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Abstract—In wireless sensor networks, some sensor nodes are put in sleep mode while other sensor nodes are in active mode for

sensing and communication tasks in order to reduce energy consumption and extend network lifetime. This approach is a special case

(k ¼ 2) of a randomized scheduling algorithm, in which k subsets of sensors work alternatively. In this paper, we first study the

randomized scheduling algorithm via both analysis and simulations in terms of network coverage intensity, detection delay, and

detection probability. We further study asymptotic coverage and other properties. Finally, we analyze a problem of maximizing network

lifetime under Quality of Service constraints such as bounded detection delay, detection probability, and network coverage intensity.

We prove that the optimal solution exists, and provide conditions of the existence of the optimal solutions.

Index Terms—Wireless sensor network, quality of service, network lifetime, coverage, optimization.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have a wide variety of
military and civil applications. We consider a WSN

consisting of a great number of sensor nodes. The sensor
nodes are powered by batteries with limited energy. Hostile
or hazardous environments where the sensor nodes are
deployed or the sheer number of the sensors prevents
replacement or recharge of the batteries. The number of
sensors in the WSN is abundant to provide sufficient sensing
coverage and network connectivity. Thus, it is possible that
redundant sensor nodes can be turned off or enter sleep
mode to save their battery power. A sensor node is called a
redundant node if its sensing range is fully covered by other
sensor nodes. Thus, the WSN remains functional after a
redundant node is turned off or enters the sleep mode.
When a sensor node is in the sleep mode or turned off, it
consumes only a tiny fraction of the energy consumed in
active mode. A turned-off or sleeping sensor node can be

waken up by a low power consuming timer at a later time or
the network component upon request from its neighboring
nodes.

Many research efforts have been devoted to sensor
scheduling algorithms that turn off redundant sensors for
energy saving [1], [2], [3], [4], [5], [7], [9], [16], [19]. Some of
them do not require location information and precise time
synchronization [1], [7], [9], [19]. Recently, the joint problem
of coverage and connectivity is considered [9], [15], [18],
[21], [22]. In those studies, sensor nodes are deployed either
in grids or randomly. There are many research efforts on
coverage-preserving scheduling schemes to extend network
lifetime for WSNs [1], [2], [3], [4], [5], [6], [7], [8]. Many such
research works are surveyed in [8].

Unlike previous work, this paper focuses on perfor-
mance modeling and mathematical properties of a random
coverage algorithm (also called k-set randomized schedul-
ing algorithm) for WSNs. The algorithm is designed as
follows [9]: Let S denote the set including all the sensor
nodes in a WSN. Each sensor node is randomly assigned to
one of k disjoint subsets (Sj; j ¼ 1; 2; . . . ; k), which work
alternatively. In other words, at any time, only one set of
sensor nodes are working, and the rest of sensor nodes
sleep. Network lifetime is the elapsed time during which
the network functions well, and the formal definition is
given in (21) in a later section. In case that there is an
intrusion such as an enemy tank invading a field covered
with sensor nodes, detection delay is the average delay in
terms of scheduling rounds to detect such an event, and
detection probability is the probability of detecting the
intrusion event. In addition, network coverage intensity is
the ratio of the time when a point in the field of the sensor
network is covered by at least one active sensor node to the
total time. We denote them as D, Pd, and Cn, respectively.

A related scheme is called pure randomized schedule, in
which each node wakes up 1=k of time. We provide a simple
example to illustrate that this pure randomized scheme is
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worse than the studied k-set randomized scheduling
scheme in terms of coverage as follows: Assume that we
have three sensors in a field and each, once working, will be
able to cover the whole field. Assume that each sensor
works 1=3 of a unit time. In the studied k-set method, k ¼ 3.
The probability that the field can be fully covered within a
unit time is equal to the probability that each set includes a
sensor, which is 3�2�1

3�3�3 ¼ 2
9 . With the pure randomized

method, the probability that the field can be fully covered
within a unit time is 0 since it equals to the probability that
three random needles in a unit length, each with length 1=3,
fully cover the unit length. This is a typical Buffon’s needle
problem and has a probability of 0. Of course, the pure
randomized algorithm is very simple and does not require
time synchronization. Nevertheless, the benefit of the
studied k-set randomized scheduling algorithm comes at a
very trivial cost since it requires only loose time synchro-
nization. In [9], the analysis on the impact of time
asynchrony is provided. In [23], the analysis on coverage
intensity of sensor networks where sensor nodes are
deployed either on two-dimensional plane or in three-
dimensional space and intrusion objects occupy either areas
in two-dimensional plane or volumes in three-dimensional
space is presented.

In this paper, we extend the study in [9]. The contribu-
tion can be summarized as follows: First, the paper
provides a rigorous analysis for the randomized scheduling
algorithm in terms of D, Pd, and Cn. The analysis is verified
by computer simulations. Second, this paper analyzes the
problem of maximizing network lifetime under Quality of
Service (QoS) constraints such as bounded detection delay,
detection probability, and network coverage intensity.
Many works, such as [1], [2], [3], [4], [5], [6], [7], [8], [9],
use only network sensing coverage as the QoS constraint. In
addition to the coverage intensity, detection delay and
detection probability are also very important measures. For
example, since only one set of sensors are turned on, there is
a chance that an intrusion event, in particular, a transient
intrusion event, may not be detected. In some sensor
networks, for example, actuator sensor networks, it is
important to take an action based on the detection of an
event. A too large detection delay may be disastrous. Thus,
we believe that the optimization problem on the network
lifetime with QoS constraints on coverage intensity, detec-
tion delay, and detection probability, is worth studying. We
prove that the optimal solution exists, and provide the
conditions of the existence of the optimal solutions. Third,
based on the properties of the performance metrics
discovered in the rigorous analysis, an efficient search
algorithm similar to binary search for obtaining the optimal
solution is discovered.

The rest of the paper is organized as follows: Since we
often compare and verify the analytical results with
computer simulations, we introduce our computer simula-
tion program and the setup in Section 2. In Section 3, we
study network coverage intensity and asymptotic coverage.
In Section 4, we study intrusion period. In Section 5, we
study detection probability and its properties, and in
Section 6, we study detection delay and its properties.
Section 7 analyzes the problem of maximizing network
lifetime under QoS constraints. The duration that the
simulations run affects the results. We explain the effects

of simulation duration on simulation results in Section 8.
Finally, we conclude the paper in Section 9.

2 SIMULATION PROGRAM AND PARAMETER

We use computer simulations to verify the analytical model
throughout the paper. This section presents the computer
simulation program and the default parameters used in the
paper. These parameters are applied only when simulations
are used unless stated otherwise. In other words, these
parameters may not be applied to analytical/mathematical
models/derivations/theorems/lemmas.

We developed our own simulation program in C++. The
program is an implementation of discrete event simulation.
The locations of sensors and intrusions derived from uni-
form distributions. There are three types of events, intrusion
events, detection events, and intrusion departure events. An
intrusion event is generated randomly. A detection event
occurs when the associated intrusion event is detected by at
least one sensor node. The departure event is generated
whenever the lifetime of the intrusion event expires.

By default, the sensing field is a ¼ 10;000, the sensing
area of a sensor is r ¼ 30, the lifetime of an intrusion event
is 2, the number of sensors deployed is n ¼ 10;000 and all
the sensors are divided into four disjoint sets of equal size.
Note that the case that all subsets are of the same size can be
regarded as an “average” case since each sensor node is
randomly assigned to one of the four disjoint subsets as
required by the random scheduling algorithm. Experiments
indicate that this average case needs much less number of
repeated simulations for a parameter setting to obtain a
stable average of a performance metric. The above para-
meters are used in the simulations and the analytical
analysis unless stated otherwise. As indicated in this study
and [9], these parameters provide sufficient redundancy,
which is required for the scheduling algorithm to maintain
connectivity and network coverage.

3 NETWORK COVERAGE INTENSITY

In this section, we provide a derivation for network
coverage intensity, and obtain the required number of
sensors or the required number of subsets to achieve certain
degree of network coverage intensity, which can be useful
for sensor network deployments. The derivation is a
simplified version of that presented in [9]. Furthermore,
we derive and study asymptotic coverage, which is useful
for better understanding the network coverage intensity.

3.1 Network Coverage Intensity

Let r, a, and k denote the size of sensing area of each sensor,

the size of the whole sensing field, and the number of

disjointed subsets, respectively. Then, r=a is the probability

that each sensor covers a given point. Since any sensor is

scheduled in one round among continuous k rounds, r=ðakÞ
is the probability that the sensor is active and covers a given

point in any round. Therefore, for any given point and any
given time, the probability that the point is not covered by

any active sensor is ½1� r=ðakÞ�n. Then, we have

Cn ¼ 1� ½1� r=ðakÞ�n: ð1Þ
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The above derivation does not consider edge effect. Since
the entire sensing field must have boundaries, a coverage
area of a sensor node may not be completely inside the
entire sensing field, which we refer to as the edge effect.
Fig. 1 shows that the error rate between the simulation
results and the analytical results is very small. Error rate is
defined as ðCa

n � Cs
nÞ=Cs

n where Ca
n and Cs

n stands for the
coverage intensity obtained from (1) and simulations,
respectively. The parameters used in the simulation are
a ¼ 10;000, r ¼ 30, and k ¼ 4.

From (1), we also know that the network coverage
intensity is the probability that a given point at a given time
is covered by at least one active sensor. Readers are directed
to [9] for more discussion on the network coverage intensity.

3.2 Sensor Network Deployment

We now study the required number of sensors or the
required number of subsets to achieve certain degree of
network coverage intensity. We will answer the following
two questions:

. Question A: Given a network coverage intensity and
r=ðakÞ, what is the minimum number of sensors to
achieve the network coverage intensity?

. Question B: Given a network coverage intensity and
r=a, what is the maximum k value to achieve the
network coverage intensity?

From (1), we can easily have the following results, which
were also obtained in [9]:

. Given a required network coverage intensity Cn�req,
the minimum number of sensors to achieve Cn�req is
at least n � lnð1� Cn�reqÞ= lnð1� r=ðakÞÞ. This result
answers Question A in the above.

. Given a required network coverage intensity Cn�req,
the maximum number of subsets to achieve Cn�req is

k � r

að1� ð1� Cn�reqÞ1=nÞ
:

This result answers Question B in the above.

Fig. 2a shows the required minimum number of sensor
nodes for a given coverage intensity versus r=ðakÞ. As
illustrated in the figure, the required minimum number of
sensor nodes decreases as the value of r=ðakÞ increases. A
larger coverage intensity needs more sensor nodes. The
figure answers Question A in the above.

Fig. 2b shows the required maximum k value for a given
coverage intensity versus r=a, where a ¼ 25;000. The figure
answers Question B in the above. As illustrated in the figure,
the required k value increases as the value of r=a increases. A
larger coverage intensity needs a smaller k value.

3.3 Asymptotic Coverage and Other Properties

From (1), we can easily get the following lemma:

Lemma 1. Network coverage intensity is an increasing function
of n and limn!1 Cn ¼ 1 holds; Network coverage intensity is
a decreasing function of k, and limk!1 Cn ¼ 0 holds.

Lemma 1 implies that 1) given a fixed k, any network
coverage intensity can be achieved by increasing the
number of sensors deployed; 2) given a fixed number of
sensors deployed, increasing k decreases network coverage
intensity. These are consistent with our intuition.

Assuming that k and n are proportional such that
n ¼ km, where m is the number of sensors per subset/shift
and is fixed, we have

lim
k¼n=m
n!1

Cn ¼ 1� lim
n!1

1� rm
an

� �n
¼ 1� e�rma ¼4 CðmÞ; ð2Þ

where CðmÞ is a function of the number of sensors per
shift (m), which is an interesting feature of network
coverage intensity.

Lemma 2.

1. CðmÞ ¼4 limk¼n=m
n!1

Cn ¼ 1� e�rma ;

2. limm!1 CðmÞ ¼ 1; and
3. CðmÞ monotonically increases with r=a.

4 INTRUSION PERIOD

In this section, we derive and evaluate, a nontrivial metric,
intrusion period, which is important in deriving detection
probability and detection delay in later sections.

Let L denote a duration when an intrusion event lasts.
Let T denote the length of a scheduling round/cycle.
Assume that an intrusion event happens randomly.

Let us study the number of cycles in which an intrusion
overlaps. Let Z denote the average number of overlapping
cycles of the intrusion period. Let Y denote a random
variable representing the beginning of the intrusion event,
and it is in the range of ½t0; t0 þ T Þ. Let us define s ¼
ðLT þ 1� dLTeÞ and Q ¼ dLTe.
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Fig. 1. Error of coverage intensity between analytical and simulation
results.

Fig. 2. The required minimum n and maximum k. (a) Required minimum
n versus r=ðakÞ. (b) Required maximum k versus r=a.
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Here, s is the remainder of the intrusion period in terms

of the number of cycles when L 6¼ iT , where ði ¼ 1; 2; 3; . . .Þ.
In other words, when L 6¼ iT , we have s ¼ ðLT þ 1� dLTeÞ ¼
ðLT � bLTcÞ; however, when L ¼ iT , where ði ¼ 1; 2; 3; . . .Þ, s ¼
ðLT þ 1� dLTeÞ 6¼ ðLT � bLTcÞ because ðLT þ 1� dLTeÞjL¼iT ¼ iT

T þ
1� diTT e ¼ iþ 1� i ¼ 1 a n d ðLT � bLTcÞjL¼iT ¼ iT

T � biTT c ¼
i �i ¼ 0.

The interval ½t0; t0 þ T Þ is cut into two regions/intervals, as
shown in Fig. 3, ½t0; t0 þ ð1� sÞT � and ðt0 þ ð1� sÞT; t0 þ T Þ.
If Y 2 ½t0; t0 þ ð1� sÞT �, intrusion duration L may overlap
dLTe cycles. If Y 2 ðt0 þ ð1� sÞT; t0 þ T Þ, intrusion duration L
may overlap dLTe þ 1 cycles.

Since the intrusion duration L may overlap either dLTe or

dLTe þ 1 cycles. Let us define a random variable S 2 f0; 1g
such that if S ¼ 0, L overlaps dLTe cycles, and if S ¼ 1, L

overlaps dLTe þ 1 cycles. We have

PrðS ¼ 0Þ ¼ PrðY 2 ½t0; t0 þ ð1� sÞT �Þ ¼ 1� s; ð3Þ

PrðS ¼ 1Þ ¼ PrðY 2 ðt0 þ ð1� sÞT; t0 þ T ÞÞ ¼ s: ð4Þ

The reason that we use ðLT þ 1� dLTeÞ instead of ðLT � bLTcÞ
is that if we use s ¼ ðLT � bLTcÞ, (3) and (4) will not be correct

in some special cases when L ¼ iT , where ði ¼ 1; 2; 3; . . .Þ,
i.e., PrðS ¼ 1Þ ¼ ðLT � bLTcÞjL¼mT ¼ 0 will be incorrect. For

example, assume that L ¼ 3:0T in Fig. 3. The intrusion

period is of either three or four cycles, but the probability of

three cycles is zero since it happens only in a very special

case when Y ¼ t0 so that PrðS ¼ 0Þ ¼ 0 holds. The prob-

ability of four cycles is 1 so that PrðS ¼ 1Þ ¼ 1 6¼ 0 holds.

This proved that using s ¼ ðLT � bLTcÞ causes incorrectness.
The average number of overlapping cycles of the

intrusion period, Z, can be calculated as:

Z ¼ L

T

� �
PrðS ¼ 0Þ þ L

T

� �
þ 1

� �
PrðS ¼ 1Þ ¼ L

T
þ 1: ð5Þ

For example, assume that L ¼ 2:8T , shown in Fig. 3.

Since d2:8TT e ¼ 3, the intrusion period overlaps either three

cycles (S ¼ 0) or four cycles (S ¼ 1). The probability of three

cycles is PrðS ¼ 0Þ ¼ ð1� sÞ ¼ 0:2, where s ¼ 2:8T
T þ 1 �

d2:8TT e ¼ 2:8þ 1� 3 ¼ 0:8; the probability of four cycles is

PrðS ¼ 1Þ ¼ s ¼ 0:8. Z ¼ ð2:8TT þ 1ÞT ¼ 3:8T .
Fig. 4 shows both analytical results and simulation results

for PrðS ¼ 0Þ and PrðS ¼ 1Þ. As illustrated in the figure, the
analytical results match the simulation results exactly. Both

PrðS ¼ 0Þ and PrðS ¼ 1Þ are periodic functions for the event
lengthL, and this can be easily proved using (3) and (4). Fig. 4
shows Z over L when T ¼ 1, and as illustrated in the figure,
1) the simulation results match the analytical results exactly,
and 2) Z is an increasing function of L.

5 DETECTION PROBABILITY

5.1 Detection Probability

Let X denote a random variable representing the number of
sensor nodes covering a point where the intrusion event
happens. Let IðeÞ denote the indication function which
returns 1 if the condition e is true, and returns 0 otherwise.

It is clear that Pd depends on L. If L is very large (i.e.,
L � ðk� 1ÞT ), we have Pd ¼ Cnjk¼1 ¼ 1� ½1� r=a�n.

Let Bh;j denote the event that the intrusion event cannot
be detected in all of h rounds if X ¼ jðj > 0; 1 � h � kÞ and
the intrusion period does not finish. We have

PrðBh;jÞ ¼
Yh
i¼1

1� 1

kþ 1� i

� �j
¼ k� h

k

� �j
: ð6Þ

Let Aj � PrðUD j X ¼ jÞ denote the probability of being
unable to detect the intrusion event when X ¼ j. We have

A0 ¼ 1; ð7Þ

Aj ¼ 0; if L � ðk� 1ÞT and n � j > 0; ð8Þ

Aj ¼ PrðS ¼ 0ÞPr B L
Td e;j

� �
þ PrðS ¼ 1Þ

� Pr B L
Td eþ1;j

� �
; fL < ðk� 1ÞTg \ fn � j > 0g;

ð9Þ

Pd ¼ 1�
Xn
j¼0

Aj Pr X ¼ jð Þ ¼ 1� 1� r
a

� �n

� I½L < ðk� 1ÞT �
Xn
j¼1

Aj

n

j

� �
r

a

� �j
1� r

a

� �n�j
:

ð10Þ

Plugging (7)-(9) and (1) into (10), we can obtain (11).

Pd ¼ 1� 1� r
a

� �n
�I½L < ðk� 1ÞT �

�
Xn
j¼1

Gj

n

j

� �
r

a

� �j
1� r

a

� �n�j
;

ð11Þ
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Fig. 3. Intrusion period.
Fig. 4. PrðS ¼ 0Þ, PrðS ¼ 1Þ, and Z. (a) Probabilities over L and (b) Z
over L.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 10,2010 at 22:08:41 EST from IEEE Xplore.  Restrictions apply. 



where Gj ¼ ð1� sÞðk�d
L
Te
k Þ

j þ sðk�d
L
Te�1

k Þj. We give proof of the

following lemma in Appendix A.

Lemma 3. Pd can be simplified as follows:

Pd ¼

1� 1� r
a

� 	n
; L � ðk� 1ÞT;

1� 1� sð Þ 1�
L
Td e
k

r
a

� �n
�s 1�

L
Td eþ1

k
r
a

� �n
; L < ðk� 1ÞT:

8>>>><
>>>>:

ð12Þ

5.2 Evaluation of Detection Probability

Fig. 5a shows the detection probability (Pd) versus the

number of sensor nodes (n), where T ¼ 1 and L ¼ 2. As

illustrated in the figure, the detection probability increases

as n increases. A smaller k value causes a larger Pd.

Furthermore, in both cases, Pd is very large in the figure. As

illustrated in the figure, when n goes to infinity, Pd goes to

1, and this can be proved in Lemma 4 in the next section.

Fig. 5a also shows that analytical results match the

simulation results exactly.
Fig. 5b shows Pd versus k, where T ¼ 1 and L ¼ 4. As

illustrated in the figure, Pd decreases as n increases. As
illustrated in the figure, when k goes to infinity, Pd goes to 0,
and this can be proved in Lemma 4 in the next section. A
smaller n value causes a smaller Pd. Fig. 5b also shows that
analytical results match the simulation results exactly.

Fig. 5c shows Pd versus L, where T ¼ 1 and n ¼ 1;500. As
illustrated in the figure, Pd increases as the intrusion event
length increases. A smaller k value causes a larger Pd.
Furthermore, in both cases, Pd is very large in the figure. As
illustrated in Fig. 5c, when L is large enough, Pd is close to
1. This is consistent with our intuition, and can be verified
since when L > ðk� 1ÞT , Pd ¼ 1� ð1� r

aÞ
n will be near to 1

for a large n value. Fig. 5c also shows that analytical results
match the simulation results exactly.

5.3 Properties of Pd
Lemma 4.

1. Pd is an increasing function of n;
2. Pd is a decreasing function of k;
3. Pd is an increasing function of L;
4. limn!1 Pd ¼ 1; and
5. limk!1 Pd ¼ 0.

Lemma 5. Let m be a fixed positive integer. Then, we have

lim
n¼km;k!1

Pd ¼ 1� ð1� sÞe�dLTeram � se�ðdLTeþ1Þram

for L < ðk� 1ÞT .

Let Wð�Þ denote limn¼km;k!1 Pd ¼ 1� ð1� sÞe�dLTeram �
se�ðd

L
Teþ1Þram. Fig. 6 shows Wð�Þ over L, r=a, and m. As

illustrated in the figure, Wð�Þ is an increasing function of
L, r=a, and m. When L, r=a, or m is large enough, W ð�Þ is
very close to 1, and becomes 1 when either L or r=a goes
to infinity.

6 DETECTION DELAY AND ITS PROPERTIES

6.1 Detection Delay

It is clear that D also depends on the L value. We have
either D ¼ 1 or D <1. If D > L or D � kT , we have
D ¼ 1. Since considering detection delay makes no sense if
D ¼ 1, we only consider a finite value of detection delay
for the rest of the paper, i.e., D <1.
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Fig. 5. Detection probability (Pd). (a) Pd versus n, (b) Pd versus k, and (c) Pd versus L.

Fig. 6. Asymptotic detection probability. (a) Wð�Þ versus L, (b) W ð�Þ
versus r=a, and (c) Wð�Þ versus m.
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Let EðD j X ¼ jÞ denote the average detection delay
under the condition of ðX ¼ jÞ. Let Ai;j denote the event
that the intrusion event is detected in the ith round if X ¼
jðj > 0; 1 � i � kÞ and the intrusion still exists in the
ith round. Note that the first round is the 1st round instead
of 0th round. We have

PrðAi;jÞ ¼ 1� 1� 1

kþ 1� i

� �j" #Yi�1

h¼1

1� 1

kþ 1� h

� �j

¼ k� iþ 1

k

� �j
� k� i

k

� �j
:

ð13Þ

Let Ti denote the average time that the intrusion event is
detected in the ith round. Let ðTi j S ¼ 0Þ and ðTi j S ¼ 1Þ
denote Ti under conditions of S ¼ 0 and S ¼ 1, respectively.

Fig. 7 shows how to derive the mean values of ðTijS ¼ 0Þ
and ðTijS ¼ 1Þ, respectively. We have

EðTi j S ¼ 0Þ ¼ 0; i ¼ 1;
i� 1� 1

2 ð1� sÞ

 �

T; L
T

� 

� i > 1;

�
ð14Þ

EðTi j S ¼ 1Þ ¼ 0; i ¼ 1;
i� 1

2 ð4� sÞ

 �

T; L
T

� 

þ 1 � i > 1:

�
ð15Þ

If X ¼ 0, the intrusion event cannot be detected so that
D ¼ 1, which is not considered as stated before. In the

following derivations, a common technique is to use the

conditional property, i.e., PrðY Þ ¼
P
PrðY j XiÞPrðXiÞ,

where
P
PrðXiÞ ¼ 1 and Xi is a division (without overlap)

of the total set. Let �1 ¼ minðdLTe; kÞ and �2 ¼ minðdLTe þ
1; kÞ, we have

EðD j X ¼ j ^D 6¼ 1Þ ¼ PrðS ¼ 0Þ
X�1

i¼1

PrðAi;jÞðTi j S ¼ 0ÞP�1

i¼1 PrðAi;jÞ
þ PrðS ¼ 1Þ

X�2

i¼1

PrðAi;jÞðTijS ¼ 1ÞP�2

i¼1 PrðAi;jÞ
;

ð16Þ

EðD j D 6¼ 1Þ ¼
Xn
j¼1

ðD j X ¼ j ^D 6¼ 1ÞPrðX ¼ jÞ

¼
Xn
j¼1

ðD j X ¼ j ^D 6¼ 1Þ n

j

� �
r

a

� �j
1� r

a

� �n�j
:

ð17Þ

Plugging (13)-(16) into (17), we have (18)

EðD j D 6¼ 1Þ ¼
Xn
j¼1

Mj
n

j

� �
r

a

� �j
1� r

a

� �n�j
; ð18Þ

where

Mj ¼
ð1� sÞ

P�1

i¼2


�
k�iþ1
k

	j � �k�ik 	j�
i� 3
2þ s

2

�
P�1

i¼1


�
k�iþ1
k

	j � �k�ik 	j�
þ
s
P�2

i¼2


�
k�iþ1
k

	j � �k�ik 	j�
i� 2þ s
2

�
P�2

i¼1


�
k�iþ1
k

	j � �k�ik 	j� :

ð19Þ

For the presentation purpose, in the rest of the paper, we

simply use D to mean EðD j D 6¼ 1Þ.

6.2 Evaluation of Detection Delay

Fig. 8a shows D versus n, where T ¼ 1 and L ¼ 2. As

illustrated in the figure, D decreases as n increases. A

smaller k value results in a smaller D. As illustrated in the

figure, when n goes to infinity, D goes to 0, and this is

consistent with our intuition. This figure also shows that

analytical results almost match the simulation results, but

not exactly. This is mainly because in the simulations, those

sensors in the boundary of the field have the edge effect,

which is not considered in the analytical model.

512 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 4, APRIL 2010

Fig. 7. Detection delay.

Fig. 8. Detection delay (D) (in units of rounds/cycles). (a) D versus n, (b) D versus L, and (c) D versus k.
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Fig. 8b shows D versus L, where T ¼ 1 and n ¼ 1;500. As
illustrated in the figure,D increases as L increases. A smaller
k value results in a smaller D. Fig. 8b also shows that the
analytical results roughly match the simulation results, but
not exactly. This is mainly because in the simulations, those
sensors in the boundary of the field have the edge effect,
which is not considered in the analytical model. The figure
also indicates that as L goes to infinity, D goes to a positive
fixed value, and this can be proved by Lemma 6 in the next
section. It appears that the analytical results and simulation
results of D with a small k (e.g., k ¼ 2) have a better match
than those with a large k (e.g., k ¼ 4).

Fig. 8c shows D versus k, where T ¼ 1 and L ¼ 4. As
illustrated in the figure, D increases as k increases. As k
increases, the number of active sensor nodes per round/
cycle is smaller so that it is more likely that the intrusion is
not detected and, therefore, D increases. This figure also
shows that the analytical results roughly match the simula-
tion results, but not exactly. The figure also indicates that as k
goes to infinity, D goes to a positive fixed value, and this is
proved inside the proof to Lemma 7 in Appendix A.

6.3 Properties of D

We give proofs of lemma 7 in Appendix A.

Lemma 6. If L > ðk� 1ÞT , then D is a function independent of
L and T .

Lemma 7. Let m be a fixed positive integer. Then, we have

lim
n¼km;k!1

D ¼
L
T

��
L
T


2 �
�
L
T



þ L

T

	
2
�
L
T


��
L
T



þ 1
	 :

Fig. 9 show that limn¼km;k!1D is an increasing
function of L.

Lemma 8. D is a decreasing function of nwhen n is large enough.

Lemma 9. limn!1D ¼ 0.

Lemma 10. D is an increasing function of k.

7 MAXIMIZATION UNDER QoS

We studied the required number of sensors or the required
number of subsets to achieve certain degree of network
coverage intensity in Section 3, but detection delay and
probability are not guaranteed. In this section, we study an
optimization problem, i.e., to maximize network lifetime
under Quality of Service constraints such as bounded
detection delay, detection probability, and network cover-
age intensity.

Let TSlife denote the average lifetime of a typical sensor.

We provide the following definition (denoted as TNlife) for

the network lifetime as follows:

TNlife ¼ kTSlife: ð20Þ

Note that the above definition assumes that the overhead

of context-switches of the sleeping mode and the waking

mode is omitted.

Optimization Problem 1. To maximize TNlife under the

following conditions:

1. D � QoSDD,
2. Pd � QoSDP ,
3. Cn � QoSCn , and
4. n ¼ c,

where QoSDD, QoSDP , and QoSCn are pre-defined QoS

constraints, and c is a constant value.

Since we have TNlife ¼ kTSlife, to maximize TNlife is to

search the maximum k value to satisfy the QoS constraints.

When k is very large, D must be large. Thus, a very large

k value is not the best solution. In other words, there is an

upper bound on k values with a relative small D. Since

Cn � QoSCn > 0 can be rewritten

1 � k � r

að1� ð1�QoSCnÞ
1=nÞ

;

the optimal problem can be rewritten as follows:

Optimization Problem 2. To find the maximum k value under

the following conditions:

1. D � QoSDD,
2. Pd � QoSDP ,
3. 1 � k � r

að1�ð1�QoSCn Þ
1=nÞ
; and

4. n ¼ c,
where QoSDD, QoSDP , and QoSCn are pre-defined QoS

constraints, and c is a constant value.

Theorem 1. The above optimal problem has an optimal solution, if

QoSDD <
ðQ� 1þ sÞðQ2 � 1þ sÞ

2QðQþ 1Þ 1� 1� r
a

� �ch i
;

r

a
�
1� ð1�QoSCnÞ

1=c	 � 1; 1� 1� r
a

� �c
� QoSDP > 0;

and 1 > QoSCn > 0, where c is a constant. In other words, The

following set

Sa ¼
(
kjD � QoSDD <

ðQ� 1þ sÞðQ2 � 1þ sÞ
2QðQþ 1Þ

1� 1� r
a

� �nh i
; Pd � 1� 1� r

a

� �c
� QoSDP > 0;

1 � k � r

að1� ð1�QoSCnÞ
1=nÞ

; 1 > QoSCn > 0; n ¼ c
)

is nonempty, and is bounded.

Proof. Based on Lemma 10, D is an increasing function of k.
Based on proof of Lemma 7, D tends to a function
independent of k when k is large enough and
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Fig. 9. limn¼km;k!1D versus L.
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lim
k!1

D ¼ ðQ� 1þ sÞðQ2 � 1þ sÞ
2QðQþ 1Þ 1� 1� r

a

� �nh i
:

According to Lemma 10, D is an increasing function of k.

The maximum possible value of D is limk!1D. Assume

QoSDD is valid, then QoSDD < limk!1D. Therefore,

(
k j D � QoSDD <

ðQ� 1þ sÞðQ2 � 1þ sÞ
2QðQþ 1Þ

1� 1� r
a

� �nh i
; n ¼ c

)

is nonempty, and is bounded.
Based on Lemma 4, Pd is a decreasing function of k

and limk!1 Pd ¼ 0. Therefore, fk j Pd � 1� ð1� r
aÞ
c �

QoSDP > 0; n ¼ cg ¼ f1; 2; . . . ; Y g is bounded. It is not
empty since Pdjk¼1 ¼ 1� ð1� r

aÞ
c implies Y � 1.

(
k j 1 � k � r

að1� ð1�QoSCnÞ
1=nÞ

; n ¼ c
)

¼ f1; 2; . . . ; Zg; Z ¼ r

að1� ð1�QoSCnÞ
1=cÞ

$ %

is nonempty, and is bounded. Therefore, the following set

Sa ¼
(
k j D � QoSDD

<
ðQ� 1þ sÞðQ2 � 1þ sÞ

2QðQþ 1Þ 1� 1� r
a

� �nh i
; n ¼ c

)

\ k j Pd � 1� 1� r
a

� �c
� QoSDP > 0; n ¼ c

n o

\
(
k j 1 � k � r

að1� ð1�QoSCnÞ
1=nÞ

;

1 > QoSCn > 0; n ¼ c
)

is bounded. It is also not empty since 1 2 Sa. Since values

of k are positive integers and the set Sa is bounded so

that the set Sa is closed too. tu
Since Cn, D, and Pd are monotonic functions of k as

shown in [9], Lemma 4, and Lemma 10, respectively, k can

be found by using a procedure similar to binary search.

From Theorem 1, we know that

k j 1 � k � r

að1� ð1�QoSCnÞ
1=nÞ

( )
;

then the maximum number of steps to find the best k is

O log2
r

að1� ð1�QoSCnÞ
1=nÞ

 !
;

if such k exists for the set of QoS constraints. The algorithm

is shown in Algorithm 1. We refer the best k to as the

optimal k, denote it as kopt.

Algorithm 1. Optimal k searching algorithm

Another way of looking up the definition of network
lifetime in (20) is that the network lifetime is defined as (20)
together with the first three conditions defined in Optimiza-
tion Problem 1. In other words, a network is defined alive if
the first three conditions defined in Optimization Problem 1
can be satisfied, where QoS parameters are specified by
users. Formally, it can be redefined as (21). It also can be
defined by reducing one or two conditions in (21).

TNlife
¼ kTSlife ; where

fD � QoSDDg \ fPd � QoSDPg \ fCn � QoSCng:
ð21Þ

Fig. 10a shows the maximum k value versus QoSCn (i.e.,
QoS constraints of Cn,) with fixed QoS constraints on Pd
and D, where n ¼ 10;000, a ¼ 10;000, r ¼ 30, T ¼ 1, L ¼ 1,
QoSDD ¼ 0:15, and QoSDP ¼ 0:6. As illustrated in the
figure, the maximum k value remains flat when QoSCn is
small, but when QoSCn is large enough, it decreases sharply
as QoSCn increases.
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Figs. 10b, 10c, 10d, and 10e compare Cn, D, Pd, and TNlife
with the maximum kvalues obtained from Fig. 10a with those
not at the maximum k values under the same parameters as
Fig. 10a. Although Fig. 10c shows that all five cases have
higher Pd than the required QoSDP ð¼ 0:6Þ, Fig. 10b shows
that when QoSCn is large, the cases of kmax þ 1 and kmax þ 5
have smallerCn than the requiredQoSCn , and Fig. 10d shows
that when QoSCn is small, the cases of kmax þ 1 and kmax þ 5
have larger D than the required QoSDDð¼ 0:15Þ. In other
words, the cases of kmax þ 1 and kmax þ 5 do not satisfy all
QoS requirements. Furthermore, Fig. 10e shows that the cases
of kmax � 1 and kmax � 5 have smaller TNlife than the case of
kmax. In other words, the optimal one is the best among the
five cases.

Fig. 11a shows the maximum k value versus QoSDP (i.e.,
QoS constraints of Pd,) with fixed QoS constraints of
network coverage intensity and detection delay, where
n ¼ 10;000, a ¼ 10;000, r ¼ 30, T ¼ 1, L ¼ 1, QoSDD ¼ 0:15,
and QoSCn ¼ 0:6. As illustrated in the figure, the maximum
k value remains flat when QoSDP is small, but when QoSDP
is large enough, it decreases sharply as QoSDP increases.

Figs. 11b, 11c, 11d, and 11e compare Cn, D, Pd, and TNlife
with the maximum k values obtained from Fig. 11a with
those not at the maximum k values under the same
parameters as Fig. 11a. Fig. 11b shows that when QoSDP
is small, the cases of kmax þ 1 and kmax þ 5 have smaller Cn
than the required QoSCnð¼ 0:6Þ. Fig. 11c shows that when
QoSDP is large, the cases of kmax þ 1 and kmax þ 5 have
smaller Pd than the required QoSDP , and Fig. 11d shows
that when QoSDP is small, the cases of kmax þ 1 and kmax þ 5
have larger D than the required QoSDDð¼ 0:15Þ. In other

words, the cases of kmax þ 1 and kmax þ 5 do not satisfy all
QoS requirements. Furthermore, Fig. 11e shows that the
cases of kmax � 1 and kmax � 5 have smaller TNlife than the
case of kmax. In other words, the optimal one is the best
among five cases.

Fig. 12a shows the maximum k value versus QoSDD (i.e.,
QoS constraints of D) with fixed QoS constraints on Cn and
D, where n ¼ 10;000, a ¼ 10;000, r ¼ 30, T ¼ 1, L ¼ 1,
QoSCn ¼ 0:6, and QoSDP ¼ 0:6. As illustrated in the figure,
the maximum k increases when QoSDD is small, and it
remains flat when QoSDD is large.

Figs. 12b, 12c, 12d, and 12e compares Cn,D, Pd, and TNlife
with the maximum k values obtained from Fig. 12a with
those not at the maximum k values under the same
parameters as Fig. 12a. Although Fig. 12c shows that all five
cases have higher detection probabilities than the required
QoSDP ð¼ 0:6Þ, Fig. 12b shows that when QoSDD is large, the
cases of kmax þ 1 and kmax þ 5 have smaller Cn than the
requiredQoSCnð¼ 0:6Þ, and Fig. 12d shows that whenQoSDD
is small, the cases of kmax þ 1 and kmax þ 5 have largerD than
the required QoSDDð¼ 0:15Þ. In other words, the cases of
kmax þ 1 and kmax þ 5 do not satisfy all QoS requirements.
Furthermore, Fig. 12e shows that the cases of kmax � 1 and
kmax � 5 have smaller TNlife than the case of kmax. In other
words, the optimal one is the best among the five cases.

In Fig. 13, all three QoS parameters are fixed, whereas in
Figs. 10a, 11a, and 12a, only two QoS parameters are fixed.
Fig. 13 shows QoS versus k, where n ¼ 10;000, a ¼ 10;000,
r ¼ 30, L ¼ 1, and T ¼ 1. The optimal k is 32 when QoS
requirements are QoSDP ¼ 0:6, QoSCn ¼ 0:6, and QoSDD ¼
0:15. Fig. 13a shows that if k is larger than 32, Cn cannot be
satisfied, i.e., being smaller than 0.6. Fig. 13b shows that if k is
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Fig. 11. Comparisons for QoSPD. (a) Maximum k versus QoSPD, (b) Cn versus QoSPD, (c) Pd versus QoSPD, (d) D versus QoSPD, and (e) lifetime
versus QoSPD.

Fig. 10. Comparisons for QoSCn . (a) Maximum k versus QoSCn , (b) Cn versus QoSCn , (c) Pd versus QoSCn , (d) D versus QoSCn , and (e) lifetime
versus QoSCn .
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larger than 34 (> 32), D cannot be satisfied, i.e., being larger
than 0.15. Fig. 13c shows that if k is larger than 65 (>32), Pd
cannot be satisfied, i.e., being smaller than 0.6. In other words,
all integers in ½1; 32� satisfy QoS requirement for Cn via
Fig. 13a; all integers in ½1; 34� satisfy QoS requirement forDvia
Fig. 13b; all integers in ½1; 65� satisfy QoS requirement for Pd
via Fig. 13c; and ½1; 32� \ ½1; 34�\½1; 65� ¼ ½1; 32� is the set
satisfying all three QoS requirements. Clearly k ¼ 32 is the
maximum k value among all integers in ½1; 32�, and is the
optimal solution. Although Fig. 13d shows that a largerkhas a
larger TNlife, for integers larger than 32, at least one QoS
constraint cannot be guaranteed.

8 EFFECTS OF SIMULATION DURATION

It is important to determine when we should halt a
simulation and calculate the defined performance metrics.
The simulation duration (or length) is the number of
intrusion detection rounds. We vary the simulation dura-
tion in Fig. 14a. For each simulation, we run the simulation
for 20 times. Fig. 14a shows that the standard deviation and
the coverage intensity obtained from 20 simulations at
different simulation duration, where k ¼ 4, a ¼ 10;000, and
r ¼ 30. When the simulation duration is small (e.g., 101), the
standard deviation is large as shown in the figure. When the
simulation duration is large enough (e.g., 106), regardless of
n, Cn from simulation is almost identical to the one from
analytical model as shown in Fig. 14a and the standard
deviation of the simulation result is so small that it cannot
be shown in the figure. Throughout the paper, our
simulation duration is chosen no less than 106 and we do
not plot the standard deviation in our figures.

Fig. 14b compares Cn obtained from both simulations
and analytical model with different n and r. In this figure,
k ¼ 4 and a ¼ 10;000. Both simulation and analytical results

match well even regardless of n and r. The figure also
shows that as r increases, Cn increases.

9 CONCLUSION

In this paper, we evaluate several issues for a randomized
scheduling algorithm in sensor networks through both
analysis and simulation. We study network coverage
intensity, asymptotic coverage intensity, detection probabil-
ity, and detection delay. We analyze the problem of
maximizing network lifetime under QoS constraints such
as the bounded detection delay, detection probability, and
coverage intensity. We study properties and asymptotic
properties, disclose that the optimal solution exists, and
present the conditions of the existence of the optimal
solutions. Our results can provide people with better
understanding of the network design and parameter selec-
tion. This work also lays a foundation for our future work on
sensor network scheduling algorithms. Evidently, we have
extended partially this work and investigated the properties
of randomized scheduling algorithms in sensor networks
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Fig. 13. Optimality. (a) Cn versus k, (b) D versus k, (c) Pd versus k, and (d) lifetime versus k.

Fig. 14. Effects of simulation duration and sensing area. (a) Effect of
simulation duration on simulation results and (b) Cn versus r.

Fig. 12. Optimal performance over QoSDD. (a) Maximum k versus QoSDD, (b) Cn versus QoSDD, (c) Pd versus QoSDD, (d) D versus QoSDD, and
(e) lifetime versus QoSDD.
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where sensor nodes are deployed either on two-dimensional
plane or in three-dimensional space and intrusion objects
occupy either areas in a two-dimensional plane or volumes
in three-dimensional space, respectively [23].

APPENDIX A

Proofs of Lemmas 1-5 are omitted due to limited space.

PROOFS OF LEMMAS 7-10

Proof of Lemma 7. We first prove the followings: 1) D
tends to a function independent of k when k is large
enough; 2) we have

lim
k!1

D ¼
L
T

��
L
T


2 �
�
L
T



þ L

T

	
2
�
L
T


��
L
T



þ 1
	 1� 1� r

a

� �nh i
:

1) We proceed to show that Mj tends to a function
independent of k when k is large enough, from which we
conclude the same property for D.

When k is large enough, we have in particular �1 ¼
dLTe ¼ Q and �2 ¼ dLTe þ 1 ¼ Qþ 1. Then, we have

Mj ¼
ð1� sÞ

PQ
i¼2
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k�iþ1
k

	j � � k�ik 	j��i� 1� 1�s
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We note that for each fixed j, all ðk�iþ1
k Þ

j � ðk�ik Þ
j, where

1 � i � Qþ 1, are asymptotically equal when k is large

enough. To see this, apply the Mean Value Theorem to

the function fðxÞ ¼ xj in the interval ½k�ik ; k�iþ1
k �. Since

dfðxÞ
dx ¼ jxj�1, we then obtain

k� iþ 1

k

� �j
� k� i

k

� �j
¼ k� iþ 1

k
� k� i
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� �
jxj�1

i

¼ j

k
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i

for some xi 2 ½k�ik ; k�iþ1
k �. All such xi where 1 � i � Qþ 1

will tend to 1 as k tends to infinity, since we have

limk!1
k�i
k ¼ 1 ¼ limk!1

k�iþ1
k . Hence, we know that

ðk�iþ1
k Þ

j � ðk�ik Þ
j will all tend to j

k . From this we obtain,

as k!1, 
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which is independent of k.
(2) By the above proof, we have,
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Hence,
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With the above proof, since

lim
n!1

1� 1� r
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¼ 1;

we have
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Proof of Lemma 8. Recall (18) and (19). Since for any h,

Bjðh;mÞ ¼4
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and
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where
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So, Mj is the linear sum of the terms ½ðk�hk Þ
j �

ðk�mk Þ
j�ðk�mk Þ

ij, 0 � h � m� 1, m 2 f�1; �2g, i � 0, with

non-negative coefficients. Therefore,

D ¼
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is an infinite sum with non-negative coefficients. Thus, it

is sufficient to prove that each term in D,
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is a decreasing function. Now we have
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:

Taking derivative on the term, and noticing that
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k

� �i
1� h

k

� �
< 1; 1 � h < m;

we have
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a
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< 0;

as n!1. By the last inequality above, we can choose a

positive integer N such that when n > N , every term in

D starts to be decreasing. Therefore, D itself is a

decreasing function of n when n is large enough.

Proof of Lemma 9. By the formula

xj � yj ¼ ðx� yÞðxj�1y0 þ xj�2y1

þ � � � þ x1yj�2 þ x0yj�1Þ;
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and hence obtain
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we have, by simply dropping the denominators,
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In order to prove that limn!1D ¼ 0, we need to show

that for any given " > 0, there exists an integer N > 0

such that DðnÞ < " whenever n > N . To this end, we first

note that, since limj!1 jðk�iþ1
k Þ

j�1 ! 0 when i > 1, there

exists an integer N0 > 0 such that when 4j > N0, we have

M 0
j, hence Mj, is small enough, i.e., Mj <
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2 . On the other

hand, since

n

j

� �
¼ nðn� 1Þ . . . ðn� jþ 1Þ

1 � 2 � . . . � j � nj;
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for each j such that 1 � j � N0, and, at the same time, M 0
j

and hence Mj are all bounded for j such that 1 � j � N0.
Therefore, there exists an integer N > N0 so that when
n > N , we have
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We then have
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This implies that limn!1D ¼ 0.

Proof of Lemma 10. From the proof of Lemma 8, we know
each Mj and hence D are linear sums of the terms

k� h
k

� �j
� k�m

k

� �j" #,
1� k�m

k

� �j" #

where 0 � h � m� 1;m 2 f�1; �2g; i � 0, with non-nega-
tive coefficients which are all independent of k. So, we
only need to prove that each such a term is an increasing
function of k.

Since

½ðk�hk Þ
j � ðk�mk Þ

j�
½1� ðk�mk Þ

j�
¼ ðk� hÞ

j � ðk�mÞj

kj � ðk�mÞj
;

we only need to prove that the function

fðxÞ ¼ ½ðx� hÞ
j � ðx�mÞj�

½xj � ðx�mÞj�

is an increasing function when x � m. To see this, we
calculate its derivative as follows:
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f 0ðxÞ ¼

½ðx� hÞj � ðx�mÞj�0½xj � x�mð Þj�
�½ðx� hÞj � ðx�mÞj�½xj � ðx�mÞj�0

( )

½xj � ðx�mÞj�2

¼

½jðx� hÞj�1 � jðx�mÞj�1�½xj � ðx�mÞj�
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( )
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�jðx�mÞj�1xj�1m
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½xj � ðx�mÞj�2

¼

jðx� hÞj�1xj�1½x� ðx� hÞ�
þ jðx� hÞj�1ðx�mÞj�1½ðx� hÞ � ðx�mÞ�

� jðx�mÞj�1xj�1½x� ðx�mÞ�

8><
>:

9>=
>;

½xj � ðx�mÞj�2

¼

jhmðx� hÞj�1ðx�mÞj�2Pj�2
l¼0 ð½ðx�mÞ

�l � ðx� hÞ�l�xlÞ

( )

½xj � ðx�mÞj�2
:

Since h < m, we have x� h > x�m > 0 when x > m.
Hence, ðx�mÞ�l > ðx� hÞ�l when l > 0. It follows that
f 0ðxÞ > 0 when x � m and j > 1. Hence, fðxÞ is an
increasing function when x � m. This finishes the proof
of Lemma 10.
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