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Teleportation of qubit states through dissipative channels:
Conditions for surpassing the no-cloning limit
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We investigate quantum teleportation through dissipative channels and calculate teleportation fidelity as a
function of damping rates. It is found that the average fidelity of teleportation and the range of states to be
teleported depend on the type and rate of the damping in the channel. Using the fully entangled fraction, we
derive two bounds on the damping rates of the channels: one is to beat the classical limit and the second is to
guarantee the nonexistence of any other copy with better fidelity. The effect of the initially distributed maxi-
mally entangled state on the process is presented; the concurrence and the fully entangled fraction of the shared
states are discussed. We intend to show that prior information on the dissipative channel and the range of qubit
states to be teleported is helpful for the evaluation of the success of teleportation, where success is defined as
surpassing the fidelity limit imposed by the fidelity of the 1-to-2 optimal cloning machine for the specific range

of qubits.
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I. INTRODUCTION

The quantum state of a system can be transmitted from a
location to a distant one using only classical information
provided that a quantum channel exists between the sender
and the receiver. Sharing entangled states between the two
parties opens the necessary quantum channel [1]. Research in
quantum state transfer [2], especially the quantum teleporta-
tion [3], has emerged as one of the major research areas of
theoretical and experimental quantum mechanics. Various
discussions and criteria have appeared about the evaluation
of the state transfers under ideal and imperfect conditions
[4]. In a perfect scheme, the shared entangled state is a maxi-
mally entangled state (MES) enabling perfect quantum state
transfer. However, in practice, entanglement is susceptible to
local interactions with the environment, which can result in
loss of coherence. In this paper, we study the teleportation of
qubits through damping channels.

We consider quantum state transfer as an operation, such
as cloning and teleportation, which beats the classical limits
on measurement and transmission. The resemblance of two
quantum states and the properties of quantum state transfer
(teleportation and cloning) are quantified by the fidelity
F(|th) ={tin| Pout| ¥in)» Which measures the overlap of the
states |i,) to be teleported (cloned) and the output state with
the density operator P,

A qubit state to be teleported |i,)=a|0)+B|1) with
|a>+|B>=1 can be represented on a Bloch sphere as

|4) = cos(8/2)e™0) + sin(&/2)|1), (1)

where 6 and vy are the polar and azimuthal angles, respec-
tively. Since this state is generally unknown, it is more ap-
propriate to calculate the average of the fidelity F(|¢;,)) over
all possible states |¢;,) to quantify the process. This average
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fidelity F={ti,| Pou| ¥in) [5] can be calculated as

1 2m T
F=— f dy f dSF(8,)sin 5, (2)
4 0 0

where 47 is the solid angle.

The relation between the teleportation fidelity and the de-
gree of entanglement shared by the parties has been studied
by many researchers (e.g., in [3-10] and others cited in [1])
and it has been shown that (i) a less entangled quantum chan-
nel reduces the fidelity and the range of states, which can be
teleported [3], (ii) for the standard teleportation scheme, the
maximum attainable average fidelity is simply related to the
fully entangled fraction of a bipartite entangled state [6], and
(iii) some mixed states, which do not violate the Bell in-
equalities, can still be used for teleportation [5]. On the other
hand, only a few studies are directed to the relation between
the fidelity of teleportation and the type and strength of the
damping in the quantum channel. That is the topic of the
present study.

According to the definition of teleportation as stated by
Bennett et al. [3], in the process of quantum teleportation,
one can construct an exact replica of the original unknown
quantum state with the cost of destroying the original state.
Therefore to call a quantum state transfer operation as quan-
tum teleportation, the process should not only generate out-
put states with better qualities than what can be done classi-
cally but also obey the no-cloning theorem [11]. Defining a
teleportation operator aeb which can be implemented in a
standard quantum circuit (see, e.g., [12]) with an input state
pin=p, and a shared entangled state p,,=p, ., the output state
Pout 1S Written as
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ﬁoul = Trin,a[ Utelﬁin ® ﬁentUjel] . (3)

If the teleportation process is ideal then p,,=p;, implying a
fidelity value of unity. However, in practical applications,
this is not the case due to the presence of noise which may be
due to (i) noisy sources of p;, and p.,., (ii) noisy entangle-
ment distribution channel, (iii) noisy measurements and uni-
tary operators, and (iv) an eavesdropper who attempts to
clone p;,. Since, in general one cannot be sure of which of
the above is the reason, all the noise in the process should be
attributed to an eavesdropper in order to assess the security
whenever quantum teleportation is to be used as a means of
secure communication. This assessment to quantify the pro-
cess should be done according to the definition of the tele-
portation given above. That is, one should check to see
whether F in Eq. (2) satisfies the conditions of (i) beating the
classical limit, and (ii) obeying the no-cloning.

The linearity of quantum mechanics forbids the exact
cloning of an unknown quantum state, however, if one al-
lows discrepancies between the original quantum state and
its copy, then it is possible to devise a scheme that can pro-
duce clones and copies of a given unknown state with the
highest resemblance to the original one [13—16] (for reviews
see [2]). This is known as the optimal cloning, where with
the increasing number of clones (copies), the resemblance to
the original state decreases. It has been shown that for a
state-independent universal cloning machine the relation be-
tween the optimum fidelity F' of each copy and the number
M of copies is given by F=(2M +1)/(3M). In classical situ-
ations, one can make an infinite number of copies (M — =)
of a given state resulting in a fidelity F'=2/3, which is the
best one can do with classical operations. On the other hand,
when M =2, the universal cloning machine has an optimum
fidelity of F=5/6 [13-16].

Combining the above information on teleportation and
cloning, one can infer that a teleportation process beats the
classical limit if F>2/3, and obeys the no-cloning require-
ment if F>5/6 [13-16]. If this is assured, then there is not
any other copy of the output state with better fidelity, there-
fore the teleportation process is secure. It is noteworthy that
this is true if and only if the quantum state p;, is completely
unknown to the eavesdropper. In some cases, p;, may be
prepared in a state that is selected from a known ensemble of
states. If the eavesdropper has this a priori knowledge about
Pin» @ state dependent cloner which can perform better than
the optimal universal one can be constructed. Thus the fidel-
ity constraint imposed on teleportation due to the no-cloning
condition will become much stricter.

Quality of the shared entangled state is a good criterion to
quantify the reliability of the quantum teleportation. Bennett
et al. [17] and, in general case, Horodecki et al. [6,18] (for a
review see [1]) have shown that for a shared bipartite en-
tangled state P, to be useful for quantum teleportation, its
fully entangled fraction f,,, defined by [19]

Sent= m£x<(b|ﬁent|(p>’ 4)

must be greater than 1/2. In Eq. (4), maximum is taken over
all MES |®). It has also been shown that the maximum
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FIG. 1. Teleportation scenario 1, where both qubits of p., are
affected by the channel, and scenario 2, where only one of the
qubits is affected. A quantum channel is formed by the shared en-
tangled state.

achievable teleportation fidelity F is related to f., by [6]

2f e+ 1
F= fent )

3 (5)

States with f.,,=1/2 cannot be used directly for teleporta-
tion unless they are enhanced through filtering to satisfy
Sen:=1/2. Choosing the boundary value of f.,,=1/2 gives a
teleportation fidelity of F=2/3 which is the boundary be-
tween classical and quantum state transfer. That is if f,,
=1/2 and hence F=2/3, then the same operation can be
done classically. According to this definition, if in a process
F>2/3 is achieved then it can be called quantum teleporta-
tion. On the other hand, the discussion on cloning in the
former paragraphs implies that one can make an infinite
number of copies of a qubit with a fidelity of 2/3 which
violates the original definition of quantum teleportation
given by Bennett ef al. [3]. Here again arises the question of
achievable teleportation fidelity, which guarantees better than
classical teleportation and surpasses the no-cloning limit.

The problem studied in this paper can be formulated as
follows: Alice and Bob are far from each other, and they
share an entangled quantum state p.,. The entangled state is
prepared either by a third party, say Claire, and delivered to
Alice and Bob (scenario 1: two-qubit affected scenario) or
prepared by Alice and one of the qubits is sent to Bob and
the other is kept with her (scenario 2: one-qubit affected
scenario) as shown in Fig. 1. The only manipulations that
Alice and Bob are allowed to do are local quantum opera-
tions and classical communications. Now suppose that Alice
wants to transfer the quantum state represented by the qubit
state |¢,) to Bob and the entangled state is distributed
through a dissipating channel. Then, how does the dissipa-
tion of the channel affect the entanglement properties of the
distributed entangled state, and hence what is its effect on the
transferred quantum state? What is the allowable amount of
dissipation that does not affect the security of quantum state
transfer?
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In this paper, we derive the damping rates of quantum
channels at which a quantum state transfer that overcomes
the classical counterpart can be realized. In the same way,
conditions, which guarantee a secure quantum teleportation,
are also derived. We study the effect of noise on the range of
qubits that can be teleported accurately. The noisy channels,
including amplitude damping channel, phase damping chan-
nel, and depolarizing channel, and the effects of these noisy
channels on the distributed entanglement and teleportation
process are studied in Secs. II and III. Finally, Sec. IV in-
cludes a brief summary and conclusion of this study.

II. EFFECT OF DAMPING CHANNELS
ON ENTANGLEMENT AND TELEPORTATION

We consider the two scenarios shown in Fig. 1. In the first
scenario, the qubits of the initial MES are distributed through
two channels, which may or may not have the same damping
properties. On the other hand, in the second scenario, only
one of the qubits of the initial MES is distributed through the
damping channel. In the following, we give analytical ex-
pressions, which show how a given state is affected when
transmitted through noisy channels causing amplitude damp-
ing, phase damping, or depolarization. Initial MESs that are
considered in this study are the Bell states

) = ~=(01) = [10)).
\r'2

1
|¢*) = —=(|00) £ [11)). (6)
V2

We derive the bounds for the damping rate of the channel to
satisfy the quantum teleportation conditions discussed in the
previous section. In the following, we assume that there is no
a priori information on p;,, therefore the optimal universal
cloning machine which imposes F>5/6 is considered.

A. Amplitude damping channel

The evolution of environment (denoted by subscript ¢)
and a system (subscript a or, equivalently, b) with the states
|0) and |1) is defined by the following transformation in the
presence of the amplitude damping channel (ADC) [20]:

10)4/0). = [0),0)..

' N
[1)4l0)e = Vg[1),]0), + Vp|0),|1),. (7)

where g=1-p. This transformation implies that a system
with an excited state makes a transition to the ground state
with a probability p and emits a photon to the environment
which makes a transition to the excited state. When the sys-
tem is initially in the ground state, there is no transition.

1. Input Bell states |i*)

If both of the qubits in the Bell states |¢/*) are transmitted
through an ADC (scenario 1), then using Eq. (7) we can
write the state at the output of the channel as
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+ 1 — —
|\P_>abelez = \J_E[(V’qd()l)ab + \qa| 10>ab)|00>elez

!f_ /_
+ (Vpb|01>elezi \/’pa|10>elez)|00>ub]v (8)

where we assumed that channels have different damping
rates denoted by p,, p, and, for simplicity, we denote ¢,
=1-p, qp=1-p,. If we assume p,=p,=p and the environ-
ment is not monitored (unwatched channel), the shared state
between Alice and Bob at the outputs of the channels can be
found by tracing out the environment variables resulting in
Pan=q| ¥ ap (| +P|00) 4 (00]. It is seen that the MES
survives with a probability of g. On the other hand, if the
environment is monitored, Alice and Bob proceed with the
protocol if no photon is detected in the environment imply-
ing they have a MES, and they do nothing when a photon is
detected in the environment.

If only one of the qubits (say, that for Bob) is sent through
the channel (scenario 2), the damping in the channel affects
only that part. If the channel is watched and no photon is
detected in the environment, the state that is shared between
Alice and Bob becomes

1
W) = ——— (g, 01 +10),). )
V2 —-p,

For an unwatched channel, the shared state is given as

At l + +
Pap= 5[(2 _pb)|\l,_>ab ab<\P_| +pb|00>ab ab<00|] (10)

It is clearly seen that if only one qubit of the initial MES is
sent through the ADC, the shared state between the parties is
no longer a MES.

Using Eq. (8), one can find that for scenario 1, the fully
entangled fraction is [8]

1 —

_
fo1 = (g, +Vg,)* (11)
4

if p,= %(qb+ V1+2p,—3p}) is satisfied, otherwise it becomes

1
fenn= 2 Patpr). (12)

If we assume that both channels have the same damping
properties, that is p,=p,=p, the fully entangled fraction is
found as

if p=2/3;
fifm={q S, (13)
pl2 if p>2/3.
For scenario 2, where p,=0, f= becomes f%,=+(1+1g;)?
for all p,,.

Imposing the condition f,,>1/2, which assures that a
quantum state operation beats the classical limit, gives the
relation \q,+Vgq,>\2 for scenario 1 [8]. Taking p, as a
variable, it can be found that p,<2(y2-1) and p,<p,—2
+2\e"2—qa must be satisfied simultaneously [8]. Similarly for
the case p,=p,=p, one can find that the classical limit can be
beaten only when p<<1/2. For scenario 2, it can easily be
shown that p,<2(y2—1) must be satisfied. If the channels
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are watched but no photon is detected, then f,,,>1/2 can
always be satisfied provided that p,<1Ap,<1 and p,<1
for scenarios 1 and 2, respectively.

If the conditions given in the above paragraph for un-
watched channels are satisfied, one can only be sure that the
operation is a quantum one with fidelity F>2/3, however,
one cannot be sure about the security of the process, which
requires F>5/6 according to the 1—2 cloning condition.
Then solving Eq. (5) for f,, to satisfy F>5/6, we find that

3
fem>Z (14)

must be satisfied for the fully entangled fraction. Imposing
this condition on the shared entangled state between the two
parties results in a much tighter condition on the channel
damping rates, which can be summarized as follows:

I
1 .
p<-, scenario 1
4
_3 for p,=p,=p,
4 ! Pr<p,—3+ 2v’T%, scenario 1
Pu= Zv/g— 3 or vice versa, for p, # p,,
L P» < 2\6— 3, scenario 2.
(15)

2. Input Bell states |¢*)

In the scenario 1, when both qubits of |¢*) are sent
through the damping channels, the shared state between Al-
ice and Bob for the watched and unwatched channels are
found as

00), = \Vguq|11),
|q)i>ab=| Dab \‘I‘Ib| Dab (16)

V1 + g4,

and

At 1 + +
p;b = 5[(1 + qaqb)|q)_>ab ub<q)_| + qbpa|01>ab ub<01|

(17)

respectively, where we have considered that no photon is
detected in the environment for the watched channel case.
From these equations, it is seen that a MES survives with a
nonzero probability iff p,=p,=0.

When only one of the qubits (say again, Bob’s qubit) of
the MES is propagated through the ADC, the shared state
between Alice and Bob is not maximally entangled unless

»=0 for both watched and unwatched channels as can be
seen in the following expressions given, respectively, for
watched and unwatched channels:

+ P1qal 10)ap ap{10] + p,p3|00)

+ 1 I
|q)_>ah= T(|00>ahi \"qh|11>ah) (18)
N

Py

and
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+ 1 + =+
Pap = 5[(2 = Po)| D) ap{D*[ + pp|10) (10[].  (19)

Then the fully entangled fraction of the shared state, when
the channel is not watched, is found as

fen= [papb+ (1+ a9, (20)

which reduces to

) 2(p*-2p+2), scenario 1,
f:ntzz forpa:PbEP, (21)
(1+ V%)z, scenario 2.

It can easily be found from Eq. (21) that the condition f,,,
>1/2 is satisfied for any p in the range p<<1 when both
channels have the same damping rates in scenario 1; and for
P, <2(y2-1) in scenario 2. When the channels have differ-
ent damg rates, we can write using Eq. (20) that p.p,
+(14+q,g,)*>>2 must be satisfied to beat the classical limit.
The analytical solution for this is very lengthy to give here.
Instead, to give an idea on the relation between p, and p, to
satisfy the condition f,,,>1/2, we give some numerical val-
ues: when Py= 1/2, p,<7/8 and when p,=1/4, p, must sat-
isfy p,<(616—13)/2 to beat the classical limit. As it has
been pointed out by Bandyopadhyay [8], scenario 1 can be
made to have higherf,, than scenario 2 such that f.,,>1/2 is
satisfied. This, in turn, implies that for the state |¢*), one can
let one of the qubits undergo a controlled dissipation if the
information on the dissipation of the other qubit in the other
channel is available.

Looking at the condition f,,>3/4 for quantum teleporta-
tion to surpass the no-cloning limit, we find the following
constraints on the damping rates of the ADC:

¢

-
V2 .
p<l1- 7 scenario 1
for p,=p, =p,
fo> 7 if oy . ’
Pa=2V3-3, scenario 1
Py = g(p,) or vice versa, for p, # py,
Pa <2 \E -3, scenario 2,
(22)
where

g(x)=(1-2x)"[=3+x(3+2x)+2(1-x)(2x>—6x+3)]. Con-
trary to the above case, a controlled dissipation cannot in-
crease f., above 3/4.

B. Phase damping channel

A phase damping channel (PDC) affects an input state
with the following transformations [20]:

_
104]0). — Vg]0)4[0) + \p|0)e| 1),
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I —
[1)40)e — Vg[1),]0), + \p|1),]2),. (23)

In this channel, the energy of the information carrier is con-
served (no losses to environment), however, the state of the
carrier is decohered.

1. Input Bell states |i/*)

Bell states |#/*) evolve into

o1
p;b = 5(1 - qaqb)(|01>ab ab<01| + |10>ab ab<10|)

+ anbl l//t>ab ab<(//-t s (24)

when both qubits are sent through the unwatched channel.
For the limiting case, p,=1vp,=1, off-diagonal components
of the density matrix vanish resulting in a mixed state. For a
watched channel with no photon detected in the environ-
ment, there is a probability of g,q, that the state observed is
|4%).

On the other hand, when only one qubit is sent (scenario
2), the probability that the MES survives becomes ¢, when
the channel is watched. When the channel is not watched,
then the output state, which is mixed and not a MES, can be
found from Eq. (24) by substituting p,=0.

When the fi, of the output state at the end of the un-
watched channels are calculated it is seen that

.
1+ 4.9, scenario 1
| for p, # py,
= §< p>—=2p+2,  scenario 1, (25)
for pa=p»=p,
\2 - Dp» scenario 2.

Then we find that f5, is always greater than 1/2 provided
that p, # 1 Ap,# 1 and p# 1 are satisfied for both scenarios.
Moreover, we find scenario 1 cannot be made to have fi
larger than scenario 2.

The no-cloning limit imposes the following conditions on

the allowable PDC rate:

( —
V .
p<l- X scenario 1
forp,=p,=p,
fffm>—lf< Pa.I’b p
Py <(1-2p)I(2q,), scenario 1
P < 1/2 or vice versa, for p, # p,,
Vb <1/2, scenario 2.

(26)

2. Input Bell states |¢*)

When the input is |¢*), then the state at the output of the
channels becomes

w1
Pur= 5(1 - Qaqb)(|00>ab ah<00| + |1 1>ab ab<1 1 |)

+ qa‘]bl ¢t>ab ab< ¢i| (27)

for an unwatched channel for scenario 1. A comparison of
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this output state with Eq. (24) reveals that the same discus-
sions and the conditions on the channel damping properties
are valid here, too.

C. Depolarizing channel

When a qubit is sent through a depolarizing channel (DC)
with a probability g =1—p it is intact, while with probability
p an error (bit flip error, phase flip error, or both) occurs. The
transformation that characterizes this channel is [20]

|O>a|0>e_) \ 1_%|0>a|0>e+ \/§(|1>a|1>e+i|1>a|2>e

+10)l3)e),
[, 3¢ \/E iy
|1>a|0>e - 1- 4 |1>a|0>e+ 4(|0>a|1>e l|0>a|2>e
= [1)l3).)- (28)

In the DC, any given state |¢) evolves to an ensemble of the
four states |¢), .| @), 6| @), and G| @) where o is the Pauli
operator. p=1 corresponds to complete depolarization where
each of the four states occur with equal probabilities.

If the input state to the channel is |*) or |¢*) both qubits
are sent through the channel then with a probability of (4
—3p)(4=3p;) /16, this state is conserved at the output of the
channels if the channel is watched and no photon is detected.
For an unwatched channel with an input |77 ,)=|¢*),|$*) for
indices 1 and 2, respectively, the output state can be written
as

- L=q.q

Pap = 4 (| 77f_r,2><77i2| + |7/§,1><77§,1| + |7l§,1><77§,1|)

1 +3q.q,
429
4

| UT,2>< 7IT,2 > (29)

which becomes a mixture of Bell states with equal probabil-
ity 1/4 when p=1. The effect of this channel on the input
state when only one of the qubits is sent through can be
found simply by substituting p,=0. Imposing the criteria
Sfen:=>1/2 and f,,;>3/4 on the state at the output of the
channel for both scenarios, we find the following ranges for
damping rate of the DC:

( [~

p<1-+3/3, scenario 1

for p,=p,=p,

1 2-3

fo > if§ p, < pb; py<2/3, scenario 1
2 qp

for p, # py,

P <2/3, scenario 2

(30)

and
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( —
p<l1- V6/3, scenario 1
for p,=py, =p,
3 1-3
foi> 1 if § p.< 3—pb; pp<1/3,  scenario 1
b
for Pb # Pa>
@ < 1/3, scenario 2.

(31)

D. Concurrence and fully entangled fraction

The fully entangled fraction f.,, given by Eq. (4), can be
regarded as a measure of entanglement when the quantum
channel is in a pure state and it is related to the Wootters
concurrence C [21] through the relation f.,=(1+C)/2.
However, when the quantum channel is in a mixed state, f,
can no longer be used as a measure of entanglement. This is
due to the fact that entanglement cannot be increased by
local quantum operations and classical communications, but
the fully entangled fraction f,, can be increased as shown by
Bandyopadhyay [8] and Badziag et al. [18].

In the following, we present the dependence of concur-
rence on the properties of the unwatched damping channels
in both scenarios introduced previously and discuss the rela-
tion between f,, and concurrence so that we can assure a
quantum state transfer and a secure quantum teleportation.
As defined by Wootters [21], concurrence of a mixed state ©
is given by C=max(0,\;—N\,—A3—\,), where {\;} are the
square roots of the eigenvalues, in decreasing order, of the
non-Hermitian matrix 00 with 0=6,® é'yg*é'y@) Gy, where
Pauli matrices act on Alice and Bob qubits, respectively, and
the asterisk (*) stands for complex conjugation.

For the ADC, we observe that, in the first scenario, the
relations between the concurrence and the damping param-
eter are different for the initial entangled states |#/*) and |¢*).
The concurrence of the shared state at the output of the chan-
nels for the input state |¢/*) is given as_C'=Vq,q;; and the
concurrence for |¢*) becomes C"=(1-1p,p;,)C'. When both
channels have the same damping rate p,=p,=p. It is seen
that while C’ decreases linearly with p, C" decreases with p?.
On the other hand, for scenario 2, both initial | states show the
same tendency, which is given as C'=C"=q.

In the cases of the PDC and DC, C=C'=C". For the
PDC, concurrence is found as C=gq,q, for the first scenario.
The expression for the second scenario can be found by tak-
ing p,=0 and p,=p. Although the expressions found for con-
currence for the ADC and PDC are valid for all values of p,,
and p,, in the range of [0, 1], the expressions for concurrence
in the case of the DC are valid only for a limited range of
damping rates. For example, for the second scenario, concur-
rence is found as C=1-3p/2 provided that p<2/3, other-
wise it is zero implying a separable state. For the first sce-
nario when both DCs have the same damping rate,
concurrence is given as C=1+3p(p—2)/2 when p=1
—\3/3, otherwise C=0. When the damping rates are differ-
ent, we find that C=(3¢,q,—1)/2 provided that p,<2/3 and
p.<1-1/(3q,) are satisfied simultaneously, otherwise C=0.
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FIG. 2. Comparison of concurrence (solid curves) and fully en-
tangled fraction (dashed curves) for the ADC, when the initial en-
tangled state is |¢/*) (i) and |#*) (ii), as well as the PDC (iii) and the
DC (iv) for scenarios 1 (curves a) and 2 (curves b). Note that for the
PDC and DC results are independent of the initial entangled state.

It is seen from Fig. 2 that f,, is always =1/2 for C=0; and
even a very small amount of entanglement shifts the process
from classical to quantum regime.

III. RANGE OF QUBITS FOR ACCURATE
TELEPORTATION

In this section, we analyze the effect of the noise in the
system on the range of qubits that can be teleported with a
desired fidelity value. In order to show how the a priori
information on the ensemble from which p, is prepared af-
fects the fidelity criterion on secure teleportation, we will
consider an optimal one-to-two phase-covariant cloning ma-
chine (PCCM) [22,23] in comparison with the universal
cloning machine. We will assume that the states to be tele-
ported are chosen from the whole set of qubit states with a
fixed and specified polar angle & in the Bloch sphere. An
eavesdropper, who knows &, can use the optimal (one-to-
two) PCCM for which the cloning fidelity is given by [23,24]

JO— KT E

S+ K
2 +7Sin25

+ COs

1
F'(6) = 2 sin

[5+ V2+2 cos(S5+ k) — (\E— 1)cos(20)],

0 | —

(32)

where k=[[26/7]], i.e., k=0 for 0=6<7 and k=1 for T
= 5= . Note that fidelity F’' () for any & is greater than the
fidelity of the optimal universal cloning machine [13], given
by F=5/6. For the qubit states on the equator of the Bloch
sphere (6=/2), the optimal PCCM prepares clones with
fidelity F'(m/2 :i(2+ \5). On the other hand, when the
states are close to the poles, that is in the neighborhood of |1)
or |0) in the Bloch sphere, i.e., for a fixed angled=7—A& or
8=0+A6 with As< 1, Eq. (32) simplifies to
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1
F'(6)= g[S + \E+ 2cos AS— (\E— 1)cos(2A6)]

3—2\F

=1-— 2 A8+ 0(A5)". (33)

In a teleportation process, measurement of Alice results in
four possible outcomes m; where i=0, 1, 2, and 3 with m,,
=[00)00], m;=[01){01|, my=|10)(10|, and ms=|11)11].
Then the state at Bob’s side conditioned on Alice’s measure-
ment can be written as p’(m;). In the standard teleportation
protocol with shared MES, upon receiving the classical in-
formation i, Bob can make the appropriate unitary operations
on his qubit p’(m;) to obtain the teleported state = pPi,. We
discuss how the measurement result affects this process in
the presence of noise.

Since the entanglement distribution channel is noisy, the
state at the output of the teleportation process given in Eq.

(3) can be rewritten as Po,=Try, [ Ui ® ﬁfc‘mf]fe,] where
pe.e is the noisy entangled state. We can say that the fidelity
is a function of J, y and the noise introduced into the system,
and we can represent it as F(8, y) = F(|i,)). We observe that
F(&,) is independent of v, as denoted by F(8)=F(5,y).

A. Amplitude damping channel
1. Input Bell states |*)

For the ADC, in scenario 1, let us assume that p,=p,=p
and Alice made a measurement, obtained the outcome m,
and then sent the classical information k=1 to Bob. The out-
put density operator conditioned on m; becomes p’(m,)
=N[gpin+2p sin*(8/2)|0)0|] with N being the renormaliza-
tion constant defined as N-'=1—p cos §and p, is the density
operator of the state to be teleported. Bob cannot rotate this
p'(m;) to the desired state without the prior knowledge of &
and . Since |,) is supposed to be unknown, standard tele-
portation protocol fails to reproduce the desired state at
Bob’s side. This conclusion is valid for all m;. Interestingly,
the output state at Bob’s side can be grouped into two as
Xo=1{p"(mg),p"(my)} and x,={p"(m,),p’(m3)}. Although the
output states in one of these groups can be rotated into each
other by using a Z gate or first X then Z gate, states belong-
ing to different groups cannot be rotated to each other. This
problem is caused by the ADC, which reduces the degree of
entanglement and introduces the additional terms
2p cos?(5/2)|0)0] and 2p sin?(5/2)|0)0|, respectively, for
Xo and ;. We observed that for teleportation in the presence
of this ADC, if Alice’s measurement yields m;, Bob does not
need to do anything. For other measurement results m, m,,
and m3, Bob should apply &, &y, and &, respectively. In this
way, he rotates his qubit into the output state Pgu(my)
=N{gpin+pl1+(=1)*cos 8]|k® 1)k 1|} with N, being the
renormalization constant defined as I\Fk1=1+(—1)kp cos &
and @ stands for addition modulo 2. Then the state-
dependent fidelity becomes

pl1+ (= Dkcos 8T
2[1+ (= 1)*p cos 8]’

F(8)=1- (34)

where k=0, 1, 2, and 3. When p— 1, the limiting values are
calculated as F,,, 3(5)=cos.2(6/2) and Fo, 2(5)=sin2(6/2).
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For p=1/11 and p<<1/5, all states can be teleported,
respectively, with F>5/6 and F>2/3, independent of Al-
ice’s measurement result. For the equatorial qubits 6=m/2,
we find that as far as p<<1-12/2, teleportation fidelity will
surpass that of the PCCM regardless of the measurement
outcome. On the other hand, if the qubits are chosen at the
neighborhood of |1), then for even k the channel damping
rate should be bounded as 0=p=0.162.

Although state-dependent teleportation fidelity is mainly
determined by Alice’s measurement result, the average fidel-
ity calculated using Eq. (2) is the same for all measurement
results and given as

q
1+p>’ (35)

= L(Zp +¢°In
4p2

which takes the minimum and maximum values of 1/2 and 1
for p=1 and 0, respectively.

For the second scenario, the output density operator
elements pgéf(mk) are found in terms of the input density

operator elements pi(il) as follows: pf)?]?)(mk)=qp@0)

— — in
+[1==D!pr2, p W 0m)=\gpl", p!'%(m)=\gpl”, and
P (m) =gV +[1+(=1)¥]p/2. When Alice measures my
and applies the appropriate unitary transformation to get the
highest fidelity for the process, i.e., when Bob receives the
information that k=3 or k=1 for |*) and |¢"), respectively,
he can use a Z gate to rotate the state on his side to obtain the

above state. Then state-dependent fidelity can be found as
1
F(9)=1- E{p[l + (= D¥cos 8] - x}, (36)

where x=(yg—q)sin? 8. In the limit of p—1, we get the
same functions as those obtained from Eq. (34). It is clearly
seen from the above results that the range of qubits that can
be teleported correctly depends not only on the strength of
the ADC but also on the measurement result of Alice.

Results imply that some of the states can be teleported
with much better fidelity than others depending on m;. This
enables Alice and Bob, in a communication protocol, to de-
cide to choose their qubits randomly from a range of states
with higher fidelity when a certain measurement result, say
{mgy,m,}, is obtained. As seen in Figs. 3 and 4, some states
give better fidelity than others depending on m;. In the figure
we have shaded regions where all the states can be teleported
with F>5/6 regardless of Alice’s outcome. Note that the
states with d=m/2% A can tolerate much higher damping
rates than the ones located around the poles of the Bloch
sphere. It is also seen that in Scenario 1 it is advantageous to
rotate the initial entangled state into |¢) because it is more
immune to the ADC and therefore provides a larger param-
eter space for F>5/6 teleportation.

Let us assume that qubits chosen from a range defined by
A have higher fidelity when Alice measures {m,m,}, on the
other hand qubits chosen from N have higher fidelity when
Alice measures {m,,m;}. Then in a teleportation protocol,
Alice first mixes her state chosen from A with her part of the
entangled state and makes a measurement, when she obtains
{my,m,}, she sends the other qubit of entangled state to Bob
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FIG. 3. (Color online) Optimal state-dependent fidelity in the
presence of the ADC when the initial MES is |¢/*) (top) and |¢*)
(bottom) and both qubits are affected by damping. Contours corre-
spond to F=2/3, F=5/6 and the optimal PCCM fidelities when
Alice’s measurement result is [01){01| or [11){11], solid curves, and
when Alice’s measurement result is [10)(10| or |00){00|, dotted
curves.

together with the classical information, then Bob applies uni-
tary transformation to get the desired state. When she gets
{m,,ms}, either she sends nothing or a dummy state. In this
way, they can increase the fidelity of the process. If they
decide to abort the protocol whenever Alice measures
{m,,m3} then the efficiency of the process is low.

If Alice and Bob decide to keep all measurement results
then the fidelity of the process can be written as

3
F8)=3 puFu,=q-. (37)

k=0
where x is defined as in Eq. (36), F,,, is the fidelity of the
output state to the teleported state when Alice obtains my,
and Pm, is the probability of obtaining this result. Moreover,
if they do that for any (8,7), they end up with F=2/3
+(2Vg—-p)/6. From Eq. (36), it can be seen that for a fixed p
of the channel, if the state to be teleported is chosen such that
8< /2, then the set {m;,ms} gives higher teleportation fi-
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FIG. 4. (Color online) Same as in Fig. 3 (top) for |¢*) but for the
case when only one of the qubits is affected by the ADC. For |¢*),
the meaning of curves is reversed.

delity for that state; otherwise, the set {m,m,} yields higher
fidelity. Let us assume that Alice randomly chooses a state to
be teleported from the upper hemisphere of the Bloch sphere
(6<m/2) therefore their preferred measurement set is
{m,,m5}, which occurs with a probability of 1/2. When the
measurement result is {m,m,}, she sends nothing according
to the protocol described above. In this way, the fidelity of
the process increases to F(8)=F,, 4_(5)=Fm3(5) and the aver-
age fidelity becomes F=2/3+(4\g+p)/12.

In the same way, if the entangled state is distributed by a
third party and both qubits undergo damping, Alice proceeds
as explained above. If Alice and Bob decide to keep all mea-
surement results then the fidelity of the process becomes

3

2 —p(1 +cos? )
k=0

2(1 —p?cos® b)° (38)
where Fy, is the fidelity of the output state to the teleported
state when Alice obtains my, and P, is the probability of
obtaining this result. Moreover, if they do that for any (3, y),
they end up with F= 412[2p+q2 ln(]—f’r;)] From Eq. (34), it
can be seen that for a fixed p of the channel, if the state to be
teleported is chosen such that 8> 7/2, then the set {m,m,}
gives higher fidelity; otherwise, the set {m,,m} does. Let us
assume that Alice randomly chooses the state to be teleported
from the lower hemisphere of the Bloch sphere, (6> 7/2),
therefore their preferred measurement set is {m,m,}.

2. Input states |¢*)

The output density operators for Alice’s outcomes
My=0.12.3 can be written as

Pourmy) = N{gpsu + p[1 + (= 1)*p cos 8]6%|0)(0]6*
+ (= Dfpg cos 66%|1)(1|64} (39)

with N™'=1+(=1)*p cos § from which the state dependent
fidelity is derived as
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p[3-2p—(2p—1)cos(26)]
4[1 + (= 1)*p cos 8]

with the limiting values of F,, 2(5):(:052(5/2) and F,, 3(5)
=sin’(8/2) for p approaching 1. It is easy to see that as p
approaches 0, ka(é) — 1. For p<1/6, all states can be tele-
ported with F>5/6 regardless of the outcome. Average val-
ues of teleportation fidelity for these two cases are the same
as given in Eq. (35).

For the second scenario, contrary to the first scenario, the
output state that Bob gets after the proper application of the
quantum gates and its fidelity to the desired state is the same
as that of the case when initial MES is |). When only one of
the qubits of the MES goes through the ADC, distributing
either |1) or |¢) does not give any advantage to the parties.

ka((S) =1- (40)

B. Phase damping channel

When the channel is the PDC, given by Eq. (23), only the
off-diagonal elements are affected by the damping. The fi-
delity of the teleportation process when the initial MES is
subjected to the PDC is independent of Alice’s measurement
result because, contrary to the ADC case, Bob can use X and
Z gates to rotate all the possible outcomes to each other and
to the state with the highest fidelity to the input one. The
elements of the density matrix can be written as pf)?ft))=p$0),
p(o?li)zqui(g]), P&?qupi(.io)’ and p(olui)z pgl) for the first sce-
nario. In the case of the second scenario, the elements of the
density matrix are the same as above with ¢° replaced by q.
Then the fidelity of the teleportation process for scenario 1
can be written as

1
F(o)=1- 5p(2 — p)sin? 6,

1
F=1—§p(2—p), (41)
and for scenario 2 as

1
F(o)=1- 2P sin’ &,

F=1- lp. (42)
3

The effect of the PDC on the teleportation fidelity is the
same for both initial MES |¢) and |#). The qubit states with
6=0 and 7 which are located at the poles of the Bloch sphere
are always teleported with F=1 because these states corre-
spond to|0) and |1), which do not carry relative phase infor-
mation and hence are not affected by the PDC. Indeed, these
results show that if Alice chooses the states to be teleported
around the poles then they can have a better teleportation
fidelity (see Fig. 5). On the other hand, states with 6=7/2,
which correspond to all the states lying on the equator of the

Bloch sphere, are the most affected states.
If Eve does not have the information on the region from
which the qubits are chosen, then the best she can do is to
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FIG. 5. State-dependent fidelity in the presence of the PDC
when the initial MES is any of the Bell states and only one of the
qubits (dashed curves) and both qubits (solid curves) are affected by
damping. Contours show F=2/3, F=5/6 and the optimal PCCM
fidelities. Horizontal dashed lines correspond to the values of damp-
ing rate for f,,=3/4 for scenarios 1 (lower) and 2 (upper).

use the optimal universal quantum cloning machine of BuZzek
et al. [13]. Then we find that any qubit state satisfying
sin®> §<1/3p(2—p) and sin®> §<1/3p, respectively, for the
first and second scenarios, can be teleported in the presence
of PDC with higher fidelity than that of the cloning machine
of the eavesdropper. It is apparent that if there is no eaves-
dropper and that parties just want to beat the classical limit,
the range of qubits at a fixed p is much larger.

Now, let us assume that the states to be teleported are
chosen with fixed & but varying v, and the information on &
may be leaked to an eavesdropper. Since the eavesdropper
may use the optimal PCCM, to speak about a secure telepor-
tation its fidelity should exceed the PCCM fidelity given in
Eq. (33). Comparing Eq. (33) with state dependent telepor-
tation fidelities for PDC given in Eqs. (41) and (42), we find
cos <—-1+1/x" where x'=y2-1+2p(2-p) and cos 5> 1
—1/x" where x"=12—1+2p, respectively, for scenarios 1 and
2. If §is chosen in the neighborhood of |1}, the damping rate
of the channel should satisfy Osp<(3—2\5)/4 and 0=p
<1-(N1+2y2)/2, respectively, for the first and second sce-
narios. On the other hand, if the states to be teleported are
chosen from the equatorial qubit states, the damping rate of
the channel should satisfy p<1-1/2"*and p<1-1/+2, re-
spectively, for the first and second scenarios. These require-
ments are obviously stricter than those for the universal CM.
We see in Fig. 5 that while for the universal cloning machine
the constraint on p relaxes as we approach the poles of the
Bloch sphere, for the PCCM it becomes tighter. This is be-
cause as we approach the poles, the fidelity of the clones
from the PCCM gets closer to one requiring a PDC with
damping rates approaching zero.

C. Depolarizing channel

When the channel is the DC, the elements of the density

matrix can be written as pf)?l?)= Xpi(,?())"' MXs p(()?l?=§pi(gl),
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p(olu?) §p“]10), and p”l)—)(p“]ll)+,u)( for the first scenario

where we have used u=(1-¢)/2 and y=(1+¢) and £€=¢%. In
case of the second scenario, the elements of the density ma-
trix are the same as above with y=1 and £=q. Then the
fidelity of the teleportation process for the first and second
scenarios can be written, respectively, as

11

F(O)=F==+=¢" 43

() 55 (43)

F(8)=F L, (44)
= =— 4 —
2o

from which we see that fidelity is independent of |¢,). For
DC too, contrary (similar) to the ADC (PDC), Bob can use
quantum gates to rotate all possible outcomes to each other.
Therefore the fidelity is independent of the input state, of
Alice’s measurement result, and of the initially distributed
MES. The parties in the protocol can choose their qubits
from the whole Bloch sphere and an eavesdropper may use a
universal quantum cloning machine, in that case the damping
rates of the channels should satisfy p< 1-16/3 and )4
<1/3 to surpass the no-cloning limit. In case of an eaves-
dropper with the PCCM, the relation between the qubits
states that can be teleported securely and the damping rate of
the channel becomes cos 8<—(1+12){— 1+[1+4(\2 (!

—D]Y2/2  and  cos S<{-1+[17-12y2+8p(\2-1)]""2/
(2\6—2) for the first and second scenarios.

D. Direct transmission: Noisy state + shared MES

For Bob, to whom Alice wants to teleport the unknown
state |, it is difficult to distinguish whether the |i,) is a
noisy state or the quantum channel is responsible for the
noise. The state to be teleported might be subjected to noise,
loose its coherence, and becomes a mixed state before it is
teleported.

Let us assume that Alice and Bob share a MES, which
they have obtained using entanglement distillation and puri-
fication protocols. In this section, we assume that the qubit is
influenced by the ADC, PDC, and DC, and discuss the out-
come of the teleportation process. We assume that only the
qubit to be teleported is subjected to noise and the shared
entangled state is any of the Bell states. Indeed, this is simi-
lar to the direct transmission scheme where the original state
|44, is sent directly to Bob through a noisy channel.

If |4,) is subjected only to the ADC, the elements of the
(00) _ (00) 1y (o1

output density matrix become p_ , P
o) (10 10 11 1 @ out
—\qpl(n >, pf)ut)— qpfn ), and pfmt)—qu) Where p ) are the

elements of the density matrix of |¢;,). Then ﬁdehty is found
as

F(o)=1- %[2;; sinX(812) — (Vg — g)sin2 8].  (45)

Averaging this over all possible input states, average fidelity
is found as
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FIG. 6. State dependent teleportation fidelity when the qubit to
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and quantum operations (lower) and the secure quantum teleporta-
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timal PCCM fidelity.

F=

w|l\)

2Vg-p), (46)

O‘\I»~

which is the same as for scenario 2, when the entangled state
is distributed through the ADC. We see that depending on the
damping parameter, the range of qubits that can be teleported
with a desired fidelity changes (see Fig. 6). For example,
when p=0.8, when only |¢,) is subjected to noise, the states
with 6<<0.54367 and 6<<0.40217 can be teleported, respec-
tively, with F>2/3 and F>5/6. For the |¢,) damped case,
all the states satisfying 6<<0.26777 can be teleported with
F>5/6. In Fig. 6, we have depicted the fidelity of the
PCCM from which we see that when p=1/2, the teleporta-
tion fidelity and the PCCM fidelity are equal for the qubits
0= 6=/2. In this range of qubits, a secure teleportation is
possible for damping rates p<<1/2. As & approaches mr, the
damping rate p approaches zero to achieve secure teleporta-
tion.

When the qubit is subjected only to the PDC, the output
density operator becomes Py =¢pin+plcos*(5/2)|0)0|
+sin in*(6/2)
from which average fidelity can be written as F=1-p/3.
Comparing these equations with Eq. (42), it is seen that
when the PDC affects only the qubit to be teleported, the
fidelity is the same as in scenario 2 when the distributed
entangled states undergo the PDC. We observe the same
similarity if only the qubit |¢,) is subjected to DC. In this
case the fidelity expression is given as in Eq. (44).

In the analysis of security of a damping particular chan-
nel, the fidelities of optimal cloning machines were taken as
a reference: either (i) the optimal universal cloning machine
if no a priori information about a teleported state is given or
(ii) the optimal phase-covariant cloning machine if prior par-
tial information about the state is available. Clearly, a chan-
nel is secure if it provides a better fidelity than the optimal
cloning. This is the lowest fidelity bound for security of any
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channel assuming that Alice sends her qubit through a damp-
ing channel, while an eavesdropper copies qubit at Alice’s
site and does not send it (or sends it through a perfect chan-
nel). Otherwise, the action of the channel will restrict the
quality of the cloning consistent with the channel and, thus,
less demanding security conditions can be given.

IV. CONCLUSION

We have examined the problem of teleportation fidelity in
the presence of various types of noise during the entangle-
ment distribution of the teleportation process. Using the fully
entangled fraction and concurrence, we derived the bounds
on the damping parameters of channels so that the average
fidelity (i) exceeds the classical limit, and (ii) satisfies the
security condition for teleportation. Moreover, we derived
the range of states that can be teleported accurately with a
desired fidelity value and studied how this range is affected
by noise. For the security condition, we considered eaves-
droppers with universal and phase-covariant cloning ma-
chines where the first eavesdropper has no information on
the qubit to be teleported but in the latter he/she knows the &
but not the relative phase 7.

For the ADC, although the bounds on p for one-qubit
affected case are the same for both |¢*) and |¢*) as the
source entangled state, for the two-qubit affected case we
find that the bounds are different and much tighter for |¢/*).
This implies that if one is given |¢/*), instead of distributing
this state directly, it is better to first locally convert to |¢*)
and distribute it. In that case the effect of damping is less
pronounced. We observe that only for the ADC these bounds
change with the initial MES to be distributed. We have found
that contrary to the case of the ADC, in the presence of the
PDC and DC, the two-qubit affected case cannot be made to
have higher entangled fraction than the one-qubit affected
case. Hence the average fidelity cannot be increased by sub-
jecting one of the qubits to controlled dissipation. As seen in
Fig. 7, average fidelity is dependent on the type and strength
of damping in the channel. For the PDC, fidelity is always
larger than 2/3 if p # 1, on the other hand for the ADC and
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FIG. 7. Average fidelity with noisy channels: a: PDC, b: ADC,
and c: DC for scenarios 1 (left) and 2 (right). Horizontal dashed
lines denote the limits between classical and quantum operations
(lower) and the secure quantum teleportation (upper).

DC average fidelity decreases below 2/3 down to 1/2 de-
pending on the damping rate.

We have discussed the direct transmission case too.We
observe that the results obtained for direct transmission and
teleportation with the one-qubit affected entanglement distri-
bution case (scenario two) are the same in the cases of the
DC and PDC. However, discrepancies are seen for the case
of the ADC. Average fidelity for scenario 2 is more immune
to damping than the direct transmission.

This study shows that information on the noise affecting
the teleportation process during the phases of entanglement
distribution and the qubit preparation can be helpful in in-
creasing the fidelity. Moreover, it is important to note that if
the source of noise in the process is not known then all
should be attributed to an eavesdropper. Thus the criterion on
the teleportation fidelity should be reformulated taking into
account the set of states from where the teleported state is
chosen and the optimal cloning machine for that set.
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