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Abstract. We consider the following scheduling problem. The input is a set of jobs with equal
processing times, where each job is specified by its release time and deadline. The goal is to determine
a single-processor, non-preemptive schedule that maximizes the number of completed jobs. In the
online version, each job arrives at its release time. We give two online algorithms with competitive
ratios below 2 and show several lower bounds on the competitive ratios.

First, we give a barely random 5/3-competitive algorithm that uses only one random bit. We
also show a lower bound of 3/2 on the competitive ratio of barely random algorithms that randomly
choose one of two deterministic algorithms. If the two algorithms are selected with equal probability,
we can further improve the bound to 8/5.

Second, we give a deterministic 3/2-competitive algorithm in the model that allows restarts, and
we show that in this model the ratio 3/2 is optimal. For randomized algorithms with restarts we
show a lower bound of 6/5.

1. Introduction. We consider the following fundamental problem in the area
of real-time scheduling. The input is a collection of jobs with equal processing times
p, where each job j is specified by its release time rj and deadline dj . (All num-
bers are assumed to be positive integers.) The desired output is a single-processor
non-preemptive schedule. Naturally, each scheduled job must be executed between
its release time and deadline, and different jobs cannot overlap. The term “non-
preemptive” means that each job must be executed without interruptions, in a con-
tiguous interval of length p. The objective is to maximize the number of completed
jobs.

In the online version, each job j arrives at time rj , and its deadline dj is revealed
at this time. The number of jobs and future release times are unknown. At each time
step when no job is running, we have to decide whether to start a job, and if so, to
choose which one, based only on the information about the jobs released so far. An
online algorithm is called c-competitive if on every input instance it schedules at least
1/c as many jobs as the optimum schedule.

Our results. It is known that a simple greedy algorithm is 2-competitive for this
problem, and that this ratio is optimal for deterministic algorithms. We present two
ways to improve the competitive ratio of 2.

First, addressing an open question in [13, 14], we give a 5/3-competitive ran-
domized algorithm. Interestingly, our algorithm is barely random; it chooses with
probability 1/2 one of two deterministic algorithms, i.e., it uses only one random bit.
These two algorithms are two identical copies of the same deterministic algorithm,
that are run concurrently and use a shared lock to break the symmetry and coordi-
nate their behaviors. We are not aware of previous work in the design of randomized
online algorithms that uses such mechanism to coordinate identical algorithms—thus
this technique may be of its own, independent interest.
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†Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. Partially sup-
ported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague
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We then show a lower bound of 3/2 on the competitive ratio of barely random
algorithms that choose one of two deterministic algorithms, with any probability. If
these algorithms are chosen with probability 1/2 each, we improve the lower bound
to 8/5.

Second, we give a deterministic 3/2-competitive algorithm in the preemption-
restart model. In this model, an online algorithm is allowed to abort a job during
execution, in order to start another job. The algorithm gets credit only for jobs
that are executed contiguously from beginning to end. Aborted jobs can be restarted
(from scratch) and completed later. Note that the final schedule produced by such
an algorithm is not preemptive. Thus the distinction between non-preemptive and
preemption-restart models makes sense only in the online case. (The optimal solutions
are always the same.) In addition to the algorithm, we give a matching lower bound,
by showing that no deterministic online algorithm with restarts can be better than
3/2-competitive. We also show a lower bound of 6/5 for randomized algorithms with
restarts.

We remark that both our algorithms are natural, easy to state and implement.
The competitive analysis is, however, fairly involved, and it relies on some structural
lemmas about schedules of equal-length jobs.

An extended abstract of this paper appeared as [9].

Previous work. The problem of scheduling equal-length jobs to maximize the
number of completed jobs has been well studied in the literature. In the offline case,
an O(n log n)-time algorithm for the feasibility problem (checking if all jobs can be
completed) was given by Garey et al. [12] (see also [23, 7]). The maximization version
can also be solved in polynomial time [8, 2], although the known algorithms are
rather slow. (Carlier [7] claimed an O(n3 log n) algorithm but, as pointed out in [8],
his algorithm is not correct.)

As the first positive result on the online version, Baruah et al. [4, 5] show that
a deterministic greedy algorithm is 2-competitive; in fact, they show that any non-
preemptive deterministic algorithm that is never idle at times when jobs are available
for execution is also 2-competitive.

Goldman et al. [13] gave a lower bound of 4/3 on the competitive ratio of ran-
domized algorithms and the tight bound of 2 for deterministic algorithms. We briefly
sketch these lower bounds, as they illustrate well what situations an online algorithm
needs to avoid in order to achieve a small competitive ratio. Let p ≥ 2. The jobs,
written in the form j = (rj , dj), are 1 = (0, 2p + 1), 2 = (1, p + 1), 3 = (p, 2p). The
instance consists of jobs 1,2 or jobs 1,3; in both cases the optimum is 2. Figure 1.1
illustrates the input instance and the adversary strategy. (In this figure, and later
throughout the paper, the horizontal dimension corresponds to the time axis, each
job j in the input instance is drawn as a line segment spanning the interval [rj , dj ],
and jobs that appear in the schedules are represented by rectangles of length p posi-
tioned at the actual time of execution.) In the deterministic case, release job 1; if at
time 0 the online algorithm starts job 1, then release job 2, otherwise release job 3.
The online algorithm completes only one job and the competitive ratio is no better
than 2. In the randomized case, using Yao’s principle [24, 6], we choose each of the
two instances with probability 1/2. The expected number of completed jobs of any
deterministic online algorithm is at most 1.5, as on one of the instances it completes
only one job. Thus the competitive ratio is no better than 2/1.5 = 4/3.

Goldman et al. [13] show that the lower bound of 2 can be beaten if the jobs
on input have sufficiently large “slack”; more specifically, they prove that a greedy
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Fig. 1.1. Jobs used in the lower bound proof.

algorithm is 3/2-competitive for instances where dj − rj ≥ 2p for all jobs j. This is
closely related to our algorithm with restarts: On such instances, our algorithm never
uses restarts and becomes identical to the greedy algorithm. Thus in this special case
our result constitutes an alternative proof of the result from [13]. Exploring further
this direction, Goldwasser [14] obtained a parameterized extension of this result: if
dj − rj ≥ λp for all jobs j, where λ ≥ 1 is an integer, then the competitive ratio is
1 + 1/λ.

In our brief overview of the literature given above we focused on the case when jobs
are of equal length and the objective function is the number of completed jobs. We
need to stress though that, in addition to the work cited above, there is vast literature
on real-time scheduling problems where a variety of other models is considered. Other
or no restrictions can be placed on processing times, jobs may have different weights
(benefits), we can have multiple processors, and preemptions may be allowed. For
example, once arbitrarily processing times and/or weights are introduced, no constant-
competitive non-preemptive algorithms exist. Therefore it is common in the literature
to allow preemption with resumption, where a job can be preempted and later started
from where it was stopped.

The model with restarts was studied before by Hoogeveen et al. [17]. They present
a 2-competitive deterministic algorithm with restarts for jobs with arbitrary process-
ing times and objective to maximize the number of completed jobs. They also give a
matching lower bound. Their algorithm does not use restarts on the instances with
equal processing times, and thus it is no better than 2-competitive for our problem.

Real-time scheduling is an area where randomized algorithms have been found
quite effective. Most randomized algorithms in the general scenarios use the classify-
and-randomly-select technique by Lipton and Tomkins [20]. Typically, this method
decreases the dependence of competitive ratio from linear to logarithmic in certain
parameters (e.g., the maximum ratio between job weights), but it does not apply to
the case of jobs with equal lengths and weights. Our randomized algorithm is based
on entirely different ideas.

Barely random algorithms have been successfully applied in the past to a variety
of online problems, including the list update problem [21], the k-server problem [3] and
makespan scheduling [1, 11, 22]. In particular, the algorithm of Albers [1] involves two
deterministic processes in which the second one keeps track of the first and corrects
its potential “mistakes”—a coordination idea somewhat similar to ours, although in
[1] the two processes are not symmetric. Closer to the topic of this paper, for the
general throughput maximization problem with arbitrary processing times and with
preemption, Kalyanasundaram and Pruhs [19] showed that a constant competitive
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ratio can be achieved with a barely random algorithm, even though no constant-
competitive deterministic algorithms are possible in that model.

The area of real-time scheduling is of course well motivated by multitudes of
applied scenarios. In particular, the model of equal-length jobs—without or with
limited preemption—is related to applications in packet switched networks. When
different weights are considered, the problem has further connections to the “quality
of service” issues (recently a fashionable phrase). Nevertheless, we shamelessly admit
that this work has been partially driven by plain curiosity. It is quite intriguing, after
all, that so little is known about the competitiveness of such a fundamental scheduling
problem.

2. Preliminaries. The input consists of a set of jobs J = {1, 2, . . .}, where each
job j is given by its release time rj and deadline dj . All jobs have processing time p.
(We assume that all numbers are positive integers and that dj ≥ rj +p for all j.) The
expiration time of a job j is xj = dj − p, i.e., the last time when it can be started. A
job j is called admissible at time t if rj ≤ t ≤ xj . A job j is called tight if xj − rj < p.

A non-preemptive schedule A assigns to each completed job j an interval [SA
j , CA

j ),

with rj ≤ SA
j ≤ xj and CA

j = SA
j +p, during which j is executed. These intervals are

disjoint for distinct jobs. SA
j and CA

j are called the start time and completion time of
job j. Without loss of generality, both are assumed to be integer. The number of jobs
completed in A is denoted |A|. We adopt a convention that “job running (a schedule
being idle, etc.) at time t” is an equivalent shorthand for “job running (a schedule
being idle, etc.) in the interval [t, t + 1)”. Given a schedule A, a job is pending at
time t in A if it is admissible at t (that is, rj ≤ t ≤ xj) but not yet completed in
A. Note that according to this definition a job that is being executed at t may also
be considered pending. When A is understood from context, we will typically use
notation Pt to denote the set of jobs pending at time t.

For any set of jobs Q, we say that Q is feasible at time t if there exists a schedule
which completes all jobs in Q such that no job is started before t. Q is flexible at
time t if it is feasible at time t + p.

Applying the Jackson rule [18], it is quite easy to determine whether a set P of
pending jobs is feasible at t: Order the jobs in P in order of increasing deadlines, and
schedule them at times t, t+p, t+2p, etc. Then P is feasible if and only if all jobs in P
meet their deadlines. Furthermore, if we want to compute the maximum-size feasible
subset P ′ ⊆ P , we can start with P ′ = ∅, and then add jobs j ∈ P −P ′ to P ′, one by
one and in arbitrary order, as long as P ′ remains feasible. This means, in particular,
that P ′ is a maximum-size feasible subset of P iff P ′ is a ⊆-maximal feasible subset
of P . All those properties can be proven by elementary exchange arguments, and the
proofs are left to the reader.

We say that a job started by a schedule A at time t is flexible in A if the set of
all jobs pending in A at t is flexible; otherwise the job is called urgent. Intuitively,
a job is flexible if we could possibly postpone it and stay idle for time p, without
losing any of the currently pending jobs; this could improve the schedule if a tight job
arrives. On the other hand, postponing an urgent job can bring no advantage to the
algorithm.

An online algorithm constructs a schedule incrementally, at each step t making
decisions based only on the jobs released at or before t. The information about each
job j, including its deadline, is revealed to the algorithm at its release time rj . A
non-preemptive online algorithm can start a job only when no job is running; thus, if
a job is started at time t the algorithm has no choice but to let it run to completion
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at time t + p. An online algorithm with restarts can start a job at any time. If we
start a job j when another job, say k, is running, then k is aborted and started from
scratch when (and if) it is started again later. The unfinished portion of k is removed
from the final schedule, which is considered to be idle during this time interval. Thus
the final schedule generated by an online algorithm with restarts is non-preemptive.

An online algorithm is called c-competitive if, for any set of jobs J and any
schedule Z for J , the schedule A generated by the algorithm on J satisfies |Z| ≤ c|A|.
If the algorithm is randomized, the expression |A| is replaced by the expected (average)
number of jobs completed on the given instance.

The definitions above assume the model—standard in the scheduling literature—
with integer release times and deadlines, which implicitly makes the time discrete.
Some papers on real-time scheduling work with continuous time. Both our algorithms
can be modified to the continuous time model and unit processing time jobs without
any changes in performance, at the cost of somewhat more technical presentation.

Properties of schedules. For every instance J , we fix a canonical linear or-
dering ≺ of J such that j ≺ k implies dj ≤ dk. In other words, we order the jobs
by their deadlines, breaking the ties arbitrarily but consistently for all applications
of the deadline ordering. The term earliest-deadline, or briefly ED, now refers to the
≺-minimal job.

A schedule A is called earliest-deadline-first (or EDF ) if, whenever it starts a job,
it chooses the ED job of all the pending jobs that are later completed in A. (Note
that this may not be the overall ED pending job.)

A schedule A is normal if it satisfies the following two properties:

(n1) when A starts a job, it chooses the ED job from the set of all pending jobs;
(n2) if the set of all pending jobs in A at some time t is not flexible, then some job

is running at t.

Obviously, any normal schedule is EDF, but the reverse is not true. All algorithms
presented in this paper generate normal schedules. The properties (n1) and (n2)
are reasonable, as the online algorithm cannot make a mistake by enforcing them.
Formally, any online algorithm can be modified, using a standard exchange argument,
to produce normal schedules without reducing the number of scheduled jobs. (We omit
the proof, as we do not need this fact in the paper.)

The following property will be crucial in our proofs.

Lemma 2.1. Suppose that a job j is urgent in a normal schedule A. Then at any
time t, SA

j ≤ t ≤ xj, an urgent job is running in A.

Proof. Denote by P the set of jobs pending at time SA
j (including j). By the

assumption about j, P is not flexible at SA
j . Towards contradiction, suppose that A

is idle or starts a flexible job at time t, where CA
j ≤ t ≤ xj . Then the set Q of jobs

pending at time t is flexible at t. Since j is the ED job from P (by the normality of
A) and t ≤ xj , all other jobs in P have not expired until t, and thus Q contains all
the jobs from P that are not completed in A until time t.

Using the above properties, we can rearrange the schedule as follows. Since Q
is flexible at t, we can schedule all jobs of Q at time t + p or later, start j at t and
schedule all jobs in P − Q − {j} as in A. But this shows that P is flexible at time
SA

j —a contradiction.

Two schedules D and D′ for an instance J are called equivalent if they satisfy the
following conditions for each time t:

(eq1) D starts a job at t if and only if D′ starts a job at t.
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(eq2) Suppose that D starts a job j at time t and D′ starts a job j′ at time t. Then
j is flexible in D iff j′ is flexible in D′. Furthermore, if they are both flexible
then j = j′.

Obviously, if D, D′ are equivalent, then |D| = |D′|.
To facilitate competitive analysis, we modify normal schedules into equivalent

EDF schedules with better structural properties. In particular, the next lemma gives
us more control over the choice of jobs that we can include in the schedule, in situations
where there are several choices. The modified schedules are no longer normal (only
EDF, which is a weaker requirement); nevertheless, as they are equivalent to normal
schedules, they inherit some of their important properties, including Lemma 2.1.

Lemma 2.2. Let X be a normal schedule for a set of jobs J . Let f : J → J be
a partial function such that if f(k) is defined then k is scheduled as flexible in X and
rf(k) ≤ CX

k ≤ xf(k). Then there exists an EDF schedule A equivalent to X such that:
(1) All jobs f(k) are completed in A.
(2) Consider a time t when either A is idle or it starts a job and the set of all its

pending jobs is feasible at t. Then all jobs pending at t are completed in A. In
particular, each job that is pending when A starts a flexible job is completed
in A.

Furthermore, if X is constructed by an online algorithm and f(k) can be deter-
mined online at time CX

k for each flexible job k in X , then A can be produced by an
online algorithm.

Remarks: Property (1) is useful in our proofs, since it allows us to modify the
schedule computed by the algorithm to resemble more the optimal schedule. Property
(2) guarantees that any job planned to be scheduled is indeed scheduled in the future.

Since A and X are equivalent, flexible jobs are the same and scheduled at the
same times in A and X . In particular, all the jobs k on which f(k) is defined are
scheduled at the same time in both A and X—a property that will play an important
role in our later arguments.

The basic idea of the construction of A is quite straightforward: Maintain a set
Qt of jobs that we plan to schedule. If the set of all pending jobs is feasible, we
always plan to schedule them all. In addition, if we start a flexible job k at time t,
the flexibility of k allows us to add to Qt+p an extra job released during the execution
of k; so if f(k) is defined, we add f(k).

Proof. We construct A iteratively. Throughout the proof, t ranges over times
when X is idle or starts a job. For each such t, let Pt and P ′

t denote the set of jobs
pending in X and A, respectively.

We will maintain an auxiliary set of jobs Qt that are pending at t in X and A,
that is Qt ⊆ Pt ∩ P ′

t . Simultaneously with the construction, we prove inductively
that, for all t, the following invariant holds:

(∗) Qt is a ⊆-maximal feasible subset of each of Pt and P ′
t .

Before describing the construction, we make two observations. First, recall that
condition (∗) implies that Qt is also maximum with respect to size. Second, if any of
sets Pt, P ′

t , Qt is flexible, then Qt = Pt = P ′
t , by the maximality of Qt.

We now describe the construction. Initially, choose Q0 as an arbitrary maximal
feasible set of the jobs released at time 0.

Assume we have already defined Qt. If X is idle at t, we let A idle and choose
an arbitrary Qt+1 ⊇ Qt by adding to Qt the jobs released at t + 1, as long as the set
remains feasible. Since X is idle, Pt is flexible at t, and thus Qt = Pt = P ′

t . Therefore
Qt is feasible at t + 1, Pt+1 = P ′

t+1, and we can conclude that (∗) holds at time t + 1.
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Now suppose that X starts a job k at time t. We consider two subcases, depending
on whether k is flexible or urgent.

Case 1: k is flexible in X . Then A starts k, too. This is possible since in this case
we have Qt = Pt = P ′

t , and thus k is pending in A at time t. Note that k is executed
as flexible in A. Further, we also have P ′

t+p = Pt+p.
Since Qt is flexible, it is feasible at t + p. To construct Qt+p, we start with

Qt+p = Qt−{k} and expand it by processing newly released jobs, one by one, adding
each processed job into Qt+p if Qt+p remains feasible. We process first the job f(k),
if it is defined, pending, and not yet in Qt+p. Then we process the remaining jobs h
with t < rh ≤ t+p, in an arbitrary order. Since Qt is feasible at t+p and k is the ED
job in Qt, Qt−{k}∪{f(k)} is feasible at t+p as well, so f(k) can always be added to
Qt+p without violating feasibility. By the construction, (∗) is satisfied at time t + p.

Case 2: k is urgent in X . A starts the earliest-deadline (more precisely, ≺-minimal)
job k′ from Qt. Since Qt is a maximal feasible set both for X and A, it is non-empty
whenever X starts a job. Furthermore, we know that Qt is not flexible at t and thus
k′ is urgent.

Let T = Qt − {k′}. We claim that:
(t1) T is a maximal subset of Pt (resp. P ′

t ) that is feasible at time t + p, and
(t2) T ⊆ Pt+p ∩ P ′

t+p.
That T is feasible at t + p follows directly from the definition of T and the fact

that k′ is the ED job in Qt. For the same reason, all jobs in T are pending in A at
time t + p. Since k′ is pending in X at t, and X schedules the ED pending job (as X
is normal), we have k ≺ k′. Therefore all jobs in T are pending at time t + p in X as
well. We conclude that (t2) holds.

No job in P ′
t −Qt can be feasibly added to T at time t + p, as otherwise it could

be feasibly added to Qt at time t, contradicting the maximality of Qt for A. The
same argument applies to X . Thus, T satisfies condition (t1) for both Pt and P ′

t .
We construct Qt+p similarly as in the previous case. We start with Qt+p =

T and process newly released jobs in an arbitrary order, one by one, adding each
processed job into Qt+p if Qt+p remains feasible. Again, the maximality of T and the
construction implies that Qt+p satisfies (∗) at time t + p.

This completes the construction. Obviously, X and A are equivalent. Also, A
is EDF since whenever it schedules a job, it chooses the ED job of Qt, and jobs in
P ′

t − Qt are never added to Qs for s > t, so they will not be scheduled in A.
By the construction, A schedules all the jobs that are in some Qt. At any time t

when A is idle or starts a flexible job, Qt is flexible and thus Qt = P ′
t . This proves

(2). This also implies (1), since, for t = SX
k , f(k) is either completed by time t + p or

f(k) ∈ Qt+p.
Lemma 2.2 gives an easy proof that any normal schedule X schedules at least half

as many jobs as the optimum. Take the modified schedule A from Lemma 2.2 (with f
undefined). Charge any job j completed in an optimal schedule Z to a job completed
in A as follows: (a) If A is running a job k at time SZ

j , charge j to k. (b) Otherwise

charge j to j. This is well defined since, if j is admissible and A is idle at time SZ
j ,

then A completes j by Lemma 2.2(2). Furthermore, only one job can be charged to
k using rule (a), as all jobs have the same processing time and only one job can be
started in Z during the interval when k is running in A. Thus overall at most two
jobs in Z are charged to each job in A and |Z| ≤ 2|A| = 2|X |, as claimed.

This shows that any online algorithm that generates a normal schedule is 2-
competitive. In particular, this includes the known result that the greedy algorithm
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which always schedules the ED pending job when there are any pending jobs is 2-
competitive. We use similar but more refined charging schemes to analyze our im-
proved algorithms.

Goldwasser and Kerbikov [15] introduced a concept of online algorithms that
upon release of a job immediately commit whether it will be completed or not. We do
not formulate our algorithms in this form, but Lemma 2.2 can be applied to normal
schedules generated by our algorithms (with f undefined) to obtain equivalent online
algorithms with immediate notification. (For the model with restarts, this implies that
any preempted job is completed later.) Since the construction produces equivalent
schedules, the performance is also the same.

3. Randomized Algorithms. In this section we present our 5/3-competitive
barely random algorithm. This algorithm uses only one random bit; namely, at the
beginning of computation it chooses with probability 1/2 between two deterministic
algorithms. We also show two lower bounds for barely random algorithms: Any
randomized algorithm that randomly chooses between two schedules has ratio at least
3/2. Furthermore, if the two algorithms are selected with equal probability, the
competitive ratio is at least 8/5.

Algorithm RandLock. We describe our algorithm in terms of two identical
processes that are denoted by X and Y. Each process is, in essence, a scheduling
algorithm that receives its own copy of the input instance J and computes its own
schedule for J . (This means that a given job can be executed by both processes,
at the same or different times.) We chose to use the term “process” rather than
“algorithm”, since X and Y are not fully independent; they both have access to a
shared lock mechanism used to coordinate their behavior.

Each process X and Y is defined as follows:
(RL1) If there are no pending jobs, wait until some job is released.
(RL2) If the set of pending jobs is not flexible, execute the ED pending job.
(RL3) If the set of pending jobs is flexible and the lock is available, acquire the lock

(ties broken arbitrarily), execute the ED pending job, and release the lock
upon its completion.

(RL4) Otherwise, wait until the lock becomes available or the set of pending jobs
becomes non-flexible (due to progress of time or new jobs being released).

Algorithm RandLock selects initially one of the two processes X or Y, each with
probability 1/2. Then it simulates the two processes on a given instance, outputting
the schedule generated by the selected process.

By the description of the algorithm, at each step only one process, namely the
one that possesses the lock, can be executing a flexible job.

Before we analyze the algorithm, we illustrate its behavior on the instance in
Figure 3.1. Both processes schedule only three jobs, while the optimal schedule has
five jobs. Thus RandLock is not better than 5/3-competitive.

Theorem 3.1. RandLock is a 5/3-competitive non-preemptive randomized al-
gorithm for scheduling equal-length jobs.

Proof. Overloading the notation, let X and Y denote the schedules generated
by the corresponding processes on a given instance J . By rules (RL2), (RL3), both
schedules are normal. Fix an arbitrary schedule Z for the given instance J .

We start by modifying the schedules X and Y according to Lemma 2.2. Define a
partial function fA : J → J as follows. Let fA(k) = h if k is a flexible job completed
in X and h is a job started in Z during the execution of k in X and admissible at the
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Fig. 3.1. An instance on which RandLock schedules three jobs out of five. At time 0, process
X acquires the lock and executes job 1. Process Y must then wait with executing job 2 until it
becomes urgent at time p. At time 2p, Y acquires the lock and executes 1, while X waits with job 4
until it becomes urgent at time 3p. Overall, job 1 is executed as flexible by both processes; the other
jobs are executed as urgent.

completion of k in X , i.e., SX
k ≤ SZ

h < CX
k ≤ xh. Otherwise (if k is urgent or no such

h exists), fA(k) is undefined. Note that if h exists, it is unique for a given k. Then we
define A to be the schedule constructed from X in Lemma 2.2 using function fA(·).
Analogously we define function fB(·), and we modify schedule Y to obtain schedule
B. We stress that these new schedules A and B cannot be constructed online as their
definition depends on Z; they only serve as tools for the analysis of RandLock.

Since A (resp. B) is equivalent to a normal schedule X (resp. Y), Lemma 2.1 still
applies to A (resp. B) and the number of completed jobs remains the same as well.

Throughout the proof we use the convention that whenever D denotes one of the
schedules A and B, then D̄ denotes the other one.

Lemma 3.2. Let D ∈ {A,B}, and let D̄ be the other process of RandLock.
Suppose that at time t D is idle or is executing an urgent job and D̄ is idle. Then
each job admissible at time t is completed in D̄ as a flexible job by time t.

Proof. The lemma is a direct consequence of the lock mechanism. By the as-
sumption, the lock is available at time t, yet the process corresponding to D̄ does not
schedule any job. This is possible only if no job is pending. Consequently, any job
k admissible at time t must have been completed in D̄ by time t. Furthermore, if k
would be executed as urgent in D before time t then, since SD

k ≤ t ≤ xk, Lemma 2.1
implies that D could not be idle at time t. This shows that k is completed as a flexible
job.

The charging scheme. Our proof is based on a charging scheme. The funda-
mental principle of this scheme is the same as in the proof for the greedy algorithm
in Section 2. Each adversary job will generate a charge of 1. This charge will be
distributed among the jobs in schedules A and B, in such a way that each job in these
schedules will receive a charge of at most 5/6. This will imply the 5/3 bound on the
competitive ratio of RandLock.

Let j be a job started in Z at time t = SZ
j . This job generates several charges of

different weights to (the occurrences of) the jobs in schedules A and B. Each charge
is uniquely labeled as a self-charge or an up-charge. Self-charges from j go to the
occurrences of j in A or B, and up-charges from j go to the jobs running at time
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t in A and B. If one of the processes runs j at time t, then the charge to this job
may be designated either as an up-charge or a self-charge; in Case (III) below such a
j can even receive both a self-charge and an up-charge from j. The total of charges
generated by j is always 1. The charges depend on the status of A and B at time t.
(See Figure 3.2.)
Case (I): Both schedules A and B are idle. By Lemma 3.2, in both A and B, j is

completed as flexible by time t. We generate two self-charges of 1/2 to the
two occurrences of j in A and B.

Case (II): One schedule D ∈ {A,B} is running an urgent job k and the other sched-
ule D̄ is idle. By Lemma 3.2, in D̄, j is completed as flexible by time t. We
generate a self-charge of 1/2 to the occurrence of j in D̄ and an up-charge of
1/2 to k in D.

Case (III): One schedule D ∈ {A,B} is running a flexible job k and the other
schedule D̄ is idle. We claim that j is completed in both A and B. For D̄,
this follows directly from Lemma 2.2(2). We now prove it for D. If rj ≤ SD

k ,
then Lemma 2.2(2) applied to time t′ = SD

k implies that D completes j. If
xj ≥ CD

k then fD(k) = j, so D completes j by Lemma 2.2(1). The remaining
case, namely SD

k < rj ≤ t ≤ xj < CD
k cannot happen, for this condition

implies that j is tight and thus the set of jobs pending at time t for D̄ is not
flexible. So D̄ would not be idle at t, contradicting the case condition.
In this case we generate one up-charge of 1/3 to k in D and two self-charges
of 1/2 and 1/6 to the occurrences of j according to the two subcases below.
Let E ∈ {A,B} be the schedule which starts j first (breaking ties arbitrarily).
Case (IIIa): If E schedules j as an urgent job and the other schedule Ē is

idle at some time t′ satisfying SE
j ≤ t′ ≤ xj , then charge 1/6 to the

occurrence of j in E and 1/2 to the occurrence of j in Ē .
We make here a few observations that will be useful later in the proof.
Since in this case j is urgent in E , and E is either idle or executes a
flexible job at time t, Lemma 2.1 implies that j is executed in E after
time t. It also implies that E runs urgent jobs between SE

j and xj . This

means that E runs an urgent job at t′. Since Ē is idle at time t′ by the
case condition, Lemma 3.2 implies that Ē schedules j as flexible before
time t′.

Case (IIIb): Otherwise charge 1/2 to the occurrence of j in E and 1/6 to
the occurrence of j in Ē .

Case (IV): Both processes A and B are running jobs kA and kB, respectively, at
time t. We show below in Lemma 3.4 that in the previous cases one of kA, kB
receives a self-charge of at most 1/6 from its occurrence in Z. We generate
an up-charge of 2/3 from j to this job, and an up-charge of 1/3 to the other
one. No self-charge is generated in this case.

This completes the description of the charging scheme. Before we resume the
proof of the theorem, we prove two lemmas, the purpose of which is to justify the
correctness of the charges in Case (IV).

Lemma 3.3. Assume that Case (IV) applies to j. Suppose also that kF , for some
F ∈ {A,B}, is scheduled before j in Z (that is, SZ

kF
≤ t − p), and that kF in F

receives a self-charge of 1/2 generated in Case (IIIb) applied to kF . Then kF̄ ≺ kF
or kF̄ = kF .

Proof. Since kF receives a charge of 1/2 in (IIIb), the choice of E in Case (III)
implies that kF is executed in F̄ later than in F , that is SF̄

kF
≥ SF

kF
> t − p. On
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Fig. 3.2. Illustration of the charging scheme in the analysis of Algorithm RandLock. The
figure gives examples of different types of charges. In Case (IIIb), there are several illustrations that
cover possibilities playing a different role in the proof. (To reduce the number of cases, in the figures
for Case (III) we assume that j 6= k and j is executed in D before it is executed in D̄.)

the other hand, SF̄
kF̄

≤ t, so kF must be executed in F̄ after kF̄ . Furthermore,

SF̄
kF̄

> t − p ≥ SZ
kF

≥ rkF
and thus kF is pending in F̄ when kF̄ is started. Since F̄

is EDF, we have kF̄ ≺ kF or kF̄ = kF , completing the proof.

Lemma 3.4. Assume that Case (IV) applies to j. Then for some D ∈ {A,B} the
self-charge to kD in D does not exceed 1/6.

Proof. Note that self-charges are generated only in Cases (I)-(III) and any self-
charge has weight 1/2 or 1/6. Assume, towards contradiction, that both kA and kB
receive a self-charge of 1/2. At least one of kA and kB is scheduled as urgent in the
corresponding schedule, due to the lock mechanism. Thus kA 6= kB, as (I) is the
only case when two self-charges 1/2 to the same job are generated and then both
occurrences are flexible. Furthermore, if j = kG , for some G ∈ {A,B}, then kG would
not receive any self-charge. Thus kA, kB, and j are three distinct jobs.

Choose D such that kD is urgent in D (as noted above, such D exists). The only
case when an urgent job receives a self-charge of 1/2 is (IIIb). By Lemma 2.1, D
executes urgent jobs at all times t′, t ≤ t′ ≤ xkD

, which, together with the condition
for Case (III) applied to kD (namely that D is either idle or executes a flexible job at
SZ

kD
), implies that SZ

kD
≤ t. As j 6= kD, it follows that SZ

kD
≤ t − p. By Lemma 3.3,

kD̄ ≺ kD and xkD̄
≤ xkD

. Furthermore, since (IIIa) does not apply to kD, D̄ is also
not idle at any time t′, t ≤ t′ ≤ xkD

.

We now show that the assumption of a self-charge of 1/2 to kD̄ in D̄ leads to a
contradiction. The proof is by considering several cases. In most cases the contra-
diction is with the fact that, as shown in the previous paragraph, both processes are
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busy at all times between t and xkD
. (Keeping in mind that xkD̄

≤ xkD
.)

If this charge is generated in Case (I) or (II) then, by the case conditions, D̄ would
be idle at time SZ

kD̄

, and we would have SZ
kD̄

≥ SD̄
kD̄

, and thus t ≤ SZ
kD̄

≤ xkD̄
, which

is a contradiction.

Suppose that this self-charge is generated in Case (III). Similarly as before, the
condition of this case implies that one process is idle at time SZ

kD̄
, so we must have

SZ
kD̄

≤ t, for otherwise we would have again an idle time between t and xkD̄
.

We have now two subcases. If the self-charge originated from Case (IIIa), the
condition of this case implies that there is an idle time t′ between SZ

kD̄

and xkD̄
. As

t ≤ t′ ≤ xkD̄
, this is again a contradiction.

The last possibility is that this self-charge originated from Case (IIIb). But then
SZ

kD̄
≤ t−p, as j 6= kD̄, and Lemma 3.3 above applies to kD̄. However, the conclusion

that kD ≺ kD̄ contradicts the linearity of ≺ as kD 6= kD̄ and we have already shown
that kD̄ ≺ kD.

Summarizing, we get a contradiction in all the cases, completing the proof of the
lemma.

Continuing the proof of the theorem, we now show that the total charge to each
occurrence of a job in A or B is at most 5/6. Suppose that k is executed in D ∈ {A,B}.
During the execution of k at most one job is started in Z, thus k gets at most one
up-charge in addition to a possible self-charge. If k does not receive any up-charge,
it is self-charged 1/2 or 1/6, i.e., less than 5/6.

If k receives an up-charge in (II), then k is an urgent job and, since D̄ is idle, it is
already completed in D̄, so SD̄

k < SD
k . The only case where the occurrence of k that

is later in time is urgent and receives a self-charge is Case (IIIb), and in this case this
self-charge is 1/6. So the total charge would be at most 1/6 + 1/2 < 5/6.

If a job receives an up-charge in (III), the up-charge is only 1/3 and thus the total
is at most 1/3 + 1/2 = 5/6.

If a job receives an up-charge in (IV), Lemma 3.4 implies that the up-charges can
be defined as claimed in the case description. The total charge is then bounded by
1/6 + 2/3 = 5/6 and 1/2 + 1/3 = 5/6, respectively.

The expected number of jobs completed by RandLock is (|A| + |B|)/2. Since
each job in A and B receives a charge of at most 5/6, and all jobs in Z generate a
charge of 1, we have (5/3) · (|A|+ |B|)/2 = (5/6) · (|A|+ |B|) ≥ |Z|. This implies that
RandLock is 5/3-competitive.

As discussed in the introduction, a lower bound of 4/3 is known for randomized
algorithms [13]. For barely random algorithms that choose between two deterministic
algorithms, we can improve this bound to 3/2. Assuming also that the two algorithms
are selected with equal probability, we can further improve the bound to 8/5.

Theorem 3.5. Suppose that R is a barely-random non-preemptive algorithm for
scheduling equal-length jobs that chooses one of two deterministic algorithms. Then
R is not better than 3/2-competitive.

Proof. Assume that R chooses randomly one of two deterministic algorithms, A
and B, with some arbitrary probabilities. Let p ≥ 3 and write the jobs as j = (rj , dj).
We start with job 1 = (0, 4p). Let t be the first time when one of the algorithms, say
A, schedules job 1. If B schedules it at t as well, release a job 1′ = (t + 1, t + p + 1);
the optimum schedules both jobs while both A and B only one, so the competitive
ratio is at least 2.

12



So we may assume that B is idle at t. Release job 2 = (t + 1, t + 2p + 2). If B
starts any job (1 or 2) at t + 1, release job 3 = (t + 2, t + p + 2), otherwise release
job 4 = (t + p + 1, t + 2p + 1). B completes only one of the jobs 2, 3, 4. Since A is
busy with job 1 until time t+ p, it also completes only one of the jobs 2, 3, 4, as their
deadlines are smaller than t + 3p. So each of A and B completes at most two jobs.

The optimal schedule completes three jobs: If 3 is issued, schedule 3 and 2, back
to back, starting at time t + 2. If 4 is issued, schedule 2 and 4, back to back, starting
at time t + 1. In either case, two of jobs 2, 3, 4 fit in the interval [t + 1, t + 2p + 2). If
t ≥ p − 1, schedule job 1 at time 0, otherwise schedule job 1 at time 3p ≥ t + 2p + 2.
Thus the competitive ratio of R is at least 3/2.

Theorem 3.6. Suppose that R is a barely-random non-preemptive algorithm for
scheduling equal-length jobs that chooses one of two deterministic algorithms, each
with probability 1/2. Then R is not better than 8/5-competitive.

Proof. Assume that R chooses one of two deterministic algorithms, A and B,
each with probability 1/2. Let p ≥ 3 and write the jobs in the format j = (rj , dj).
We start with job 1 = (0, 6p). Let t be the first time when one of the algorithms, say
A, schedules job 1.

At time t + 1 release job 2 = (t + 1, t + p + 1). If B does not start 2 at time t + 1,
then no more jobs will be released and the ratio is at least 2.

We may thus assume that B starts 2 at time t + 1 and then starts 1 at some time
t′ ≥ t + p + 1. Release job 3 = (t′ + 1, t′ + 2p + 2). If A starts job 3 at t′ + 1, release
job 4 = (t′ + 2, t′ + p + 2), otherwise release 5 = (t′ + p + 1, t′ + 2p + 1). By the choice
of the last job, A can complete only one of the jobs 3, 4, 5. Since B is busy with job
1 until time t′ + p ≥ t′ + 3, it also can complete only one of the jobs 3, 4, 5, as their
deadlines are strictly smaller than t′ + 3p. So A can complete 2 jobs only and B can
complete 3 jobs.

The optimal schedule can complete all four released jobs. If 4 is issued, schedule
4, 3, back to back, starting at time t′ + 2. If 5 is issued, schedule 3, 5, back to back,
starting at time t′ + 1. In either case, both jobs fit in the interval [t′ + 1, t′ + 2p + 2).
This interval is disjoint with the interval [t+1, t+p+1) where 2 is scheduled. Finally,
these two intervals occupy length 3p + 1 of the interval [0, 6p) and divide it into at
most 3 contiguous pieces; thus one of the remaining pieces has length at least p and
job 1 can be scheduled.

Summarizing, R completes at most (2 + 3)/2 = 2.5 jobs on average, while the
optimal schedule completes 4 jobs. Therefore the competitive ratio is at least 4/2.5 =
8/5, as claimed.

4. Scheduling with Restarts. Our algorithm with restarts is very natural. At
any time, it greedily schedules the ED job. However, if a tight job arrives that would
expire before the running job is completed, we consider a preemption. A preemption
occurs only if it guarantees to increase the number of completed jobs, among those
that are known to the algorithm, which includes the currently executed job and all
pending jobs.

To formalize this idea, we need an auxiliary definition. Suppose that a job k is
started at time s by the online algorithm. We call a job h a preemption candidate for
k if s < rh ≤ xh < s + p.

The exact statement of the algorithm is somewhat technical, as it needs to prop-
erly handle the case when two preemption candidates arrive at the same time, and
also the case when some other jobs arrive between the start of a job and the arrival
of the first preemption candidate.
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Algorithm TightRestart. At time t:
(TR1) If no job is running, start the ED pending job, providing there is at least one

pending job, otherwise stay idle until some job is released.
(TR2) Otherwise, let k be the running job. If k was started as urgent or if no

preemption candidate is released at t, continue running k.
(TR3) Otherwise, the running job k was started as flexible. Let P ∗

t be the set of all
jobs pending at time t, including k but excluding any preemption candidates.
If P ∗

t is flexible at t, preempt k and start (at time t) a preemption candi-
date; choose the ED preemption candidate, if more are admissible at time t.
Otherwise continue running k.

Note that in case (TR3) job k is indeed still pending at time t, for its flexibility
at its start time implies that k is still admissible at t. (Recall that only admissible
jobs are considered pending, and a job that is partially executed is pending as well,
as long as it is still admissible.)

Let X be the final schedule generated by TightRestart, after removing the
preempted parts of jobs. For any time t, as before, we denote as Pt the set of jobs
that are pending in X at time t. We stress that we distinguish between X being idle
and TightRestart being idle: at some time steps TightRestart can process a job
that will be preempted later, in which case X is considered idle at these steps but
TightRestart is not.

Lemma 4.1. Schedule X is normal.
Proof. By rules (TR1) and (TR3), TightRestart always starts the ED pending

job; in (TR3) note that, by definition, any preemption candidate is tight and thus it
has earlier deadline than any job in the flexible set P ∗

t of the remaining pending jobs.
The property (n1) of normal schedules follows, as, obviously, at each time step, the
pending jobs in TightRestart and X are the same.

If TightRestart is idle then there is no pending job. Thus, to show the prop-
erty (n2), it remains to verify that Pt′ is flexible at any time t′ when X is idle but
TightRestart is not. This means that TightRestart is running a job which is
later preempted.

Suppose TightRestart starts a job k at time s and preempts it at time t. By
(TR2), k is started as flexible. Let t′ be any time such that s < t′ < t. Since k is
flexible at s and it is the ED job in Ps, no job in Ps expires before s+ p > t. Thus we
have Ps ⊆ P ∗

t′ ⊆ P ∗
t , by the definition of P ∗

t′ and P ∗
t in (TR3). As TightRestart

preempts at time t, P ∗
t is flexible at t. Consequently, P ∗

t′ ⊆ P ∗
t is flexible at t and

also at t′ < t. Using this for all t′, we conclude that the first preemption candidate
for k is released at t, as otherwise k would be preempted earlier. Thus no preemption
candidate is admissible at any t′, s < t′ < t, and Pt′ = P ∗

t′ which we have shown is
flexible at t′. Thus (n2) holds and X is normal.

Theorem 4.2. TightRestart is a 3/2-competitive algorithm with restarts for
scheduling equal-length jobs.

Proof. As usual, by Z we denote an optimal schedule. The proof is based on
a charging scheme, where each job in Z generates a charge of 1, and each job in
TightRestart’s schedule receives a charge of at most 3/2.

Let us start by giving some intuition behind the charging scheme. Suppose that
a job j is started at time t in Z. If TightRestart is running a job k at t and k
is not preempted later, we want to charge j to k. If TightRestart is running a
job k which is later preempted by a job h, we charge 1/2 to h and 1/2 to j (using
Lemma 2.2 to guarantee that the modified schedule completes j). The main problem
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is to handle the case when TightRestart is idle when j starts in Z; we call such a
j a free job. In this case, TightRestart was “tricked” into scheduling j too early.
We would like to charge j to itself. However, it may happen that then j would be
charged twice, so we need to split this charge and find another job that we can charge
1/2. The definition of f(j) below chooses such a job and Lemma 2.2 again guarantees
that the modified schedule completes f(j). The rule (f2) in the definition of f below
chooses a value of f to be a job not scheduled in Z, which is opposite to the general
intuition that the modified schedule is more similar to Z; however, it guarantees that
this job may be charged that additional 1/2. Another difficulty that arises in the
above scheme is that, due to preemptions in TightRestart’s schedule and to idle
times in Z, the jobs can become misaligned. To deal with this problem, we define a
matching M between the jobs in X and Z. Typically, a job k in X is matched to the
first unmatched job in Z that starts later than k. In some situations we match a free
job k to itself.

We now proceed with the formal proof. First, we define a partial function f :
J → J . For any job k scheduled as flexible in X , we define f(k) as follows.
(f1) If at some time t, SX

k ≤ t < CX
k , Z starts a job h which is not a preemption

candidate then let f(k) = h.
(f2) Otherwise, if there exists a job h with SX

k < rh ≤ CX
k ≤ xh such that Z does

not complete h, then let f(k) = h (choose arbitrarily if there are more such
h’s).

(f3) Otherwise, f(k) is undefined.
Notice that f(·) is one-to-one, for the first two cases are disjoint, and in each case

k is uniquely determined by h = f(k): If h = f(k) and (f1) applied to k, then k is the
job that is being executed by X when Z starts h. If (f2) applied to k, then k is the
job being executed by X at time rh − 1.

According to Lemma 4.1, X is a normal schedule. Let A be the schedule con-
structed in Lemma 2.2 from X and function f(·). Since A is equivalent to X , it also
satisfies Lemma 2.1.

Call a job j scheduled in Z a free job if TightRestart is idle at time SZ
j . This

condition implies that at time SZ
j no job is pending in A; in particular, by Lemma 2.1,

j is completed as a flexible job by time SZ
j in A.

Now define a partial function M : J → J which is a matching of (some) occur-
rences of jobs in A to those in Z. Process the jobs k scheduled in A in the order of
increasing SA

k . For a given k, let j be the first unmatched job in Z started at or after
SA

k , or, more formally, the job with smallest SZ
j among those with SZ

j ≥ SA
k and such

that j 6= M(k′) for all k′ in A with SA
k′ < SA

k . If no such j exists, M(k) is undefined.
Else:
(m1) If SZ

j ≥ CA
k , and k is a free job which is not in the current range of M , then

let M(k) = k.
(m2) Otherwise, let M(k) = j.
The definition implies that M is one-to-one. See Figure 4.1 for an example.

Lemma 4.3. Let j be a job executed in Z.
(1) If A executes some job when j starts in Z, that is SA

k ≤ SZ
j < CA

k for some
k, then j is in the range of M .

(2) If j is free and f(j) is undefined then j is in the range of M .
Proof. Part (1) is simple: Suppose that A is executing some job k at SZ

j , and
consider the step in the construction of M when we are about to define M(k). If j is
not in the range of M at this time, then we would define M(k) as j.
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Fig. 4.1. An example of an instance, the schedule X produced by TightRestart, the modified
schedule A, and the construction of M (represented by directed edges). The processing time is p = 4.
Jobs are identified by positive integers. Preempted pieces of jobs are not shown. In X , jobs 5, 6, 11
are flexible, and the other jobs are urgent. Note that f(5) is undefined, f(6) = 7 (since 7 is not a
preemption candidate), and f(11) = 12 (since 13 is a preemption candidate, and 12 is not and 12
is not executed in X.)

We now prove (2). Let s = SA
j be the start time of j in A and s′ = CA

j = s + p
its completion time. Since j is free, it is completed in A before it is started in Z, that
is SZ

j ≥ s′ and j is flexible in A.
Suppose for a contradiction that j is not in the range of M . By the definition of

M , this implies that M(j) = l for some job l with s ≤ SZ
l < s′. Otherwise, during

the construction of M when we are about to define M(j), we would set M(j) = j.
Since f(j) is undefined, by condition (f1), l must be a preemption candidate for

j, that is s < rl ≤ xl < s′. Furthermore, as TightRestart does not preempt j when
l is released, the set P ∗

rl
is not flexible.

Figure 4.2 illustrates the argument that follows. The idea is this: Since j is
not preempted even though a preemption candidate l arrives, A must be nearly full
between s′ and dj . So, intuitively, one of the jobs scheduled in this interval should
overlap in time with the occurrence of j in Z, and this job would end up being
matched to j. The rigorous argument gets a bit technical because of possible gaps in
the schedules.

Let H = {h | s < rh ≤ s′ ≤ xh} be the set of all jobs released during the execution
of j in A or exactly at CA

j , excluding preemption candidates. Since f(j) is undefined,
by condition (f2), all these jobs are completed in Z, and obviously they cannot be
completed before SZ

l . Also, l /∈ H . Thus H is feasible at CZ
l and also at s′ ≤ CZ

l .
Since A is an EDF schedule and j is flexible in A, all jobs h ∈ Ps −{j} have xh ≥

xj ≥ s′, so they are still pending at s′. Therefore Ps′ = Ps ∪H −{j} = P ∗
rl
∪H −{j}.

(Job j is not pending at s′ since it is already completed.)
We claim that Ps′ is feasible at s′. Suppose, towards contradiction, that it is not.

Let d be smallest time such that R = {h ∈ Ps′ | dh ≤ d} is not feasible. I.e., R is the
smallest infeasible initial segment of Ps′ ordered by ≺. Then TightRestart would
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execute urgent jobs from s′ until time d− p+1, as always ED job is started as urgent
and then the set of pending jobs cannot become feasible before or at time d−p. Since
X is idle at time SZ

j , this implies that d < CZ
j . Since all jobs h ∈ Ps′ with dh < dj

are in H , this implies that R ⊆ H , which is a contradiction with feasibility of H . We
conclude that Ps′ is feasible at s′, as claimed.

Since Ps′ is feasible at s′, Lemma 2.2(2) implies that A completes all jobs in Ps′ .
Furthermore, all jobs in Ps′ are scheduled between s′ and SZ

j , as TightRestart is

idle at SZ
j .

Ps’all u jobs from 

Z

A

at most u−1 jobs

j

M

jl

s s’

Fig. 4.2. Illustration to the proof of Lemma 4.3(2).

Let u = |Ps′ |. Next we claim that
(i) SZ

j − CZ
l < up, and

(ii) Z does not schedule any of the jobs in Ps′ after j.
If either of (i) or (ii) were violated, Ps′ ∪ {j} would be feasible at CZ

l , for we can
first schedule H , which is feasible at CZ

l , and then the remaining jobs from Ps′ : If
(i) is violated, we can complete all jobs in Ps′ by the time SZ

j , which is smaller than

the deadlines in P ∗
rl
−H , and start j at SZ

j . If (ii) is violated, let j′ be the job in Ps′

scheduled after j in Z. We know that SZ
j − CZ

l > SZ
j − s′ − p ≥ (u − 1)p, thus we

can complete all jobs in Ps′ by the time SZ
j and schedule j and j′ as in Z.

By the previous paragraph, if any of (i) or (ii) does not hold, then P ∗
rl
∪ {j} ⊆

Ps′∪{j} is feasible at rl+p ≤ CZ
l , and thus flexible at rl, contradicting the assumption

that l (which is a preemption candidate) did not cause preemption. We thus obtain
that (i) and (ii) are true, as claimed.

Summarizing, A completes the u jobs in Ps′ between s′ and SZ
j , and, by (ii),

these jobs are not executed after SZ
j in Z. Therefore, if j were not in the range of

M , the jobs in Ps′ would have to be matched to the jobs in Z between CZ
l and SZ

j ,
which is not possible, because there are at most u − 1 such jobs, by (i). We can thus
conclude that j is indeed in the range of M .

Charging scheme. Let j be a job started at time t = SZ
j in Z. We charge j to

jobs in A according to the following cases.
Case (I): j = M(k) for some k. Charge j to k. By Lemma 4.3(1), this case always

applies when A is not idle at t, so in the remaining cases A is idle at t.
Case (II): Otherwise, if j is free, then charge 1/2 of j to the occurrence of j in A and

1/2 of j to the occurrence of f(j) in A. Note that, since (I) does not apply,
Lemma 4.3(2) implies that f(j) is defined, and then Lemma 2.2 implies that
both j and f(j) are completed in A.

Case (III): Otherwise, A is idle at t, but TightRestart is running some job k at
t which is later preempted by another job h. Charge 1/2 of j to j and 1/2
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to h. By Lemma 2.2(2), j is completed in A. Job h is urgent and thus it is
completed as well.

Analysis. We prove that each job scheduled in A is charged at most 3/2. Each
job is charged at most 1 in Case (I), as M defines a matching.

We claim that each job receives at most one charge of 1/2. For the rest of the
proof, we will distinguish two types of charges of 1/2: self-charges, when j is charged
to itself, and non-self-charges, when j is charged to a different job.

Suppose first that k receives a self-charge. (Obviously, it can receive only one.)
Then A is idle at time SZ

k , for otherwise Case (I) would apply to k in Z. This implies
two things. First, k is not tight, so it cannot receive a non-self-charge in Case (III).
Second, k cannot be in the range of f(·), since each job f(j) is either not in Z or, if it
is, A is executing some job at time SZ

f(j). Therefore k cannot receive a non-self-charge

in Case (II).
Next, suppose that k does not receive a self-charge. Since f(·) is one-to-one, k

can receive at most one non-self-charge in Case (II). If k receives a non-self-charge
in Case (III) from a job j, then k is started in A while Z is executing j, so k can
receive only one such charge. Finally, if k receives a non-self-charge in Case (II)
then, by the definition of f(·), k is not a preemption candidate, so it cannot receive a
non-self-charge in Case (III).

We conclude that each job completed in A gets at most one charge of 1 and at
most one charge of 1/2, and thus is charged a total of at most 3/2. Each job in Z
generates a charge of 1. Thus, by summation over all jobs in Z, we have |Z| ≤ 3|A|/2,
completing the proof of the theorem.

We now show that the competitive ratio of our algorithm is in fact optimal.

Theorem 4.4. For scheduling equal-length jobs with restarts, no deterministic
algorithm is better than 3/2-competitive and no randomized algorithm is better than
6/5-competitive.

Proof. For p ≥ 2, consider four jobs given in the form j = (rj , dj): 1 = (0, 3p+1),
2 = (1, 3p), 3 = (p, 2p), 4 = (p + 1, 2p + 1). The instance consists of jobs 1, 2, 3 or
1, 2, 4.

1 0 3p+1

1 3p

2pp

p+1 2p+1

1 3 2

2 4 1

Z

Z’

2

3

4

Fig. 4.3. Jobs used in the lower bounds with restarts.

There exist schedules that schedule three jobs 1, 3, 2 or three jobs 2, 4, 1, in this
order. (See Fig. 4.3.) Therefore the optimal solution consists of three jobs.

In the deterministic case, release jobs 1 and 2. If the online algorithm starts job 2
at time 1, release job 3, otherwise release job 4. The online algorithm completes only
two jobs. As the optimal schedule has three jobs, the competitive ratio is no better
than 3/2.
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Our proof for randomized algorithms is based on Yao’s principle [24, 6]. We define
a probability distribution on our two instances, as follows: Always release jobs 1 and 2,
and then one randomly chosen job from 3 and 4, each with probability 1/2. If A is any
deterministic online algorithm, then the expected number of jobs completed by A is
at most 2.5, as on one of the instances it completes only 2 jobs. Using Yao’s principle,
we conclude that no randomized algorithm can have competitive ratio smaller than
3/2.5 = 6/5.

5. Final Comments. For equal processing times, closing the gap between our
upper bound of 5/3 and the lower bound of 4/3 is a challenging open problem. It
would also be interesting to close these gaps for barely random algorithms which—in
our view—are of their own interest (even in the case when we use only one fair random
bit).

Barely random algorithms with a single random bit intuitively seem to be some-
what similar to deterministic algorithms for two machines for the same problem. In
particular, one might expect that lower bounds will carry over to the problem with
two machines when each job is duplicated. However, subsequent to our work, indepen-
dently Ding and Zhang [10], and Goldwasser and Pedigo [16] designed 3/2-competitive
deterministic algorithms for two machines. Thus, somewhat surprisingly, the answers
for the two problems are different. Still, it remains a possibility that algorithms for
more machines will bring some insight into the randomized scheduling on a single
machine.

Beyond our simple lower bound of 6/5, nothing is known about the effect of
allowing both randomness and restarts. The best upper bound of 3/2 is achieved by
a deterministic algorithm. Can randomization help in the model with restarts?
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