round argument such that the
Fiat-Shamir transformation is always insecure when used with that argument. While this still leaves
the possibility that the Fiat-Shamir transformation could work for all 3-round proofs, [BDG'13]
have shown that this is also “implausible”m

On the positive side, a proof in the random oracle is much better than no proof at all! It also
means that a cryptographic scheme has no fundamental flaws, and that, if a vulnerability ever
exists, it can only regard the hash function. Said that, if available, a standard model proof is
usually preferred.

5 Zero-Knowledge Proofs

As we have seen, HVZK means that honest protocol executions do not reveal anything on the witness
(in the sense that they can be simulated efficiently without knowing a witness). WI (or more in
general WH), instead, require that a malicious verifier cannot distinguish protocol executions with
either of two witnesses (or learn anything useful which allows to compute a valid witness). Roughly
speaking, full-fledged zero knowledge means that even for malicious verifiers protocol executions
do not reveal anything on the witness.

Definition 11 (Zero knowledge). Let (P,V) be an interactive protocol for a relation R. We say
that (P,V) is zero knowledge if for all PPT V/* there exists a PPT simulator S such that

{P(y,z) = V*(y)}yeﬁn ~ {SV* (y)}yeLR»

can mean computational, statistical, or perfect indistinguishability.

U

where “x’

Typically, the definition requires that V* and S are also given some auxiliary input (which might
possibly depend on x); this is important when ZK protocols are used as sub-protocols in larger
protocols.

Are Y-protocols ZK? It seems hard to prove, at least if the challenge space is k(). In order
to see this, consider again the Schnorr protocol (see Fig. and the following malicious verifier
V*: At the beginning V* receives the value a = g% (for random a) from the prover, and then it
defines 3 = H(a) where H(-) is a collision resistant hash function; let 4 = 8- 2 + a be the prover’s
last message. The simulator S has to simulate a conservation (c, B,’Ay) such that g = H (o), and
moreover g7 = a-yP. Tt is not clear how to do this. A first possibility would be to choose B and ¥,
and then hope that the value « satisfies H(«) = $3; this would violate the hash function property.
A second possibility would be to choose o (which determines B), but then finding 4 would require
to compute a discrete logarithm.

" As positive result, [BLV06| put forward a simple property of the hash function that allows to prove soundness of
Fiat-Shamir in the standard model; we do not know any hash function satisfying this property though.
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The good news is that every Y-protocol can be transformed into a protocol that is full-fledged
zero knowledge (and in fact, even into a ZK-PoK). However, we won’t have time to explain how
this can be done. The interested reader is referred, e.g., to [HL10, Section 6.5].

5.1 On the Role of Randomness and Interaction

One can show that both prover’s randomness and interaction are necessary in order to construct ZK
proofs. In particular, without making further assumptions, non-interactive ZK (NIZK) is possible
only for “trivial languages”ﬂ The same holds for the case of deterministic provers. We refer the
reader, e.g., to [Venl2, Section 13.2] for a proof.

Nevertheless, NIZK is possible in the random oracle model; in particular the FS transformation
of Section {4] can be shown to yield a NIZK proof.

5.2 Zero Knowledge for NP

Many interesting relations have ZK proofs, but we won’t have time to study this. For instance, there
is a simple ZK proof for the problem of graph isomorphism. Let G = (V, E) be a graph, where V'
denotes the set of the vertices and E the set of edges. Two graphs Gy = (V, Ey) and G = (V1, E7)
are isomorphic if there exists a map ¢ : Vy — V; such that (v,v’) € Ey iff (p(v), p(v')) € E1. The
underlying language here is the set of all isomorphic graphs, the map ¢ being the corresponding
witness.

Does any language in NP have a ZK proof? The answer to this question is positive (although
we won’t have time to show this). In particular it is sufficient to construct a ZK proof for any NP-
complete problem. This was done for the first time by Goldreich, Micali and Widgerson [GMWS86]
assuming that one-way functions exist.

6 Further Reading

We conclude with a brief collection of pointers to other interesting applications of zero-knowledge
proofs.

e Concrete X-protocols exist for many other “hard problems” beyond discrete logarithms.
These includes the RSA assumption [GQS88|, factoring [FF02]|, and learning parity with
noise [JKPT12]. A famous generalization of the Schnorr protocol is due to Okamoto [Oka92].

e The definitions of zero knowledge we have studied are for the so-called “standalone setting”
where protocols are run in isolation. In practice protocols are not standalone, but are run as
sub-protocols in larger protocols. Security in this setting is often called concurrent security,
and has been studied in several important works. See, e.g., [GMY06, BPS06].

e Non-interactive zero-knowledge is also possible in the common reference string model, where
one assumes a trusted party produces a reference string that is given as input to all par-
ties. In this setting, the famous Groth-Sahai proof system [GS08, GOS12] allows to generate
very efficient proofs for concrete “algebraic” statements. Zero knowledge for “non-algebraic”
statements is also an interesting question [JKO13].

8Trivial languages are languages that can be decided without the need of an interactive proof.
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e An important application of non-interactive zero knowledge, is to the setting of public-key en-
cryption (PKE): Seminal work of Naor-Yung [NY90] and Dolev-Dwork-Naor [DDNO03] showed
that it is possible to use non-interactive zero-knowledge proofs for generically transforming a
PKE with weak security (IND-CPA) into a PKE with very strong security (IND-CCA).

e Secure multi-party computation (MPC) allows a set of mutually distrusting parties to compute
an arbitrary function of their inputs, without revealing more than what the output already
reveals. Zero knowledge is one of the main tools for constructing MPC protocols with active
security; this was shown for the first time by [GMWS87] and has been extended in several
directions in subsequent work.

e Zero knowledge finds also many applications in the construction and analysis of concrete
cryptographic protocols, including electronic voting [KZZ15], electronic cash [CPST15], and
anonymous credentials [CLO1].
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