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ABSTRACT

We address the problem of visual instance mining, which is
to extract frequently appearing visual instances automat-
ically from a multimedia collection. We propose a scal-
able mining method by exploiting Thread of Features (ToF).
Specifically, ToF, a compact representation that links consis-
tent features across images, is extracted to reduce noises, dis-
cover patterns, and speed up processing. Various instances,
especially small ones, can be discovered by exploiting cor-
related ToFs. Our approach is significantly more effective
than other methods in mining small instances. At the same
time, it is also more efficient by requiring much fewer hash
tables. We compared with several state-of-the-art methods
on two fully annotated datasets: MQA and Oxford, show-
ing large performance gain in mining (especially small) vi-
sual instances. We also run our method on another Flickr
dataset with one million images for scalability test. Two ap-
plications, instance search and multimedia summarization,
are developed from the novel perspective of instance min-
ing, showing great potential of our method in multimedia
analysis.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
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Summarization

1. INTRODUCTION
In the past decade, multimedia researchers mainly focused

on visual search (given a query, retrieve similar images),
while visual mining has not yet been fully studied. This pa-
per addresses the problem of visual instance mining, which
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Figure 1: A wide range of visual instances, plotted
on a 2D plane of “Freq-DuP”. Note Freq is the num-
ber of images sharing an instance, and DuP indicates
the instance scale. We propose a robust instance
mining method, particularly effective for small scale
instances.

is to automatically discover and extract frequent visual in-
stances out of a data collection. The term “instance” in this
paper is referred as a specific “visual entity” (e.g., an ob-
ject/location/logo/person). We highlight this problem by
comparing with its relatives: (1) different from visual search,
instance mining does not have any query as entry point; (2)
compared to general “object class” discovery (e.g., car, dog)
[2, 8, 18, 23], specific instances (e.g., this car, this dog) are
expected as output; (3) compared to image-level clustering
[15], instance mining also extracts objects covering small
image areas.

As shown in Fig. 1, there are various instances in a real-
world data collection. Roughly, they can be characterized
by two dimensions: “Frequency” (Freq) and “Duplicate Pro-
portion” (DuP). “Freq” of an instance is the number of im-
ages sharing that instance, and “DuP” denotes the dupli-
cate proportion among images with the instance. Roughly
speaking, “Freq” depicts the popularity (rare or popular) of
an instance, and “DuP” indicates the instance scale (small
or large). Small and rare instances (Fig. 1 bottom-left)
correspond to personal belongings (e.g., a personal mug)
or rare logos. Large and popular instances (top-right) are
mostly famous landmarks or scenes, while large and rare
ones (bottom-right) are often near duplicates shots (proba-
bly taken by the same user within a short time of period).
Small and popular instances (top-left) are usually consis-
tent patterns featuring popular objects (e.g., famous prod-
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Figure 2: The framework of our proposed instance mining approach.

ucts, visual memes). For a real application, Freq is usually
positively correlated with the popularity/significance of an
instance, and DuP is negatively correlated with the mining
difficulty.
Mining frequent instances from large multimedia collec-

tion is essential for many tasks in multimedia analysis, such
as multimedia summarization, trend predication, product
recommendation and instance search. For example, given
the photos uploaded in a certain time and location (e.g.,
Flickr photos uploaded during last year in New York City),
instance mining could be applied to (1) organize the collec-
tion for browsing; (2) discover popular items (e.g., restau-
rant, tee) or events (e.g., Macy’s parade); (3) analyze trends
for fashion/product/tourism. As shown in Fig. 8, 9 and 10,
popular instances mined from a dataset could be treated as
a “high-level” feature for understanding the dataset. People
can grasp the key ideas of the data collection with a quick
glance at the mining results, saving a lot of time and ef-
fort. Another interesting aspect to note is the serendipity
in mining results. Some instances in the dataset could be
very difficult to be noticed by a human. However, automatic
mining could reveal some of these underlying features.
Instance mining is still challenging in terms of efficiency

and effectiveness. Most existing methods suffer from ei-
ther scalability or quality issue. Methods designed for small
instances [11, 22, 24, 20] can only handle few thousands
of images. On the other hand, scalable methods [14, 4,
5] are mostly less compatible with small instances. Scal-
able instance-level mining remains to be a problem. In this
work, we address both problems at the same time, targeting
for mining all frequent instances, especially small ones, at
million scale dataset. Specifically, a two-step framework is
adopted. As shown in Fig. 2, we first thread features that
potentially share an instance via efficient pruning, and then
cluster these threads to vote for instance clusters. The first
step is motivated by the fact that only a very small fraction
of local features, which are likely to repeat among images,
are helpful in instance mining. We highlight these features
by threading them together. The second step is featured
by threads clustering rather than image clustering, which
significantly boosts the chance of mining small instances.
The main contribution of this paper is the proposal of a

visual mining approach that addresses the scalability and
small issues at the same time. Compared to other methods,
our approach is more effective in mining small instances,
while being scalable for million scale dataset. Furthermore,
through two applications, we show novel solutions to the
problem of instance search and multimedia summarization.
Both of our applications are the first attempts to solve the
original problems (search/summarization) from a new per-
spective of data mining.

2. RELATED WORKS
In this section, we review related works based on their

targeting instance types.
Small Instances Mining. Methods designed for small

instances usually work on small scale dataset.
Early studies on Common Pattern Discovery [11, 22, 24]

model this as an optimization problem. These methods are
computational expensive, thus can only operate on small
scale dataset (up to few hundreds images). It is reported in
[11] that two hours of running time is required for a dataset
with 600 images.

Another approach is Frequent Itemset Mining, which are
initially used to find sets of products bought together by
customers (e.g., beer and diaper). Sophisticated algorithms,
i.e., APriori [1], Eclat [25], and FP-growth [7], have been
developed for this purpose. Quack introduces FIM to visual
mining in [17], by treating local image patches as transac-
tions and visual words as items. This method is effective
object discovery, but slow in support-counting. In practice,
it can only deal with thousands of images.

Sivic [20] extracts key objects and characters from a fea-
tured movie by directly clustering grouped local features.
Each feature is first grouped with its neighbours. Then fre-
quent objects are extracted as clusters of the grouped fea-
tures. This is a direct and effective approach for instance
mining. However, the scalability remains a big issue, since
pairwise similarity evaluation is essentially quadratic. More-
over, only instances with fixed size can be mined, since fea-
tures must be grouped before clustering.
Large Instances Mining. Methods designed for large in-
stances are much scalable.

Philbin [15] constructs a matching graph by searching
each image in turn, and then partitions dense sub-graph as
clusters. They managed to discover large instances (mostly
landmarks). However, small instances could be extremely
difficult to mine, since the graph is constructed by full-image
search. As for speed, it takes two hours for clustering a
37k dataset, since searching every image against the whole
dataset is costly.

Chum [4] mines similar images efficiently by min-Hash
[3] with the representation of BoW. Correspondingly, key
collisions are extracted as clusters. This method is capable
of finding landmarks in large dataset. However, it does not
apply to small instance discovery, since Jaccard similarity
between images sharing an small instance can be extremely
low, and the probability of collision for such images decays
quickly as the similarity drops.
Mining Both Small and Large Instances. There only
exist a few methods that are both efficient for large dataset
and compatible for small instances.
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Letessier [10] use Random Maximum Margin Hashing to
generate a prior distribution and then adaptively sample
and verify frequent objects. A fundamental difference from
our method is that [10] mines small instances by clustering
local points (versus ToFs in our approach). Our method is
potentially more effective and robust, since we uniquely con-
sider the co-occurrence of multiple local points in instances
through clustering feature threads.
Pineda [16] extracts instances by clustering visual words,

where each visual word is represented as a set of images
that have features quantized to it. This method is effective
in mining both small and large instances, but can only work
on small scale dataset. The performance decays quickly as
more images are involved, since more noises are introduced
to the representation of visual words.
Geometric min-Hash (GmH) [5] extends min-Hash by con-

sidering the dependency among visual words. For a sketch,
it computes the first hash key as standard min-Hash does.
Secondary hash values are then chosen within a local prox-
imity of the first key. This method improves the collision
probability for small instances. However, this performance
boosting only exists when the first key repeats, which is still
difficult for small instances.
This paper targets for instance-level mining in large dataset

(up to million scale). We build our method upon min-Hash
for efficient processing, and address the small problem by
threading features.

3. INSTANCE MINING
As in Fig. 2, our method consists of two major steps:

Feature Threading and Thread Clustering. We start by in-
troducing how to thread features efficiently (Section 3.1),
and then show how to mine both small and large instances
effectively with these threads (Section 3.2).

3.1 Feature Threading
Our mining algorithm adopts a bottom-up approach, build-

ing up visual instances with the elementary components:
Thread of Features (ToF). As illustrated in Fig. 2, a ToF
corresponds to a set of consistent local features across mul-
tiple images. It keeps potential features that link instances,
and discards noisy features that are unlikely located on fre-
quent instances. This is motivated by the fact that only
a small fraction of features are helpful in instance mining.
This phenomena is different from image search, where every
feature must be indexed since the query stays unknown.
For mining, ToF serves as an important cue for identifying

frequent instances. Whenever there is an instance among
a set of images, there must exist several ToFs connecting
these images. On the other hand, we can hardly extract any
ToFs among random images sharing no common instance.
In principle, ToFs should be (1) compact to only link poten-
tial features from instances; (2) complete to cover as many
instances as possible; (3) efficient to extract and thus be
scalable on large dataset. Next, we will discuss our solution
to these challenges.
In our work, local SIFT features are quantized to visual

words before processing, since comparing raw features is too
costly. In image search [19], features quantized to the same
visual word are considered to be matched. However, such
matching is too noisy. In other words, most of the features
quantized to the same visual word are not necessarily con-
sistent enough for threading. Therefore, we also consider

0.160.16

0.140.14

0.120.12

0.10.1

0.080.08

0.060.06

0.040.04

0.020.02

00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 331 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 331 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Hamming DistanceHamming Distance

2424
23
24
23
2222
21
20
21

our20

log
(#_

ev
al)

our
original19

20

log
(#_

ev
al) original19

log
(#_

ev
al)

18log
(#_

ev
al)

17
18log

(#_
ev

al)

17
16
17
16
1515
1414

0 10 20 300 10 20 30
ht: Hamming Threshodht: Hamming Threshod

Figure 3: Left: The distribution of Hamming dis-
tances among features extracted from a 10k subset
of Flickr images. The curve Bin(32, 0.5) is overlaid
as red dashed line. Right: the number of evalu-
ations with respect to different Hamming signature
threshold, ℎt. The red dashed line indicates the case
without using Hamming code.

the neighbouring points around each feature F for robust
matching. In particular, l nearest features are considered
to augment the central feature F as a small local patch.
These neighbouring features are selected within a small re-
gion centered at F , and with the similar scale1 as F . In our
implementation, a local patch is created around each local
point by concatenating its l = 10 neighboring visual words.
The term “central feature” indicates the SIFT feature of the
local point.

Threading among these augmented features involves lots
of similarity evaluations, i.e., intersection of two sets: count-
ing the number of common visual words between a pair of
patches. Two features are threaded if their local patches
share at least t = 2 common visual words. For a dataset
with N images and each with n local features on average,
the direct way requires (Nn)2 evaluations. By restricting
the threading among features quantized to the visual word
[20], the evaluation is reduced to (Nn

w
)2 × w = (Nn)2/w,

where w is the size of the visual vocabulary. However, this
number is still too large for large dataset.

We noticed that, even for features quantized to the same
visual word, most of the similarity evaluations are still un-
necessary and lead to no intersection. In this paper, we fur-
ther reduce the computation by using a short binary Ham-
ming signature [9] for early pruning. A short binary code,
extracted from the central feature, is embedded to each cen-
tral feature as its “signature”. This signature is computed
by randomly projecting the feature vector to lower dimen-
sional space and thresholding to binary codes. Hamming
distance is checked prior to the actual similarity evaluation.
Only patches with low Hamming distance are subject to ac-
tual similarity evaluation. Note that Hamming distance is
much efficient (“XOR”) to compute compared to full similar-
ity evaluation. In this way, the set intersection is evaluated
only if two patches are with the same central visual word,
and their signatures are with a distance less than the Ham-
ming Threshold (ℎt). Consequently, the total number of
evaluations is further reduced to:

(
Nn

w
× CDF(ℎt))2 × w =

(Nn)2

w
× CDF2(ℎt), (1)

1The scale of local SIFT feature.
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where CDF(ℎt) is the Cumulative Distribution Function of
Hamming distance, which could be approximated as a Bi-
nomial distribution Bin(K, 0.5) for K-bits Hamming signa-
ture [9]. We use K = 32-bits Hamming codes throughout
this paper. Fig. 3 (left) plots the distribution of Hamming
distances for a 10k image subset of Flickr dataset (see Sec-
tion 4.1 for details). As shown, the probability mass func-
tion of Bin(32, 0.5) roughly fits the actual distribution. Ac-
cording to Eq. 1, our method only involves a fraction of
CDF2(ℎt) evaluations compared with [20]. For commonly
used Hamming threshold ℎt = 10∼12, this fraction is around
(
∑

10∼12

i=0
PMF(i))2 = 0.06%∼1.16%. Fig. 3 (right) plots

the actual number of evaluations when mining on this 10k
dataset. Compared with [20], the computation is signifi-
cantly reduced. With the help of Hamming signature, we
efficiently extract several ToFs from each visual word, by
traversing the inverted file structure.
In summary, one ToF corresponds to a set of reliably

matched local patches with (1) same central visual word;
(2) small Hamming distances for their signatures; and (3)
roughly consistent neighbourhood. Thus, ToF serves as a
reliable link connecting images sharing consistent features.
In practice, only a small fraction of features are linked as
threads, while large portion features are discarded as noises.
Compared to traditional BoW, ToFs are much smaller in
size and cleaner in quality, which enables efficient and reli-
able instance mining in large dataset.

3.2 Instances Mining with ToF
After feature threading, each ToF is represented as a set

of image IDs. In this section, we show that this neat repre-
sentation is efficient for processing, while being effective in
mining both small and large instances. Since our method
is also based on min-Hash for efficient clustering, we first
analyze the main problems of min-Hash in instance mining,
then show how our strategy avoids these problems.

3.2.1 Min-Hash Revisited

Here we only briefly summarize min-Hash, and more de-
tails can be found in [3, 6]. Min-Hash (mH) is a randomized
algorithm for efficient sets-similarity estimation. It hashes
a set to the minimal index according to a random permu-
tation, where the collision probability of two sets equals to
their Jaccard similarity. Thus a large number k of min-Hash
functions approximates the actual similarity. In practice,
multiple (s) hashing keys are grouped together as a s-tuple
called sketch. In the scenario of mining, images with at least
one sketch collision are treated as similar images. With im-
ages represented as BoW vector, the probability [6] that two
images I1 and I2 having at least one sketch collision is given
by:

PC(I1, I2) = 1− (1− sim(I1, I2)
s)k. (2)

Small Instances: The first problem is on small instances.
The probability of collision decays rapidly as the similarity
drops, especially when a large sketch s is used. In our experi-
ments, sim(I1, I2) is around 0.02 (see Section 4.1 for details),
thus PC ≈ 0.3% even with k = 500 hash tables. To have
a decent probability of observing at least one collision, usu-
ally we have to use very large number of hash tables, which
requires more computation. As a result, most of the mining
results [4, 15] in previous works are about large landmarks.
Random Collisions: Next, we analyze the other problem:
random collisions (false positives), which is an important

aspect but often ignored by previous methods. That is, be-
sides true patterns, how many random image pairs are ex-
tracted. Let us consider a dataset with N random images,
each of which has n local features on average, and a visual
vocabulary V = {v1, v2, ..., vw} of size w for quantization.
Assume local features in this dataset are quantized to each
visual word with equal chance. For a pair of random images
IA and IB, let X1, X2, ..., Xw be a list of indicator random
variables with

Xi =

{

1, if vi ∈ IA & vi ∈ IB,

0, otherwise.
(3)

That is, Xi = 1 only if both images have the i-th visual
word. Since each Xi is identical and independent to each
other, the expected number of common visual words m is
given by:

m = E[

w
∑

i=1

Xi] = w ×E[X1] = w(1− (
w − 1

w
)n)2. (4)

Let x = 1/w, the term (w−1

w
)n = (1− x)n can be expanded

with Taylor expansion near x = 0 as 1−nx+O(x). This lin-
ear approximation form = n2/w is already accurate enough,
since x is approaching 0 for a large vocabulary. Then the
Jaccard similarity between a random pair of images can be
written as:

� =
∣IA ∩ IB∣

∣IA ∪ IB∣
=

m

2n−m
≈

n

2w − n
. (5)

This � is important as it estimates the average similarity for
random image pairs, which can be used to threshold large
number of false positives. For each

(

N

2

)

pairs of images, the
number of image pairs found in k hash tables follows the
binomial Bin(k, �s). As a result, the expected number of
random image pairs mined from the whole dataset is:

RC =

(

N

2

)

× k × �s. (6)

Take Oxford105k used in [4] for example, whereN = 104, 844,
n = 2, 805, w = 217, k = 512, and s = 3. According to
Eq. 6, RC = 3.34 × 106, which roughly matches the num-
ber reported in [4]: 38.4 × N = 4.02 × 106, where both
random and true collisions are counted. That is to say, be-
sides true image pairs, more than 3 million random pairs
are expected to be extracted from a 100k dataset. Note RC
grows quadratically in N , which becomes a big problem for
large scale mining. These random pairs need to be verified
with expensive post-operations, such as spatial verification
and image retrieval.

3.2.2 ToF Mining

After Feature Threading, the rest part of our method can
be briefly summarized as follows. ToFs are first clustered
using min-Hash, where clusters are extracted as key colli-
sions in hash tables. Then instance clusters are discovered
with a simple voting.
Thread Clustering. Our method solves the Small-Instance
problem by clustering ToFs instead of images. A ToF may
only give a single “link” over a set of images Ω, while mul-
tiple ToFs would indicate a strong evidence of an instance
over Ω. Although min-Hash is not good for mining images
sharing a small instance, we show that it is quite suitable
for mining correlated ToFs.
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Suppose a set of images that share a small instance, where
m≪n and � goes to 0. Thus hashing images can hardly
find the instance. In this work, we turn to exploit corre-
lated ToFs (Co-ToF), instead of clustering images. Corre-
lated ToFs are the set of threads that consistently show up
(or disappear) together on images. Clusters of correlated
ToFs lead to instance hypotheses. Intuitively, it suggests
that these images are sharing several consistent local re-
gions. This strategy is especially good for mining small in-
stances. Luckily, ToFs consisting the pattern can still show
high similarities, though the images are with low � between
each other. Note that the probability of ToFs collision is
totally independent on the instance scale, which makes it
suitable for instance mining. The only factor that matters
is the similarity among ToFs composing an instance, which
is usually high after feature threading.
Note that our strategy also addresses the Random Col-

lision problem. With compact and clean ToF, similarities
among ToFs composing an instance are much higher than
similarities among images sharing the instance. The rea-
son is that Feature Threading has discarded large portion of
noisy features. According to Eq. 2, to ensure a high probabil-
ity of collision PC > �, we need at least k > log

1−sims(1−�)
hash tables. That is, much fewer k hash tables are needed
with a slightly higher sim, since log

1−sims(1 − �) is steep
when sim ≈ 0.02 and � ≈ 0.8. This property is very useful,
since large computation can be saved with fewer hash tables.
Cluster Voting. After Threads Clustering, we adopt a
voting step to get instance clusters from threads clusters.
For each cluster of ToFs, all images that are linked by these
threads are considered as potential instance holders. To fur-
ther reduce noises, only the candidate images linked by most
(80%) ToFs are voted as instance clusters.
Our method helps small instances mining. There may

only a few threads extracted for small instances. But the
probability of collision (these threads are hashed to the same
key) only depends on the similarity of these threads. It has
nothing to do with the number of threads. Small objects
would just lead to a small cluster with only a few threads.
In summary, the main advantages of our mining strategy can
be summarized as follows: (1) fewer hashing tables (k) are
needed, since the noises are significantly reduced with ToFs;
(2) we have better probability to extract small instances.

4. QUANTITATIVE EVALUATION
We compare our method (Co-ToF) with three baselines:

(1) mH: image discovery via min-Hash [4]; (2) Co-VW: ob-
ject mining via co-occurring visual words [16]; (3) GmH:
Geometric min-Hash for objects discovery [5]. The first one
(mH) is included in our evaluation as a baseline using stan-
dard min-Hash. The other two methods are selected as rep-
resentatives for scalable instance-level mining methods, as
discussed in Section 2.

4.1 Datasets
MQA: A total number of 438 images are crawled from

Flickr and Google Image, by querying 52 instances names
(e.g., Wall Street Bull). This dataset2 is originally used for
visual instance naming [27], such that a wide range of real-
life instances are covered, including fashion, vehicle, flower,
pet, food, product, logo, landmark and art. Each visual

2http://vireo.cs.cityu.edu.hk/mqa/

Table 1: Summary for the dataset used in our ex-
periment.
Dataset # image # cluster cluster size � for GT
MQA 438 52 8.5 ± 2.2 0.0185
Oxford5k 5,062 364 6.5 ± 21.6 0.0251
Oxford100k 99,782 - - -
Flickr 1,000,000 - - -

instance has 5∼15 (8.5 on average) image examples with
different background (i.e., small duplicate proportion). We
use this dataset to test the performance on small instances.

Oxford5k: This dataset3 has 5,062 Flickr images by crawl-
ing landmarks in Oxford. As for the ground-truth, the 11
landmark buildings are labeled manually. Different with
image search, our evaluation takes all images with labels
{“Good”, “OK”, “Junk”} as true results, since we are eval-
uating instance level mining. However, we still found this
dataset heavily under-annotated: besides 11 labeled land-
marks, there still exist large number of unlabeled instance
clusters. Such annotation is reasonable for image-search
evaluation, but is inadequate for instance mining. In this
case, we re-annotate this dataset by (1) searching each im-
age in turn with traditional image search system, and (2)
pooling the top results for manual annotation. With our
fine annotation4, it ended up with 364 clusters (including
the original 11 landmarks) involving 2,369 images in total.

Oxford100k: This dataset [13] has 99,782 Flickr images
by crawling popular tags. Note images in this dataset are
not annotated, and are treated as negative images in our
quantitative evaluation, although there might be some fre-
quent instances inevitably.

Flickr: This dataset has one million images downloaded
from Flickr by crawling “recent uploaded photos”. No re-
strictions on tags, users, or locations are enforced at the time
of dataset construction. Though we expect this dataset to
be random, it still has several patterns inside, since there
might be some popular objects/landmarks shared by differ-
ent users and consistent images uploaded in same location.
Note that we do not have the ground-truth for this dataset,
and it serves as a “blind” dataset for scalability test.
General Settings. A hierarchical vocabulary with one
million leaf nodes is constructed [12]. With this vocabu-
lary, each image is representated as a set of visual words.
As shown in Table 1, the average Jaccard similarity (�) of
ground-truth (GT) images for MQA (Oxford5k) is 0.0185
(0.0251), while � for random image pairs is around 0.0013.
For hashing, k sketches of size 3 (s = 3) are used for all
methods.

4.2 Evaluation Metric
In this paper, we adopt F-measure as the evaluation met-

ric, which is frequently used in clustering. Instance mining
is essentially a clustering problem, where both false positive
and false negative decisions should be penalized. Specifi-
cally, recall is computed as the number of detected true im-
age pairs divided by total number of true pairs, and precision

is calculated as the percentage of true image pairs among all

3http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
4This annotation has already been made available at:
http://vireo.cs.cityu.edu.hk/gt clusters.oxford5k
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Figure 5: Example instances mined from MQA
dataset. Each row corresponds to a sample instance
cluster.

the detected pairs. Then F-measure is the harmonic mean
of precision and recall.

4.3 Mining MQA dataset
Fig. 4 compares different methods on MQA, which is a

small dataset with small instances. In terms of F-measure,
all methods, except mH, perform strongly on this small scale
dataset. As discussed in Section 3.2, mH is not suitable for
mining small instances, where similarities between true im-
age pairs are low. In such case, mH can hardly distinguish
true images out of random pairs, resulting in poor precision
and recall. On the other hand, other methods are much
compatible to small instances. Our method Co-ToF con-
verges quickly and leads the performance at different k. It
only needs very few tables to produce a decent result. Co-
VW also performs well on this dataset, and reaches its peak
around k = 20. For this small dataset (438 images) indexed
with a large vocabulary (1M), the sets of visual words for
different instance patterns are unlikely to overlap. Thus
there are not too much noises in the posting list of each vi-
sual words. This situation is ideal for Co-VW, but does not
hold, as more and more images (e.g., 100k∼1M) are added
to the dataset, e.g., Oxford dataset in Section 4.4. GmH also
performs well on this dataset by choosing secondary hash-
ing keys from the proximity of the first key. This strategy
prevents random collisions effectively, which significantly im-
proves precision over mH. However, it is still difficult for the
first key to collide for small instances, since the first key
is generated randomly as mH does. The chance for these
randomly selected features to collide is low, and it is even
lower when the images share a small instance (as in MQA).
Therefore, low recall is still a problem for GmH.
Fig. 5 shows several example instances mined from MQA

dataset. Based on our observation, (1) instances with high-
Freq and large-DuP are easy to mine, e.g., buildings, scenes;
(2) our method is effective in mining small instances, e.g.,
Coca-Cola, Wii-mote; (3) some instances, e.g., animals, flow-
ers, are still difficult to mine, since features extracted on
these smooth, non-rigid instances are not stable, which cor-
rupts feature threading.

4.4 Mining Oxford Dataset
Fig. 6 compares different methods on Oxford dataset. We

first evaluate the performance on the fully annotated Ox-
ford5k (top), and then report the performance on the com-
plete Oxford105k (bottom). Note that this 105k dataset

Figure 7: Example instances mined from Ox-
ford105k dataset, using our method. Top 3 rows:
example instances in ground-truth set. Images with
green-solid border are in the “junk” set of Oxford
dataset, while red-dashed border indicates false pos-
itives. Bottom 3 rows: example instances outside
ground-truth set. The last row is a false cluster.

is a combination of Oxford5k and Oxford100k, where Ox-
ford100k is added as distracting images.

The performance on Oxford dataset is roughly consistent
as MQA. The main differences between Oxford and MQA
are two folds: larger instances and more distracting images.

First, the average Jaccard similarity between true image
pairs is higher on Oxford dataset5. In this case, mH suits
better for this dataset by effectively discovering large in-
stances. However, it is still not comparable with GmH and
Co-ToF, which work for both small and large instances. Sec-
ond, more and more distracting images, which do not be-
long to any cluster, are included in our evaluation. Gen-
erally, more distracting images bring more irrelevant/noisy
features, which makes instance mining even harder. For Co-
VW, more noisy features are attached to the posting list
of each visual word, which brings down the similarity of
visual words composing an instance. As a result, the perfor-
mance of Co-VW degenerates quickly as dataset grows. For
mH, the number of random collisions grows quadratically in
the dataset size (Eq. 6). Thus it gives lower precision on
larger dataset. For GmH, more random collisions are ob-
served as more distracting images are added, but it is less
sensitive due to the way of choosing secondary hash keys.
As expected, our method performs consistently better than
other methods, and the performance gap is even larger as
the dataset grows. We noticed in our experiments that the
size6 of threads does not grow as fast as dataset size, since
our method only threads potential features for mining.
Performance on Small Instances. As shown, Oxford
dataset is with both small and large instances. Since our
method is tailored for small instances, we are also inter-
ested in the performance on particular small instances. To
separate small instances from large ones, we first calculate
the average Jaccard similarity for pairwise images in each
ground-truth cluster, and then cut the whole ground-truth

5
From 0.0185 to 0.0251 is adding 35% more common local features.

6
Number of threaded features.
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(c) F-measure

Figure 4: Performance comparison on MQA dataset.
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(a) Oxford5k: Precision
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(b) Oxford5k: Recall
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(c) Oxford5k: F-measure
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(d) Oxford105k: Precision
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(e) Oxford105k: Recall
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(f) Oxford105k: F-measure

Figure 6: Performance comparison on Oxford dataset. Top: Oxford5k, Bottom: Oxford105k.

Table 2: The performance (F-measure) on the small

subset of instances in Oxford dataset. A mid-level
value of k = 300 (1∼500 evaluated in Fig. 6) is adopted
for all methods.

mH Co-VW GmH Co-ToF
Oxford5k 0.0006 0.1370 0.1670 0.1836
Oxford105k 0.0006 0.0005 0.0347 0.0994

instances into halves according to this similarity. Instance
clusters with lower half similarities are regarded as small.
Table 2 presents the detailed performance on this small sub-
set. On Oxford5k, Co-ToF, GmH, and Co-VW show signif-
icant advantage over mH, which does not work on small
instances. Co-VW works on Oxford5k, but the performance
decays badly with more distracting images added. Both
GmH and Co-ToF work for small instances, and give decent
performance on this subset. GmH extracts small instances
effectively by improving the collision probability when the
first hash key repeats. Co-ToF outperforms GmH by re-
moving noisy background features, such that both first and
secondary hash keys are with high chance to collide.

Table 3: Precision of the mining results for Flickr
dataset, estimated on 1000 random image pairs.

mH Co-VW GmH Co-ToF
Precision 0.233 0.011 0.363 0.423

Fig. 7 shows several examples mined from Oxford105k.
In addition to the patterns included in the ground-truth set
(top 3 rows), we also show some patterns mined on Ox-
ford100k (bottom 3 rows), what are not labeled. As ob-
served, some of the patterns labeled as “junk” (less than
25% region is visible) in the original paper [13] are also dis-
covered by our method, which demonstrates the ability of
small instance discovery.
Failure cases. Some instances, mostly with non-rigid mo-
tion and non-planar surfaces, are missed by our method,
since the local features are not always repeatable across dif-
ferent images and the ToFs cannot be established through
feature matching. Some false-alarm instances (e.g., last row
of Fig. 7) are mined, because some locally consistent local
patches could appear frequently in irrelevant images. How-
ever, this problem can be alleviated by post-operations as
spatial verification.
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Figure 8: Example instances mined from Flickr
dataset. Due to space limitation, this figure only
shows example instances with 5∼10 ToFs. Instances
from top to bottom: the dart board, Starbucks, logo
in the corner, Apple logo, Adidas logo, a border
style.

4.5 Mining Flickr Dataset
Since it is impossible for us to annotate such a large dataset,

Flickr dataset is mainly used for scalability test in this pa-
per. We do not evaluate recall on this dataset, and the pre-
cision is roughly estimated by sampling 1000 random image
pairs from the mining results. As shown in Table. 3, Co-VW
gives most noisy result, due to the large scale of this dataset.
Min-Hash is good at finding highly similar images, but it also
returns large number of false positives. GmH gives better
precision by carefully selecting secondary hash keys. Co-
ToF achieves the best precision by removing noises through
feature threading. Note that the precision alone may not be
able to tell the full story on performance, but it gives a gist
on noise levels of different method.
The mined instances on this dataset are dominated by

near duplicates probably uploaded by the same user, which
are less-interesting. Thus in Fig. 8, we only show example
instances with small-DuP and high-Freq. As shown, some of
the small patterns corresponds to popular objects (the dart
board) or product logos (Apple, and Adidas), since they
are heavily shared by a wide range of users. The mining
results could indicate the instance popularity. Since these
objects only occupy a small area on the images with differ-
ent background, most of them are missed in other mining
methods. There is also a small logo found as in the 3rd row
of Fig. 8, which is small and embedded in a corner of the
images. Perhaps these photos are uploaded by a TV station
or an organization. The last row gives a serendipity. These
set of photos seem to be irrelevant, if judged by human. In
fact, by careful investigation, we notice that the instance is
the common style along the borders. A possible explanation
is probably a photo editing tool (e.g., Instagram), with this
special border-style, is getting popular among Flickr users.

4.6 Discussion
Performance on small instances. In our evaluation, we
have separated and focused on the small instances in the
Oxford dataset in Table 2. For MQA, the majority of the
dataset is of small sizes (confirmed by the small � in Table 1).
Hence, results in Fig 4 have been meant to evaluate the

Table 4: The running time for each method on dif-
ferent datasets. For Co-ToF, the total time (C) is
decomposed to Feature Threading (A) and Hashing
(B) as: A + B = C.

MQA Oxford5k Oxford105k Flickr
mH 2.1 s 27.0 s 9.5 m 1.7 h
Co-VW 8.7 s 68.2 s 8.0 m 1.7 h
GmH 2.2 s 27.3 s 9.6 m 1.8 h

Co-ToF
1.0+2.8 13.5+4.6 6.3+1.3 1.4+0.4
=3.8 s =18.1 s =7.6 m =1.8 h
s: second, m: minute, h: hour

performance focusing on small instances. The Flickr dataset
is diverse and too large to manually set aside only small
instances for performance comparison. However, Fig 8 only
shows instances with small DuP and high Freq.
Parameter sensitivity. The parameter settings (K; s)
follow the recommendation of previous works [4, 6, 9, 20]
with similar scenarios. Figures 4 and 6 show the perfor-
mances with different values of k. The choice of parameters
(l; t) are selected based on a separate validation experiment
(l = 5∼20, t = 1∼5), considering the tradeoff between effi-
ciency and accuracy.
Open Issues. Since our method relies on extraction of local
feature and their threading, its performance may degrade
when dealing with large media quality variations introduced
by significant viewpoint change, domain changes and high
noises.

4.7 Speed Efficiency
Table 4 gives a summary for the running time of different

methods. These experiments were all conducted on a 8-core
machine with 2.67GHz CPU, 16GB memory. The process-
ing time excludes feature extraction and quantization, which
are the same for all methods. As shown in the last row of
Table 4, the total running time of our method (Co-ToF)
consists of two parts: Feature Threading (Section 3.1) and
Threads Hashing (Section 3.2), while other methods only
have a hashing step. In general, all methods take roughly
similar time on large dataset. Although Co-ToF needs an
extra step for Feature Threading, the Hashing step is much
efficient compared to other methods. Essentially, the hash-
ing time is mainly affected by two factors: the total time is
linear in the number of sets; computing the hash key for a
set is linear in the size of the set. After feature threading,
both factors are reduced significantly due to the compact-
ness of ToF. Other methods, mH, Co-VW and GmH, need
much longer time for hashing, since they take the full set
of features during hashing. Note in this table, all methods
adopt the same number (k = 100) of hash tables for the pur-
pose of comparison. However, our method usually requires
much fewer hash tables in practice, which reduces the run-
ning time significantly in real applications. As observed, the
running time for our method is mainly dominated by Feature
Threading. However, the extra time spent is compensated
by efficient hashing step and much better results.

5. APPLICATIONS
In this section, we demonstrate two applications from the

new perspective of visual instance mining. To suppress sim-
ilar consective frames within a video shot, local points from
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the same video are not linked at the time of feature thread-
ing, which can be done conveniently and efficiently by in-
corporating video ID to each feature. Therefore, only inter-
video threads are kept.

5.1 Multimedia Summarization
We first present a multimedia summarization application

with two recent events “E1: Boston Bombing” and “E2:
Malaysia Airlines Flight 370”. To demonstrate, the datasets
are constructed by crawling Youtube videos with keyword
search “Boston Bomb” and “Malaysia Airlines Flight 370”.
Returned videos are then filtered with specific upload-time
constraint7. We construct the dataset this way such that
(1) there exist some repeated instances for mining; and (2)
people roughly know what kind of instances should be ex-
pected, since we do not have ground-truth for these videos.
Finally, we ended up with 355 videos for E1 (∼92k frames)
and 406 videos for E2 (∼103k frames), which include official
TV news as well as amateur reviews.
We apply our instance mining to summarize the video

collection as shown in Fig. 9 (Left: Boston Bombing, Right:
Malaysia Airlines Flight 370). The tag-cloud (top) is gen-
erated by extracting frequent terms (verbs and nouns) by
parsing video metadata (title, description). Visual patterns
(bottom) are extracted with the proposed method. We fur-
ther select several “small (first two rows in Fig. 9 bottom),
medium (3rd row), and large (last row)”size instances for vi-
sualization. As observed, most visual instances are meaning-
ful: small instances are mostly faces of key characters, logos
of TV stations; medium-size ones correspond to iconic sub-
images cited in multiple videos; large instances are mostly
cover photos for each event.
Compared with traditional summarization by image-level

clustering, whose results are very similar as the last row in
Fig. 9, our instance level summarization is much precise and
complete in identifying salient items and scenes. Compared
to texts summarization, which only conveys general ideas,
our result gives much concrete and intuitive visual entities on
what (and probably who/where) is about the data collection.
One drawback of visual instance summarization would be
the lack of semantic meaning for visual entities. Thus in this
application, we adopt both results to give complementary
summarization.

5.2 Instance Search
Instance Search (INS) [21] is a realistic problem proposed

by TRECVID, which is to retrieve all occurrences of the
query instance from a video collection. Compared to tradi-
tional image search, the query instance is usually specified
with a small Region Of Interest on the query image, and the
target instances on reference images could also be small and
with different background. Apparently, this phenomenon
poses small-DuP problem. However, most state-of-the-art
methods [28, 26] ignore this problem and still rank images
based on traditional similarity as: sim(Q,Ri) = Q⋅Ri

∥Q∥∥Ri∥
,

where Q is the BoW vector extracted within the query ROI,
while Ri covers full reference image. Apparently, ∥Ri∥ over-

norms the score for small-DuP reference images by including
dense features on background, which gives lower ranking ac-
cordingly.
We apply instance mining to solve this “over-norm” prob-

lem. Our solution is straight-forward: (1) we first apply
7
E1: 04/15/2013∼06/15/2013; E2: 03/08/2014∼03/25/2014.

instance mining on the reference dataset to get frequent in-
stance set P; (2) query instance Q is then matched against
P, which is indexed with an inverted file; (3) images sharing
matched instances are boosted in the initial retrieval rank-
list. Though simple, this strategy solves the “over-norm”
problem by leveraging small instances extracted through in-
stance mining, which does not suffer from the small-DuP
problem. We test this strategy on TRECVID’13 Instance
Search task, which includes 30 query instances defined by
TRECVID, and 470k reference video clips cut from 464
hours of TV series.

After mining, it ended up with 22k instance clusters (P)
that are verified with spatial consistency. Some of these
instances are presented in Fig. 10 (top). As shown, there
are both large instances (“the curtain”) and small ones (“the
Parking sign”,“this pendent”). These inter-links across clips,
especially on small instances, could be helpful to address the
“over-norm” problem.

By matching each Q to P, we can get a list of relevant
instances. However, we found in our experiments that not
every Q can be matched against P. In other words, our min-
ing results only partially overlap with the 30 queries defined
by TRECVID. Therefore, we only re-rank the queries which
are closely matched with P by thresholding the matching
score. After this, 10 out of 30 queries are considered as
“overlap” and are further re-ranked with the mining results.
As shown in Fig. 10 (bottom), most of these queries are im-
proved by our re-ranking. The Average Precision is boosted
in the range of 3.3% to 11.0%. Such examples of queries
include “no smoking logo”, “bust of queens” and “Parking
sign”. These queries originally suffer from the “over-norm”
issue badly because of their small area on the reference im-
ages. To the best of our knowledge, this is the first attempt
to address the search problem with data mining. This ap-
plication may shed some light on new directions for instance
search.

6. CONCLUSIONS
We have presented a technique and two applications on vi-

sual instance mining for multimedia collections. Our method
is effective for both small and large instances, while being
efficient on million scale dataset. For efficiency, ToF is pro-
posed as a clean and robust representation, and min-Hash
is adopted for fast clustering. For effectiveness, correlated
ToFs are exploited for generating instance hypotheses. The
quantitative evaluation shows that our method is more ef-
fective than other methods in mining instances (especially
small ones) while being scalable. Two applications on in-
stance search and multimedia summarization demonstrate
the potential of our method in solving multimedia problems.
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