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ABSTRACT
After a program has crashed and terminated abnormally, it typically
leaves behind a snapshot of its crashing state in the form of a core
dump. While a core dump carries a large amount of information,
which has long been used for software debugging, it barely serves
as informative debugging aids in locating software faults, particu-
larly memory corruption vulnerabilities. A memory corruption is a
special type of software fault that may lead to manipulation of the
content at a certain memory. As such, a core dump may contain a
certain amount of corrupted data, which increases the difficulty in
identifying useful debugging information (e.g., a crash point and
stack traces). Without a proper mechanism to deal with this problem,
a core dump can be practically useless for software failure diagnosis.

In this work, we develop CREDAL, an automatic debugging tool
that employs the source code of a crashing program to enhance
core dump analysis and turns a core dump to an informative aid
in tracking down memory corruption vulnerabilities. Specifically,
CREDAL systematically analyzes a potentially corrupted core dump
and identifies the crash point and stack frames. For a core dump
carrying corrupted data, it goes beyond the crash point and stack
trace. In particular, CREDAL further pinpoints the variables hold-
ing corrupted data using the source code of the crashing program
along with the stack frames. To assist software developers (or secu-
rity analysts) in tracking down a memory corruption vulnerability,
CREDAL also performs analysis and highlights the code fragments
corresponding to data corruption.

To demonstrate the utility of CREDAL, we use it to analyze 80
crashes corresponding to 73 memory corruption vulnerabilities
archived in Offensive Security Exploit Database. We show that,
CREDAL can accurately pinpoint the crash point and (fully or par-
tially) restore a stack trace even though a crashing program stack
carries corrupted data. In addition, we demonstrate CREDAL can
potentially reduce the manual effort of finding the code fragment
that is likely to contain memory corruption vulnerabilities.
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1. INTRODUCTION
Despite best efforts of software developers, software inevitably

contains defects. After a software defect is triggered, and a program
has terminated abnormally, it typically leaves behind a snapshot
of its crashing state. In general, the snapshot of a crashing state is
organized in the form of a core dump, which oftentimes contains the
crashing program stack, the final values of local and global variables,
and the final values of processor registers.

Since a core dump carries certain clues as to a program crash,
commercial software vendors oftentimes utilize it to facilitate failure
diagnosis and classify crashes likely caused by the same defect [20,
21, 24]. For example, Microsoft’s tool RETracer [19] parses a
core dump and extracts information such as the crash point and the
crashing stack. Then, it employs a backward taint analysis technique
to infer program faults and further triages program crashes. While
shown to be effective in spotting the function that contributes to a
crash, existing technical approaches (e.g., [19, 21]) are less likely to
be effective in identifying some program faults, particularly memory
corruption vulnerabilities (e.g., buffer overflow and use after free).

A memory corruption vulnerability is a special type of fault in
software that could lead to unintentional modification to the content
at a memory location and thus compromise the data dependency
of a running program. As such, a core dump may carry a certain
amount of corrupted data when a memory corruption vulnerability
is triggered and incurs a program crash. Since corrupted data can
be anywhere in the memory, it leaves a significant challenge for
identifying debugging information. In attempting to exploit a buffer
overflow vulnerability, for example, an attacker typically overwrites
adjacent memory locations. As we will show later in Section 2, this
may significantly increase the difficulty in identifying a stack trace
and even spotting the crash point. Since a crash point and stack
trace are the most useful information for failure diagnosis, without
a proper mechanism to locate them in a core dump, a core dump is
practically useless.

In fact, existing core dump analysis techniques can barely serve
as informative debugging aids in locating a memory corruption vul-
nerability, even though there is no impediment in tracking down the
crash point and stack traces of a crashing program. As is mentioned
above, a memory corruption vulnerability allows an attacker to com-
promise the data dependency of a running program. In facilitating
failure diagnosis, existing techniques typically perform backward
program analysis starting from the crash point, and assume the in-
tegrity of a crashing stack is not compromised (e.g., [19, 26]). When
such techniques intersect corrupted data, therefore, they may termi-
nate unexpectedly and produce no information other than the crash
point and stack traces of a crashing program.

In this work, we develop CREDAL, an automatic debugging tool
to assist software developers in tracking down software faults, par-
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ticularly memory corruption vulnerabilities. Our goal is not to let
CREDAL pinpoint a memory corruption vulnerability, but rather to
turn a core dump to an informative aid in locating the vulnerability.
To deal with the challenges that memory corruption introduces to
core dump analysis, technically, CREDAL leverages the source code
of the crashing program to enhance core dump analysis.

Since the state of the program at the crash is an almost-necessary
starting point [30] and stack traces can potentially narrow down the
list of candidate files that are likely to contain software defects [38],
CREDAL first identifies the crash point and attempts to restore the
stack trace of a crashing program.

In general, it is easy to identify a crash point. When a program
has crashed and terminated unexpectedly, the final value of the pro-
gram counter typically indicates the crash point. However, memory
corruption may manipulate the program counter, making it point
to an invalid instruction. (e.g., overwriting a return address on the
stack with a non-executable memory location). To address this prob-
lem, CREDAL checks the validity of the program counter. For the
invalid program counter, CREDAL restores its value by analyzing
the remnants on the stack. More specifically, CREDAL first attempts
to identify the function which was just called but silently returned
before the crash, in that this function carries the information about
its parent (i.e., the crash function). Using this function, CREDAL
then locates the crash function as well as the crash point within
it. In recovering the crashing stack, CREDAL makes conservative
inference using the restored program pointer along with call frame
information [18].

As is discussed above, memory corruption can manipulate the
content at a certain memory location, which may result in the viola-
tion of data dependency. Intuition suggests that highlighting data
dependency mismatches seems informative for failure diagnosis. As
a result, we further augment CREDAL with the ability of specifying
data dependency mismatches at the source code level. In particular,
CREDAL identifies the variables – the values of which in memory
mismatch the data dependency of the crashing program – and high-
lights the source code corresponding to the mismatches. Technically
speaking, CREDAL first constructs an inter-procedural control flow
graph based on the stack traces restored as well as the source code of
the crashing program. Then, it performs inter-procedural points-to
analysis and reaching definition analysis to discover the mismatches
in variable values and pinpoint the code fragments corresponding to
the mismatch.

We implemented CREDAL for Linux systems on x86 platform. To
the best of our knowledge, CREDAL is the first automatic tool that
can perform core dump analysis in the condition where a core dump
contains a certain amount of corrupted data. We manually analyzed
80 crashes corresponding to 73 memory corruption vulnerabilities
collected from Offensive Security Exploit Database Archive [14],
and compared our manual analysis with the analysis conducted
by CREDAL. We observed that CREDAL can accurately identify a
crash point and (fully or partially) recover stack traces from a core
dump. In addition, we demonstrated that CREDAL can potentially
increase the utility of a core dump. For about 80% of the crashes,
CREDAL can narrow down vulnerability diagnosis within a couple
of functions. For about 50% of the crashes, CREDAL can bound
diagnosis efforts in only tens of lines of code.

In summary, we make the following contributions.

• We designed CREDAL, an automatic debugging tool that lever-
ages the source code of the crashing program to enhance core
dump analysis and provides useful information for software
failure diagnosis.

• We implemented CREDAL on Linux for facilitating software

developers (or security analysts) to locate software faults,
particularly memory corruption vulnerabilities.

• We demonstrated the utility of CREDAL in facilitating mem-
ory corruption vulnerability diagnosis by using 80 crashes
attributable to 73 memory corruption vulnerabilities.

The rest of the paper is organized as follows. Section 2 defines the
problem scope of our research. Section 3 presents the overview of
CREDAL. Section 4 and 5 describe the design and implementation
of CREDAL in detail. Section 6 demonstrates the utility of CREDAL.
Section 7 surveys related work followed by some discussion on
CREDAL in Section 8. Finally, we conclude this work in Section 9.

2. PROBLEM SCOPE
In this section, we define the problem scope of our research. We

first discuss our threat model. Then, we demonstrate how a memory
corruption vulnerability can undermine the utility of a core dump
with a real world example.

2.1 Threat Model
Our research focuses on diagnosing the crash of a process. There-

fore, we exclude the program crashes that do not incur the unex-
pected termination of a running process (e.g., Java program crashes).
Because our research diagnoses a process crash through core dump
analysis, we further exclude the process crashes that typically do
not produce core dumps. Up to and including Linux 2.2, the default
action for CPU time limit exceeded, for example, is to terminate the
process without a core dump [11].

As is mentioned above, our research is motivated by memory
corruption. As a result, we only deal with process crashes caused
by memory corruption vulnerabilities. Although many software
defects can trigger a process crash, and CREDAL can provide useful
information for diagnosing any process crashes, the software defects
that can trigger a program crash but not result in memory corruption
are out of our research scope. In general, such defects include buffer
over-read, null pointer accesses, uninitialized variables, and out-of-
memory errors. We believe this is a realistic threat model because (1)
it covers all the memory corruption vulnerabilities and (2) techniques
to analyze excluded software defects have been proposed by other
researchers and can be combined with CREDAL.

Note that we design CREDAL as a debugging tool to analyze
crashes triggered by memory corruption during random exercises.
We do not assume CREDAL can act as a defense meant to work in an
adversarial setting where the attackers can actively prevent offline
debugging.

2.2 Motivating Example
We use a real world vulnerability – CVE-2013-2028 [2] – as

a typical example to illustrate how and why a memory corruption
vulnerability can compromise the integrity of a program counter and
tamper data on the stack, making a core dump futile for software
debugging.

Table 1 shows a code fragment from Nginx-1.4.0. As is de-
scribed in CVE-2013-2028, this code fragment can manipulate a
signed integer and trigger a stack based overflow. More specifically,
an attacker can craft a request and thus manipulate the value of
r->headers_in.content_length_n. When handling this
specifically crafted request, as is shown in line 15, a worker pro-
cess compares the value held in r->headers_in.content_-
length_n with a constant, chooses the minimum and assigns it
to variable size. Then, the worker process uses this variable to
determine the number of bytes it needs to copy from memory area
r->connection to memory area buffer (see line 17).
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1
2 static int ngx_http_read_discarded_request_body
3 (ngx_http_request_t *r){
4 size_t size;
5 ssize_t n;
6 ngx_int_t rc;
7 ngx_buf_t b;
8 u_char buffer[NGX_HTTP_DISCARD_BUFFER_SIZE];
9 ...

10 ngx_memzero(&b, sizeof(ngx_buf_t));
11 b.temporary = 1;
12 for ( ;; ) {
13 ...
14 // Choose the minimum value between the

two arguments
15 size = (size_t) ngx_min(r->headers_in.

content_length_n,
NGX_HTTP_DISCARD_BUFFER_SIZE);

16 //copy data to buffer
17 n = r->connection->recv(r->connection,

buffer, size);
18 ...
19 b.pos = buffer;
20 b.last = buffer + n;
21 rc = ngx_http_discard_request_body_filter

(r, &b);
22 if (rc != NGX_OK) {
23 return rc;
24 }
25 }
26 }

Table 1: A code fragment from Nginx-1.4.0 vulnerable to an integer overflow
(CVE-2013-2028).

In this example, r->headers_in.content_length_n is
a signed integer type, whereas variable size is an unsigned type.
This inconsistency can potentially triggers a stack overflow which
may further results in a crash and even arbitrary code execution.
Specifically, an attacker can set r->headers_in.content_-
length_n to negative. Due to the inconsistency in variable type,
the value of r->headers_in.content_length_n can be
misinterpreted as a very large positive number when casting to
unsigned type variable size. As is defined in line 8, array
buffer can only carry NGX_HTTP_DISCARD_BUFFER_SIZE
bytes of data. Since the value in size is larger than constant
NGX_HTTP_DISCARD_BUFFER_SIZE, the request can overflow
buffer and corrupt the data on the stack.

Figure 1 illustrates part of information in a core dump after ex-
ploiting the aforementioned vulnerability with a public PoC [13].
We observe the exploit overflows buffer and corrupts the local
variables, argument and return address of function ngx_http_-
read_discarded_request_body. For this specific example,
these corrupted data on the stack do not interrupt the process execu-
tion until the function returns. At the time the function returns, the
running process simply restores frame pointer EBP to the previous
value held in it1, and sets program counter EIP to the return address
on the stack. As such, we observe both EBP and EIP are set to an
invalid address (0x41414141) at the time of the crash.

Since EBP is designed to provide a frame pointer for the current
function, and EIP holds the address of the next CPU instruction,

1Note that most compilers provide an option to omit frame pointers.
With that option enabled, it makes debugging even more difficult.
To illustrate the difficulty in identifying debugging information in a
core dump, we assume software developers can retrieve information
from EBP to assist their failure diagnosis.

r
ret addr
old EBP

size
n
rc
b

buffer

…...

…...

ESP

Corrupted data

EIP=0x41414141

EBP=0x41414141

mov %ebp, %esp
pop %ebp
ret

Function Epilog

Stack Layout

Figure 1: The status of the crashing stack and processor registers after
exploiting the overflow vulnerability specified in CVE-2013-2028. For
simplicity and demonstration, the stack protector has been disabled.

at the time of a program crash, their snapshots typically indicate
the crash function and crash point, respectively. With both process
registers holding an invalid address at the time of the crash, however,
software developers receive no clue as to the program crash. In
the following sections, we will therefore develop new technical
approaches to identify the crash point as well as the stack traces of
a crashing program.

3. OVERVIEW
In this section, we discuss our design principle followed by the

description about how CREDAL performs core dump analysis at a
high level.

3.1 Design Principle
When locating a software defect, it is always beneficial for soft-

ware developers to narrow down the manual efforts to code with as
few lines as possible. Ideally, we would like to minimize the manual
effort of a developer by designing CREDAL to pinpoint a software
defect directly. However, a core dump may carry a certain amount
of corrupted data, and the information held in it only provides a
partial chronology of how the program reached a crash point. To
track down a software defect, therefore, we need to design CREDAL
to infer the ambiguity about program execution. This potentially
increases the uncertainty in the information that CREDAL provides
to the developers. Considering such uncertainty may mislead failure
diagnosis, our design follows a conservative principle – maximizing
the reliability of the information that CREDAL produces by minimiz-
ing the uncertainty in core dump analysis.

3.2 Technical Approach
In an extreme case, we can design CREDAL to achieve zero uncer-

tainty in core dump analysis by giving no information to software
developers. However, such a design sacrifices the utility of a core
dump in failure diagnosis. To balance between utility and uncer-
tainty, we therefore design CREDAL as follows.

As mentioned in Section 1, a crash point typically serves as the
starting point of failure diagnosis, and a stack trace can narrow down
the list of candidate files that possibly contain software defects. As
a result, we design CREDAL to provide this essential information
needed by software developers and security analysts. Considering
memory corruption discards data dependency, and presenting data
dependency mismatch may facilitate failure diagnosis, we also de-
sign CREDAL to highlight the code fragments corresponding to data
dependency mismatch.
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To track down the crash point, CREDAL extracts the final value of
the program counter stored in a core dump simply because a program
counter at the crash reveals where a program crash occurred. As
mentioned in Section 2, a memory corruption vulnerability may
overwrite a program counter to an invalid value. Before using it
to pinpoint the crash point, CREDAL therefore checks the validity
of the program counter. For the program counter with an invalid
value, CREDAL attempts to restore its value using the data within a
previously returned stack frame. We will describe more details in
the following section.

To identify a stack trace, CREDAL follows the DWARF stan-
dard [18] to unwind a crashing stack. CREDAL can traceback all the
functions that have been called but not yet returned at the time of the
crash. Note that memory corruption undermines the data on the stack
and may thwart stack frame identification. Following the design
principle above, CREDAL stops stack frame identification and pro-
duces a partial stack trace when identifying a stack frame that does
not match certain heuristics. Figure 2 shows one situation where
a stack trace cannot be fully identified in an accurate manner and
CREDAL terminates in advance. The program crashes in function
crash(). Using the remnants stored on its stack frame, CREDAL
computes the Canonical Frame Address (CFA) and tracebacks to
parent function foo(). However, a stack overflow occurred in
foo(), overwrote the data held in the frame and made it invalid.
Considering that the program may have an earlier call to bar1() or
bar2(), and there is insufficient information about the execution
path in the lead-up to the crash, CREDAL terminates stack trace iden-
tification and outputs a partial stack trace with function crash()
and its caller foo().

To pinpoint data dependency mismatch, CREDAL first constructs
a control flow graph (CFG). Given the graph along with the afore-
mentioned crash point and stack trace, CREDAL further performs an
inter-procedural points-to analysis and an inter-procedural reaching
definition analysis. These analyses allow CREDAL to obtain a set of
data dependency constraints and thus identify the variables with mis-
matching dependency. For the variables with mismatching values,
CREDAL further highlights the code fragments corresponding to the
mismatch, and presents the code fragment with minimal number
of lines of code to software developers (or security analysts). The
intuition here is that these code lines may be potentially used as
reference for locating a memory corruption vulnerability. In the
following section, we will discuss CREDAL with more technical
details.

4. DESIGN
In this section, we discuss the technical details of CREDAL.

Specifically, we start with crash thread identification. Then, we
describe how CREDAL identifies the crash point, stack trace and
data dependency mismatch in detail. In addition, we specify the
uncertainty that CREDAL may introduce in core dump analysis, and
discuss how we leverage technical approaches to minimize this
uncertainty.

As is mentioned earlier, a core dump carries the values of proces-
sor registers and the values stored in memory, which can be directly
consumed by binary-level analysis. As such, we perform core dump
analysis mainly on binaries. Considering data flow analysis is typi-
cally performed on source code, and source code is self-evident for
software developers, we therefore translate the information derived
from binary-level analysis into a form that is amenable to source
code level analysis. In Section 5, we will describe how to imple-
ment CREDAL to map the values in memory and x86 instructions to
variables and the statements in source code.

4.1 Discovering Crashing Thread
A process may contain multiple threads. When it crashes, an

operating system includes recorded state of the working memory
of each thread in a single core dump. To provide useful, interesting
information for crash diagnosis, CREDAL first needs to identify the
crashing thread in the core dump.

In this work, CREDAL employs the state of the program counter
to identify a crashing thread. In particular, CREDAL examines the
program counter of each thread at the crash. When CREDAL dis-
covers a program counter that points to an invalid memory address
or an illegal instruction (e.g., the instruction containing an invalid
opcode or incurring a floating point exception), CREDAL deems
the corresponding thread as the one that crashes the process. For
the situation where a program counter points to a valid instruction
but the instruction attempts to access an invalid memory address,
CREDAL also treats the corresponding thread as the one contributing
to the crash.

4.2 Tracking down Crash Point
As is mentioned in Section 3, a crash point is typically enclosed

in the program counter at the crash. Due to the corrupted data on
stack and in processor registers, the program counter may hold an
invalid value, making crash point identification difficult.

Here, we deal with this technical issue using the previously re-
turned stack frames. The intuition here is that a crash function
generally does not overwrite the stack frame allocated for the earlier
function call, and the data on this stack frame can facilitate the iden-
tification of the crash point. Figure 2 illustrates an example where
a program unexpectedly terminated in function crash() but the
data on the stack frame corresponding to an earlier call to bar()
has not yet been overwritten. Since the return address of function
bar() is stored on its stack frame, and directly points to the next
instruction that would be executed in function crash(), the crash
function can be easily identified through this linkage.

However, a crashing stack does not provide sufficient information
that can help pinpoint previously returned stack frames on a crashing
stack. To address this problem, we scan a crashing stack through a
sliding window, looking for the return address of the function that
was just called (but presumably silently returned) before the crash.
The intuition here is that a function pushes the return address of
its child on the stack at the time the child is invoked, and we use
the child as the indicator of the stack frame corresponding to the
function.

In this work, we set the size of the sliding window to memory
address width (e.g., 4 bytes for a 32-bit operating system). The scan
of the crashing stack starts from the top of the stack indicated by
the value of stack pointer ESP plus an offset equal to the memory
address width (e.g., ESP+4 for a 32-bit operating system).
CREDAL follows two criteria when determining if the value held

in the sliding window represents the return address of the previously
returned function. As a return address points to the instruction that
would be executed after a function returns, CREDAL first ensures the
value in the window links to a valid instruction. Second, CREDAL
examines the instruction above the one corresponding to the return
address. In particular, CREDAL checks if that instruction is a call
instruction because a ret instruction indicates the completion of a
function call.

For the value in the sliding window that matches the criteria
above, CREDAL deems it as a valid return address candidate, and
follows the aforementioned steps to pinpoint the crash function.
With the crash function identified, CREDAL further performs pro-
gram counter recovery. Since memory corruptions manipulate the
program counter through indirect jump instructions (e.g., ret;
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1 // global variable

2 int glob; 

3 // global function pointer

4 int (*glob_func)(int*); 

5

6 void bar1(void){

7 ...

8 foo();

9 ...

10 }

11

12 void bar2(){

13 ...

14 foo();

15 ...

16 }

17

18 void bar(){

19 ...

20 }

21

22 void foo1(){

23 ...

24 }

25

26 void foo2(){

27 ...

28 }

29

30 void sub(){

31 int x;

32 …

33 }

34 int foo(void){

35 int a, b, *c, *d;

36 // local function pointer

37 void (*local_func)(void); 

38 char buff[8];

39 b = 2;

40 c = &b;

41 d = &b;

42 // pointer dereference

43 *d = 5; 

44 local_func = &foo1;

45 glob = 0;

46 glob_func(c);

47 a = 1;

48 // overflow

49 scanf("%s", buf); 

50 crash(local_func);

51 return 1;

52 }

53

54 int crash(void(*func)(void)){

55 int aa, bb;

56 aa = 1;

57 sub();

58 bar();

59 bb = aa + 5

60 …

61 // crash point (indirect call)

62 func(); 

63 // direct call

64 foo2(); 

65 ...

66 return 1;

67 }

old EBP
a
b
c
d

local_func

buf

func
ret

old EBP
aa
bb
ret

old EBP

CFA of foo()

CFA of crash()

.

.

.

CFA of bar()

call <bar>;

...

mov    0x8(%esp),%eax;
add    $0x5,%eax;

mov    %eax,0xc(%esp);

mov    0x8(%ebp),%eax;
call   *%eax; #call *func

call   <foo2>;

mov    $0x1,%eax;
leave;

ret;

Crashing Stack Vulnerable Code Fragment CFG for crash()

ESP

.

.

.

Corrupted Memory Area

ret

Figure 2: The snapshot of a crashing program after exploiting its overflow vulnerability. For simplicity and demonstration, the stack protector has been disabled
and we convert the instruction on a binary into the statement in C programming language.

call EDX), and point it to an invalid memory address, CREDAL
examines indirect jump instructions in the crash function.

In particular, CREDAL first uses an intra-procedural Control Flow
Graph (CFG) to identify all the indirect jump instructions reachable
from the instruction corresponding to the candidate return address.
Figure 2 shows an intra-procedural CFG for function crash().
In this CFG, we prune all the direct function calls and cut off cor-
responding connections. The intuition here is that the crashing
stack exhibits a different layout if the crashing function calls an-
other subroutine after the instruction corresponding to the return
address. Again, take the example code shown in Figure 2. The
return address on the crashing stack points to an instruction in crash
function crash(). The CFG within the crash function indicates a
call to function foo2(). If the program invokes function foo2()
and crashes after, the stack frame of function bar() would not be
presented on the crashing stack.

Second, CREDAL verifies the destinations of indirect jump in-
structions identified on the aforementioned CFG. More specifically,
CREDAL computes the destination of each indirect jump instruction
using the values of processor registers or memories preserved in the
core dump. Then, CREDAL attempts to match the destination with
the value held in the program counter. When identifying a match,
CREDAL restores the program counter to the address of that indirect
jump instruction and deems it as the crash point. Note that if the
information is incomplete for CREDAL to recover the crash point,
our analysis terminates.

The aforementioned program counter recovery mechanism fol-
lows systematic analysis and verification. However, it still intro-
duces uncertainty to crash point identification. For example, a
crash function does not invoke any subroutine before the crash, and
CREDAL mistakenly identifies the remnants on the stack as a valid

ret ret

.

.

.

.

.

.

.

.

.

.

.

.

Stack Layout
Before Calling f2

Stack Layout
After Crash

Expected ESP after 
a call to bar1

Actual ESP

1 int f0(){
2 f1();
3 f2();
4 }
5
6 int foo1(){
7 int a;
8 bar1();
9 a++;
10 }

10 int f1(){
11 foo1();
12 }
13
14 int f2(){
15 crash();
16 }
17
18 int crash(){
19 /*No subroutines*/
20 ...
21 }

Vulnerable Code Fragment

f0

f1

foo1

bar1

f0

f2

ESP at exit
of bar1

ESP after 
prologue of bar1

bar1

crash

Figure 3: Stack pointer verification. For simplicity and demonstration, the
return address points a line of C programming code converted from the
instruction on a binary.

return address. To minimize such uncertainty, CREDAL further veri-
fies the identified crash point by checking the displacement of the
stack pointer. Figure 3 shows an example where crash function
crash() does not invoke any subroutines but the stack frame of
an earlier call to bar1() is preserved. Thus, function foo1() is
mistakenly identified as the crash function. By examining the dis-
placement of the stack pointer before and after the call to bar1(),
however, CREDAL can identify the difference between the expected
and actual stack pointer. As is illustrated in Figure 3, the position
of ESP should be at the bottom and the top of the stack frame of
bar1() at the entry and exit of the function, respectively. Since
there is no other operation to ESP within function foo1(), the
expected position for ESP should remain at the top of the frame of
bar1() at the crash. However, this expectation does not match the
observation from the core dump, which indicates the incorrectness
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of crash point identification. The intuition behind this verification
is that the stack frame of the crash function mistakenly identified
generally does not share the same size as that of the actual crash
function.

With the design discussed above, we believe CREDAL can identify
a crash point with high confidence because it is very unlikely to
bring about the coincidence where (1) the remnants on the crashing
stack are mistakenly deemed as an address that points to a valid
instruction; (2) the instruction above the valid instruction is a call
instruction; (3) an indirect jump in the crash function mistakenly
identified encloses a destination that happens to share the same value
as the corrupted program counter; (4) the stack frame of the crash
function mistakenly identified happens to share the same size as that
of the actual crash function. In Section 6, we will demonstrate the
effectiveness and correctness of CREDAL in tracking down a crash
point.

4.3 Identifying Stack Trace
With the crash point identified, we now discuss how to use it to

track down a stack trace. As is described in Section 3, CREDAL has
the access to the source code of a crashing program. Thus, it can
compile the code with debugging options enabled, and obtain the
call frame information of the crashing program.

The call frame information is typically used for stack unwinding.
Following DWARF standard [18], therefore, CREDAL can “virtu-
ally” unwind a crashing stack and track down a stack trace. As
is discussed in Section 3, data corruption on stack however may
introduce uncertainty to stack unwinding. As a result, CREDAL also
verifies the legitimacy of a stack frame in each step in addition to
following the restored registers to find all stack frames.

More specifically, CREDAL walks the crashing stack and checks
the validity of the return address in each stack frame by following
the criteria discussed in Section 4.2. In addition, CREDAL examines
the allocation of a newly unwound stack frame and ensures it is
laid just on top of the last stack frame successfully identified. The
intuition here is that the frames on stack should be compactly laid
out but not overlapped. Similar to the approach we leverage in
Section 4.2, CREDAL finally verifies the size of a newly identified
stack frame using the displacement of the stack pointer.

As is discussed in the previous section, the design of CREDAL
follows a conservative principle. When “virtually” unwinding a
crashing stack and identifying a stack frame cannot pass the afore-
mentioned verification, CREDAL stops the unwinding operation and
produces a partial stack only with the stack frames successfully
identified. We design CREDAL to conservatively identify stack trace
so that corrupted stacks can also be handled. In Section 6, we
will demonstrate the correctness of CREDAL in partially (or fully)
identifying a stack trace.

4.4 Discovering Data Dependency Mismatch
As is mentioned above, memory corruption typically incurs data

corruption. If the value of a variable observed in the core dump does
not match any reachable definition, a data dependency mismatch
is found. Here, we describe how CREDAL pinpoints such a depen-
dency mismatch and highlights the corresponding code fragment.

On a high level, we statically analyze the set of possible values for
each variable on the recovered trace and match the possible values
with the actual value in the core dump. Assuming our analysis on
possible value sets is sound, if the value of a variable indicated by
the core dump falls out of the corresponding value set, a memory
corruption must have occurred.

To obtain such value sets, we perform an inter-procedural reach-
ing definition analysis with the restored stack trace. As we will

describe in the following presentation, our analysis is conservatively
designed to avoid loss of soundness. Specifically, our analysis firstly
constructs an inter-procedural CFG that covers all possible call se-
quences from the entry function to the crash point according to the
recovered stack. As resolving indirect calls may introduce inaccu-
racy, CREDAL skips indirectly called functions (whose targets are
unknown) but preserves their arguments. Although skipping indirect
calls results in a partial CFG, our subsequent analysis will con-
servatively consider the potential effects of these indirectly called
functions, to make the whole analysis sound. Figure 4 illustrates the
CFG corresponding to the example in Figure 2.

To the partial CFG, we apply an intra-procedural points-to analy-
sis to each function, following a context and path insensitive strat-
egy. With the points-to information, we can easily calculate the
reaching definition in each function. We then populate the intra-
procedural results across function boundaries and extend the re-
sults to the whole CFG. We achieve this using a summary-based
inter-procedural static analysis algorithm (i.e., the "functional ap-
proach") [40]. More specifically, we capture the effects caused by a
function modifying variables in another function through pointers
passed as arguments. To guarantee the soundness of our results, we
handle indirectly called functions in a conservative manner. To be
specific, we assume that an indirect call modifies all global variables
and all variables possibly pointed to by the argument. We assume
those variables may equal any value after the indirect call. Take
vulnerable code in Figure 2 for example, our analysis gets rid of
global variable glob and local variable b when analysis reaches
to line 46, since glob_func represents an indirect call which
receives pointer c to local variable b.

After obtaining the reaching definition results, we deduce the
possible value set for each variable (i.e., value constraints on each
variable). If one definition can be tracked back to a constant value,
we add the constant to the set. Otherwise, we assume the defini-
tion leads to all possible values. Afterwards we start searching
for corrupted variables in the core dump. Note that CREDAL does
not consider global variables if the crashing program has multi-
threading, because global variables are shared by all threads and
a core dump does not unveil when a global variable was modified
by other threads. We also do not consider those variables if the
crashing stack does not preserve their values (e.g., variable x in
function sub()). The intuition here is that there is no sufficient
evidence to examine data dependency mismatch if the final value of
the variable is unknown.

For a variable of non-pointer type, if its final value in the core
dump does not match the value constraints, we determine a depen-
dency mismatch with this variable. Further, we highlight the code
fragment from all the reachable definitions of this variable to the
crash point in the CFG. Take variable a in Figure 2 for an example.
a has one definition, namely a = 1 at line 47. The final value
of a is corrupted and deviates from 1, thus we catch a mismatch
on a. The code segment is determined as from line 47 to line
50 and line 55 to line 62.

For a variable of pointer type, CREDAL first takes it as a normal
non-pointer variable and performs the above check. In addition,
CREDAL searches for another type of dependency mismatch. As-
suming on any path from the first function to the crash point on the
CFG, there exists at least one dereference to this pointer without
subsequent re-definition, the pointer must have been unintentionally
manipulated. The intuition is that if there is no unintended manipu-
lation, the process should have crashed in the previous dereferences.
CREDAL deems this as dependency mismatch on pointer derefer-
ence. Similarly, CREDAL highlights the code fragment from all the
dereferences to the crash point in the CFG.
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Constraints: {a@foo = 1; d@foo = [valid]; aa@crash = 1; bb@crash = aa@crash+5}

bar1_entry foo()

foo_entry

crash_entry aa = 1;
sub()

sub_entry

bar()

bar_entry

bb = aa + 5;
  ... func() foo2()

foo2_entry

... return 1 crash_exit

return 1;

b = 2;
 c = &b;
 d = &b; 
 *d = 5; 

 local_func = &foo1; 
 glob = 0;

glob_func(c)
a=1;
scanf

("%s", buf)

scanf body

crash(local_func) foo_exit

bar1_exit

bar2_exit

...

sub_exit

...

bar_exit

...

foo2_exit

bar2_entry foo()

Figure 4: An inter-procedural control flow graph and data dependency constraints. Note that scanf() is a call to an external library. For simplicity and
demonstration, we do not unfold this call. The list of constraints defines data dependency e.g., a@foo=1 indicates variable a in function foo should be equal
to 1 at the crash; d@foo=[valid] indicates pointer d should be valid at the crash.

5. IMPLEMENTATION
We have implemented a prototype of CREDAL for Linux 32-bit

system, which takes as input a core dump file as well as the bi-
nary and source code of the corresponding crashing program. As
CREDAL needs debugging information for analysis, our implemen-
tation requires the binary to be compiled with debugging options
(e.g., -g with gcc). In this section, we present some important
implementation details.

Linux operating system organizes a core dump file in the form of
Executable Linkable Format (ELF). The implementation of CREDAL
employs libelf, an open source library [9] to parse the file in ELF
and retrieve the corresponding memory information. Considering
CREDAL needs to examine the entire working memory of a crashing
program, and Linux kernel typically does not include file-backed
mappings in a core dump, our implementation augments libelf
with the ability to interpret the note segment in an ELF file so that
CREDAL can identify file-backed memory mappings and consume
the information in that memory area.
CREDAL currently relies on the debug information to disassemble

binaries and unwind crashing stacks. For disassembly, our imple-
mentation uses libdwarf library [6] to parse a binary and then em-
ploys libdisasm library [8] to identify instructions in it. For un-
winding a crashing stack, our implementation relies on libdwarf
library to extract call frame information from .debug_frame and
.eh_frame stored in ELF files. To perform virtual unwinding, we
also implement CREDAL by modifying libunwind library [10].

As is mentioned in Section 4, CREDAL constructs an intra-procedural
CFG on a binary. However, indirect jump instructions introduce
non-deterministic to the CFG construction. Given instruction [jmp
%EAX], for example, it is difficult to construct the consecutive nodes
on CFG without determining the destination of this instruction. To
address this problem, our implementation uses LLVM [12] to extract
program semantics from source code and identify the destinations
of indirect jump instructions. For example, assume an indirect jump
instruction is a low-level representation of a switch statement in
C programming language. Our implementation employs LLVM
APIs to identify the destinations from those case statements, and
completes CFG construction.

In our design, CREDAL utilizes the displacement of a stack pointer
to verify the crash point and stack trace identified. To do this,
CREDAL needs to know the change to ESP for a given code frag-
ment. Within the code fragment, there may be a variety of exe-
cution paths that cover the operations of ESP (e.g., [add $0x4,

%ESP], [pop] or [push %EAX]). Theoretically, stack pointer
ESP may end up at different position when going through different
paths. To guarantee the correctness of program execution, a com-
piler however ensures ESP has the same displacement whichever
paths the program walks through. As a result, our implementation
chooses an arbitrary path to compute the displacement of ESP when
verifying a crash point or stack trace.

Our implementation seeks for data dependency mismatches on
LLVM IR. We construct the call graph in an on-demand manner. We
compile each source code file separately into LLVM IR and traverse
from the first function on the recovered stack trace to the crash point.
Whenever a function is directly called, we include that function and
expand the call graph. If that function is in a different IR file, we
search for it in other compile units by its name and linkage type.
With the call graph and the intra-procedure CFG natively provided
by LLVM, we essentially have the inter-procedure CFG.

To the CFG, we apply LLVM’s built-in basic alias analysis to
get intra-procedure point-to results. To ensure the soundness of
the analysis, our implementation takes may-alias relation as
must-alias relation. Though the conservativeness theoretically
limits the analysis capability of CREDAL, our case studies in Sec-
tion 6 demonstrate that this implementation can work well in prac-
tice. LLVM also provides intra-procedural reaching definition re-
sults through its use-def chain data structures. With these two
pieces of information, we further implemented a simple summary-
based inter-procedural analysis as described in Section 4.

As is discussed in Section 4, CREDAL examines variables in
LLVM IR, the values of which are preserved in the core dump. Our
implementation utilizes debugging information in the IR to achieve
mapping between source code variables and LLVM IR variables
and we again leverages debugging information in the binary to
compute the locations of source code variables in the core dump. We
highlight the code segment for data dependency mismatch in LLVM
IR, which is also mapped to source code segment via debugging
information in the IR file. Source code of CREDAL is available at
https://github.com/junxzm1990/credal.git.

6. CASE STUDY
In this section, we demonstrate the utility of CREDAL using the

crashes attributable to memory corruption vulnerabilities. In par-
ticular, we describe the collection of crashes and present the ef-
fectiveness of CREDAL. We also discuss those memory corruption
vulnerabilities, the crashes of which CREDAL fails to handle.
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Program Program 
Size (LOC)

CVE-ID Vulnerability Type EDB-ID EIP # of 
Frame

Full 
Stack

Area 
(LOC)

Root 
Cause

# of 
Function

tack 1.0.7 20979 NA BSS/Data Overflow 38685 √ 2 √ 27 √ 1
picpuz 2.1.1 6345 NA BSS/Data Overflow 10634 √ 2 √ 25 √ 2

2Fax 3 2664 NA BSS/Data Overflow 24984 √ 4 √ NA NA NA
ytree 1.94 14010 NA BSS/Data Overflow 39406 √ 5 √ NA NA NA

nullhttpd 0.5.0 1849 NA Heap Overflow 218181 √ 6 X 15 √ 1
make 3.8.1 24151 NA Heap Overflow 34164 √ 1 X 12 √ 1
xrdp 0.4.1 33995 2008-5904 Heap Overflow 8469 √ 14 X 224 √ 3

libsndfile 1.0.25 51064 2015-7805 Heap Overflow 38447 √ 26 √ 280 √ 3
ntpd 4.2.6 152433 NA Heap Overflow 39445 X 4 √ 33 X 7
php 5.3.6 805640 2012-2386 Heap Overflow 17201 √ 10 √ NA NA NA

inetutils 1.8 98941 NA Heap Overflow 15705 √ 3 √ NA NA NA
nginx 1.4.0 100255 2013-2028 Integer Overflow 25775 √ 1 X 36 X 3

0verkill 0.16 16361 2006-2971 Integer Overflow 1894 √ 5 √ 4 X 1
php 5.16 561820 2007-1001 Integer Overflow 29823 √ 14 √ 46 √ 3

ImageMagick 6.2.0 214800 2006-4144 Internet Overflow 28283 √ 5 √ 110 √ 2
php 4.4.4 367295 2007-1777 Integer Overflow 29788 √ 6 √ NA NA NA

python 2.2 416060 2007-4965 Integer Overflow 30592 √ 11 √ NA NA NA
ClamAV 0.88.2 42160 2006-4182 Integer Overflow 2587 √ 1 X NA NA NA

mcrypt 2.5.8 10363 2012-4409 Stack Overflow 22938 √ 1 X 2 √ 1
putty 0.66 90165 2016-2563 Stack Overflow 39551 √ 1 X 3 √ 1
php 5.3.4 803486 2011-1938 Stack Overflow 17318 √ 1 X 43 √ 1

rsync 2.5.7 19487 2004-2093 Stack Overflow 152 X 1 X 27 √ 1
corehttp 0.5.3a 935 2007-4060 Stack Overflow 4243 √ 2 X 6 √ 1

aireplay-ng 1.2-beta3 62656 2014-8322 Stack Overflow 35018 X 1 X 124 √ 1
No-IP DUC 2.19-1 2578 NA Stack Overflow 25411 X 1 X 87 √ 1
opendchub 0.8.1 11021 2010-1147 Stack Overflow 11986 X 1 X 22 √ 1

unrar 3.9.3 17575 NA Stack Overflow 17611 X 1 X 2 X 2
peercast 0.1214 17193 2006-1148 Stack Overflow 1574 X 1 X 52 X 13
peercast 0.1214 17193 2006-1148 Stack Overflow 1578 X 1 X 52 X 13
peercast 0.1214 17193 2006-1148 Stack Overflow 16855 X 1 X 52 X 13
peercast 0.1214 17193 2007-6454 Stack Overflow 30894 √ 9 √ 261 √ 6
ettercap 0.7.5.1 53175 2013-0722 Stack Overflow 23945 √ 2 X 32 √ 1

prozilla 1.3.6 13070 2004-1120 Stack Overflow 652 √ 2 X 17 √ 2
prozilla 1.3.6 13070 2004-1120 Stack Overflow 1238 X 1 X 35 √ 1

sftp 1.1.0 1559 NA Stack Overflow 9264 √ 6 √ 102 X 27
fbzx 2.5.0 15341 NA Stack Overflow 38681 √ 5 √ 144 √ 5

Conquest 8.2 105784 2007-1371 Stack Overflow 29717 √ 1 X 54 √ 1
 tiffsplit 3.8.2 47769 2006-2656 Stack Overflow 1831 √ 2 √ 21 √ 2

alsaplayer 0.99.76 26834 2007-5301 Stack Overflow 5424 √ 3 √ 13 X 6
xmp 2.5.1 45404 2007-6731 Stack Overflow 30942 X 1 X 4 √ 1

proftpd 1.3.0a 111839 2006-6563 Stack Overflow 3730 X 1 X 79 √ 1
proftpd 1.3.0a 111839 2006-6563 Stack Overflow 2928 X 1 X 79 √ 1
proftpd 1.3.0a 111839 2006-6563 Stack Overflow 3330 X 1 X 79 √ 1
proftpd 1.3.0a 111839 2006-6563 Stack Overflow 3333 X 1 X 79 √ 1

vfu 4.1 18734 NA Stack Overflow 35450 √ 3 X 85 √ 1
LibSMI 0.4.8 80461 2010-2891 Stack Overflow 15293 √ 3 X 23 √ 2
FENIX 0.92 25236 NA Stack Overflow 37987 √ 3 √ 1 √ 1

gif2png 2.5.2 1331 2009-5018 Stack Overflow 34356 √ 1 √ 7 √ 1
hexchat 2.10.0 68181 2016-2233 Stack Overflow 39657 √ 1 X 80 √ 1

Binutils 2.15 697354 2006-2362 Stack Overflow 27856 √ 4 X 44 √ 3
alsaplayer 0.99.76 26834 2007-5301 Stack Overflow 5424 √ 3 X 13 X 6

glibc 2.12.90 843348 2015-7547 Stack Overflow 39454 √ 4 X 230 X 4
gas 2.12 595504 2005-4807 Stack Overflow 28397 √ 1 X 4 √ 1

nasm 0.98.38 33553 2004-1287 Stack Overflow 25005 X 1 X 12 √ 1
ringtonetools 2.22 6507 2004-1292 Stack Overflow 25015 √ 2 X 6 √ 1

abc2mtex 1.6.1 4052 NA Stack Overflow 25018 √ 1 X 7 √ 1
JPegToAvi 1.5 580 NA Stack Overflow 24981 √ 3 X 17 √ 3
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O3read 0.03 932 2004-1288 Stack Overflow 25010 √ 5 √ 7 X 2
LateX2tf 1.9.15 14473 2004-2167 Stack Overflow 24622 √ 2 X 1 √ 1

libpng 1.2.5 33681 2004-0597 Stack Overflow 389 √ 1 X 1 X 2
unrtf 0.19.3 5039 NA Stack Overflow 25030 √ 7 √ 7 √ 1
Sox 12.17.4 25736 2004-0557 Stack Overflow 369 √ 4 √ 83 √ 1
Sox 12.17.4 25736 2004-0557 Stack Overflow 374 √ 1 X 1 X 2
psutils-p17 1736 NA Stack Overflow 890 √ 2 X 1 √ 2

streamripper 1.61.25 27304 2006-3124 Stack Overflow 2274 √ 3 X 7 X 3
Newspost 2.1 4865 2005-0101 Stack Overflow 25077 √ 3 √ 7 X 16

Unalz 0.52 8546 2005-3862 Stack Overflow 26601 √ 1 X 1 √ 1
proftpd 1.3.0a 72233 2006-5816 Stack Overflow 2856 √ 1 X 36 √ 1
proftpd 1.3.3a 111839 2010-4221 Stack Overflow 16878 √ 1 X NA NA NA

ht-editor 2.0.18 119236 NA Stack Overflow 17083 X 1 X NA NA NA
0verkill 0.16 16361 2004-0238 Stack Overflow 23634 X 1 X NA NA NA

ht-editor 2.0.20 119688 NA Stack Overflow 22683 X 1 X NA NA NA
coreutils 8.4 138135 2013-0221 Stack Overflow 38232 √ 5 X NA NA NA

vfu 4.1 18734 NA Stack Overflow 36229 X 3 X NA NA NA
mutt 1.4.2.2 61913 2007-2683 Stack Overflow 30093 √ 1 X NA NA NA

fontforge 20100501 551083 2010-4259 Stack Overflow 15732 √ 1 X NA NA NA
compface 1.5.2 1574 2009-2286 Stack Overflow 8982 X 0 X NA NA NA

openlitespeed 1.3.19 97241 NA Use After Free 37051 √ 15 √ 26 √ 1
lighttpd 1.4.15 38102 2007-3947 Use After Free 30322 √ 6 √ 456 X 28

python 2.7 100975 2009-2286 Use After Free 100975 √ 16 √ NA NA NA

Program Program 
Size (LOC)

CVE-ID Vulnerability Type EDB-ID EIP # of 
Frame

Full 
Stack

Area 
(LOC)

Root 
Cause

# of 
Function

Table 1: The list of the program crashes corresponding to memory corruption vulnerabilities. CVE-ID and EDB-ID specify the IDs of the CVE and corresponding
PoC, respectively. EIP indicates the validity of the program counter at the crash. # of Frame and # of Functions describe the number of stack frames CREDAL
identifies as well as the number of functions one needs to examine when locating the corresponding vulnerability. The numbers in Area (LOC) indicate the lines
of code corresponding to data dependency mismatch.

6.1 Setup
To demonstrate the utility of CREDAL, we must collect program

crashes contributed by memory corruption vulnerabilities. We ex-
haustively searched memory corruption vulnerabilities on Offensive
Security Exploit Database Archive [14]. Our goal is to gather the
crashes by exploiting memory corruption vulnerabilities with corre-
sponding PoCs.

As an outdated vulnerability typically associates with an obsolete
program, and such a program may be no longer available, we only
gathered memory corruption vulnerabilities archived over the past
twelve years. Because we implement CREDAL for Linux operating
system, we further narrowed down our searches on the vulnerabili-
ties identified on software running on Linux. In total, we obtained
392 memory corruption vulnerabilities bundled with at least one
PoC. We compiled and configured vulnerable programs based on the
description of the collected vulnerabilities, and successfully produce
80 crashes using the PoCs corresponding to 73 vulnerabilities. The
experiments are conducted on a machine with Intel Xeon E5-2560
2.30GHz and 2GB memory running Ubuntu 14.04. The average
time to analyze a core dump is 0.21 seconds.

Table 1 lists the aforementioned crashes and summarizes the
corresponding vulnerabilities across 5 different categories, including
use-after-free as well as overflow on stack, heap, integer and bss/data.
These vulnerabilities are identified on 62 distinct software, ranging
from sophisticated programs like PHP and Binutils with lines
of code over 670K to lightweight programs such as o3read and
corehttp with lines of code less than one thousand.

Note that we discard a large fraction of vulnerabilities for three
reasons. First, the program corresponding to a vulnerability is obso-
lete and we cannot find its source code for showcasing the utility of
CREDAL (e.g., Gaim [7] and Abc2midi [1]). Second, compiling
a vulnerable program requires an obsolete external library that we
cannot discover (e.g., Asterisk [4] and Blender [5]). Third, a
vulnerable program is close-source (e.g., Apple Quicktime [3],
Sun Java Runtime Environment [16] and Safari [15]).

6.2 Results
To demonstrate the utility of CREDAL, we manually analyze the

crashes shown in Table 1, and compare our manual analysis with that
of CREDAL. More specifically, we evaluate the utility of CREDAL
as follow. First, we verify if CREDAL can restore a program counter
and correctly identify the crash point when that is overwritten and
set to an invalid value. Second, we examine if CREDAL can unwind
a crashing stack and pinpoint a full (or partial) stack trace in an
accurate manner. Last but not least, we investigate how effective
CREDAL can enclose a memory corruption vulnerability within the
functions and code fragment that it highlights.

6.2.1 Pinpointing Crash Point & Stack Trace
Table 1 specifies the validity of a program counter at the time of

the crash. We observe 21 crashes for which the core dumps carry
a program counter with an invalid value. Among these crashes,
CREDAL is able to restore program counters for 20 crashes, and the
program counters recovered all point to crash points correctly.
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Table 1 also indicates the quantity of the stack frames that CREDAL
identifies. We discovered that CREDAL can fully (or partially) un-
wind a crashing stack when a crash point is successfully pinpointed.
The reason is that the crash point reveals the crash function in a
binary, and even in the worst case, CREDAL can leverage debugging
information to identify the stack frame of the crash function.

We examined the crash for which CREDAL fails to restore the pro-
gram counter, particularly the crash of vulnerable program compface
1.5.2. In the actual crash function, we observed that the function
employs setjmp() to save its calling environment before transfer-
ring its execution to a subroutine. The subroutine contains a stack
overflow vulnerability. When exploited, it overflows the current
stack frame as well as those at the higher memory address. The over-
flow does not block the program execution immediately. Instead,
the subroutine invokes longjmp() which transfers its execution
to a predetermined location in the crash function. In this case, the
instruction at the predetermined location causes an unexpected crash
because of the data corruption on the stack.

Performing analysis for this crash, CREDAL can only discover the
stack frame of longjmp() from the remnants in the core dump.
Recall that CREDAL identifies a crash point using the function that
was just called but silently returned before the crash. In this case, the
execution of the crash function is not returned from its child function
but a descendant function – longjmp(). As such, the displace-
ment verification of a stack pointer fails and CREDAL conservatively
produces no information about the crash point.

6.2.2 Locating Vulnerability
In Table 1, we also show the lines of code that CREDAL high-

lights corresponding to data dependency mismatch. For 63 crashes,
CREDAL successfully identifies dependency mismatch in memory.
Among these crashes, we observe 47 crashes for which CREDAL
can enclose the memory corruption vulnerability (i.e., root cause)
within the code fragment highlighted. As is shown in Table 1, a code
fragment highlighted typically covers the statements with only tens
of lines (in about 90% cases). This indicates CREDAL has a high
potential to reduce manual efforts for locating a memory corruption
vulnerability in a crash.

Within the batch of the crashes shown in Table 1, there are 16
crashes for which CREDAL identifies dependency mismatch but not
encloses the root cause within the code fragment highlighted. For
these crashes, we manually examined the code fragment highlighted
and the function calls it encloses by imitating the way a security
analyst locates a vulnerability. In particular, we started from the code
fragment and traversed the enclosed calls in a breadth-first manner.
Except for integer overflow in nginx 1.4.0 and overkill
0.1.6, we successfully identified all vulnerabilities in the enclosed
function calls. Table 1 specifies the number of functions that we
walked through when locating a vulnerability. We observe the
numbers of the functions we looked into are relatively small, with
an average of 3.46. Again, this indicates CREDAL is potentially
effective in locating memory corruption vulnerabilities.

In general, overflowing an integer variable does not directly cor-
rupt data in the function where it is enclosed. Rather, it indirectly
incurs a buffer overflow and data corruption in a descendant func-
tion. For the aforementioned integer overflow, we therefore dis-
covered the overflow vulnerabilities lie outside the code fragment
that CREDAL highlights. However, this does not mean CREDAL is
less effective in helping security analysts locate integer overflow
vulnerabilities. Considering CREDAL typically encloses overflowed
buffers in the code fragment, we therefore believe a security analyst
can quickly track down integer overflow using the linkage between
the overflowed integer variable and the overflowed buffer.

Last but not least, we also manually examined the remaining
crashes for which CREDAL fails to identify data dependency mis-
match. Except for the one that CREDAL fails to restore the program
counter, Table 1 specifies 17 crashes in this category. For 9 of
them, the failure of CREDAL results from the conservative design
of identifying data dependency mismatch.

For 6 of the crashes, the failure of CREDAL can be attributed
to one of the following. First, data corruption occurs in the stack
area that CREDAL cannot unwind (e.g., ht-editor 2.0.18 &
2.0.20). Second, the corrupted data was sited in local variables
that were overwritten by variable assignment operations in consecu-
tive execution (e.g., proftpd 1.3.3 a and vfu 4.1). Third,
data corruption occurs at a certain memory area in which the cor-
rupted data has not yet been initialized before the crash (e.g., 2Fax
3 and ytree 1.94).

For the remaining 2 crashes that CREDAL fails to find dependency
mismatch, the overflow corresponding to the crashes represents two
special cases. In one case, a PoC exploits vulnerable program mutt
1.4.2.2 and underflows the data on stack. At the crash, the pro-
gram counter points to a call to memmove(). As CREDAL lacks
sufficient information to unwind the stack at the higher frame level,
and function memmove() does not carry local variables, CREDAL
produces no dependency constraint and thus provides less infor-
mation for locating the overflow vulnerability. In another case
corresponding to clamv 0.88.2, CREDAL fails to identify data
corruption simply because the crash occurs in advance of data cor-
ruption. More specifically, the exploit attempts to overflow a buffer
by copying a large data chunk from an invalid memory address.

7. RELATED WORK
This research work mainly focuses on analyzing program crashes.

Thus, the line of work most closely related to our own is crash
analysis, in which program instrumentation, program analysis and
core dump forensics are typically used to track down a particular
fault resided in a program. In this section, we summarize previous
studies and discuss their limitation in turn.

Program instrumentation To spot program faults, a large amount
of research focuses on failure reproduction using execution traces
(e.g., [23, 31, 32, 35, 44, 45]). Technically speaking, the typical
approach along this line is to instrument a program, so that it can
automatically generate execution traces at run time. By analyzing
these execution traces, one can derive control and data flow and thus
identify the faults in software. Since this run-time recording scheme
provides more information about program execution, it is effective
in locating program faults.

Many other works instead instrument programs to spot mem-
ory corruptions at run-time, such as AddressSanitizer [39], Soft-
Bound [29], and Code-Pointer Integrity [25]. AddressSanitizer uses
shadow memory to record whether a memory access is safe, and
relies on instrumentation to verify the shadow memory in load
or store; SoftBound inserts run-time bounds checks to enforce
spatial safety using customized disjoint memory metadata; Code-
Pointer Integrity would detect when a code pointer is overwritten
and terminate the execution. With Code-Pointer Integrity, a core
dump will be generated before any illegal control flow transfer
and thus, involves less uncertainty for analysis by CREDAL. These
techniques aim at detecting corruptions instead of pinpointing the
vulnerability areas.

In practice, many of these approaches introduce high overhead
during normal operation, which greatly affects their deployment.
Considering practicality, our work does not instrument programs,
nor rely upon the availability of existing program logging or exe-
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cution traces. Rather, our technical approach facilitates program
failure diagnosis by using more generic information, i.e. the core
dump that operating system automatically captures every time a
process has crashed or otherwise terminated abnormally.

Program analysis Over the past decades, there is a rich collection
of literature on using program analysis techniques along with crash
reports to identify faults in software (e.g., [17, 22, 27, 28, 34, 36,
41, 46]). These existing techniques are designed to identify some
specific software defects. In adversarial settings, an attacker exploits
a variety of software defects and thus they cannot be used to analyze
a program crash caused by a security defect such as buffer overflow
or unsafe dangling pointer. For example, Manevich et al. [27] pro-
posed to use static backward analysis to reconstruct execution traces
from a crash point and thus spot software defects, particularly types-
tate errors [42]. Similarly, Strom and Yellin [41] defined a partially
path-sensitive backward dataflow analysis for checking typestate
properties, specifically uninitialized variables. While demonstrated
to be effective, these two studies only focus on specific typestate
problems.

Liblit et al.also proposed a backward analysis technique for crash
analysis [26]. In particular, they introduce an efficient algorithm that
takes as input a crash point as well as a global control flow graph, and
computes all the possible execution paths that lead to the crash point.
In addition, they discussed how to narrow down the set of possible
execution paths using a wide variety of post-crash artifacts, such as
stack or event traces. While our work also uses stack traces for crash
analysis, our approach is fundamentally different. As is mentioned
earlier, memory information might be corrupted when attackers
exploit a program. Thus, the path analysis based on stack traces
described in [26] fails because its effectiveness highly relies upon
the stack integrity. In contrast with [26], our approach leverages the
source code of a crashing program to enhance core dump analysis
and pinpoints the code statements where a software defect is likely
to reside.

Core dump forensics Considering the low cost of capturing core
dumps, prior studies [19, 21, 33, 37, 43] proposed to use core dumps
to analyze the root cause of software failures. To facilitate software
failure debugging, Polishchuk et al. [33] for example proposed a
mechanism to reconstruct variable types from heap memory, and
Salkeld and Kiczales [37] introduced a method to resurrect Java
objects from a shadow heap dump. As part of our work, we also
restore memory information, but go beyond objects in memory at
the time of the program crash.

Stepping over memory semantic reconstruction, Microsoft devel-
oped Windows Error Reporting (WER) service [21], which uses a
tool – !analyze – to examine a core dump and determine which
thread context and stack frame most likely caused the error. Al-
though sharing the same goal as our work, !analyze cannot han-
dle program crashes caused by security defects for the reason that
the attacks may introduce memory corruption and processor register
failures and the effectiveness of !analyze highly relies on these
information.

In recent research, Wu et al. [43] proposed CrashLocator, a
method to locate software defects by analyzing stack information
in a core dump. In addition, Cui et al. [19] introduced RETracer,
a system that reconstructs program semantics from core dumps
and examines how program faults contribute to program crashes.
More specifically, RETracer leverages a core dump along with a
backward analysis mechanism to recover program execution status
and thus spot a software defect. Since the effectiveness of both
techniques highly relies upon the integrity of a core dump, and
exploiting vulnerabilities like buffer overflow and dangling pointers

corrupts memory information, CrashLocator and RETracer
fail to perform crash analysis.

Different from aforementioned core dump forensics, our approach
can deal with both corrupted and uncorrupted core dumps and facili-
tate program failure diagnosis. To the best of our knowledge, our
work is the first research that analyzes the core dump of a crashed
program without the assumption of memory integrity.

8. DISCUSSION
In this section, we discuss the limitations of our current design,

insights we learned and possible future directions.

Other crashes. CREDAL is designed for providing useful informa-
tion for software developers (or security analysts) to diagnose the
crashes caused by memory corruption vulnerabilities. However, it
is not limited to analyzing the crashes that contain data corruption.
For the crashes without data corruption, CREDAL only pinpoints the
crash point and full stack trace of the crashing program. While such
information may not help developers narrow down their debugging
efforts within a couple of lines of code, CREDAL still improves the
utility of a core dump, especially considering the situation where the
program counter points to an invalid address and existing techniques
fail to recover it.

Multiple threads. CREDAL only focuses on analyzing the data of
the crash thread and providing information for debugging. However,
a program crash may be contributed by multiple threads. Thus, the
information from the crash thread may not help software developers
downsize the code space that they have to manually analyze. While
this multi-thread issue indeed limits the capability of a security
analyst utilizing CREDAL to track down a security vulnerability,
this does not significantly downgrade the utility of CREDAL. In
fact, a prior study [38] has already indicated that a large fraction
of software defects involves only the crash thread. This finding is
consistent with our observation from the Offensive Security Exploit
Database archive. Looking into the aforementioned vulnerabilities
over the past twelve years, we do not discover any vulnerability, the
crash of which needs multi-thread coordination.

Potential attacks. When demonstrating the utility of CREDAL, we
conducted an exhaustive search to find all the PoCs we can ex-
periment with. These PoCs are, however, unaware of CREDAL.
Real-world attackers who know about CREDAL might actively pre-
vent our analysis. For instance, they may thwart crash point recovery
and stack trace recovery via erasing the whole stack, and they may
also carefully set up memories to avoid data dependency mismatch.
We will take it as our future work to study the possibility of counter-
acting offline debugging.

9. CONCLUSION
In this paper, we develop a debugging tool CREDAL to facilitate

core dump analysis. With the support from source code, we show
that CREDAL can enhance core dump analysis and make a core
dump more informative for diagnosing software defects, particularly
locating memory corruption vulnerabilities. The design of CREDAL
follows a conservative principle. Thus, it preserves the utility of a
core dump, and at the same time, minimizes the uncertainty in core
dump analysis.

We demonstrated the utility of CREDAL using the crashes cor-
responding to 73 memory corruption vulnerabilities. We showed
that CREDAL can accurately pinpoint a crash point as well as a
stack trace. In addition, we demonstrated a memory corruption
vulnerability typically lies in the code fragment relevant to data
corruption. Following this finding, we safely conclude CREDAL
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can significantly downsize the code space that a software developer
(or security analyst) needs to manually examine, especially when
memory corruption occurs.
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