
Consistent Simulation Environment 
with 

FMI based Tool Chain 

 

Edo Drenth1, Mikael Törmänen2, Krister Johansson2, 
Bengt-Arne Andersson1,Daniel Andersson1, Ivar Torstensson1, Johan Åkesson1 

1Modelon AB 
Ideon Science Park, Lund, Sweden 

info@modelon.com 

2Volvo Car Corporation 
Dept. Complete Powertrain 

Göteborg, Sweden

 

Abstract 
Systems engineers face the ever increasing 
chase for reduced time to market, while the 
systems to develop ever increase in 
complexity. Software systems design and 
integration processes have therefor evolved 
along the well-known V-cycle. 

This paper will focus on the software 
integration for mechatronic systems as they 
develop fast due to high demands and 
challenging requirements in the automotive 
industry. 

The development order of model in the loop 
(MIL), software in the loop (SIL), processor in 
the loop (PIL) and hardware in the loop (HIL) 
can be seen as state of the art practised by 
many systems engineers. Driver in the loop 
(DIL) may be in its infancy, but rapidly 
growing. 

The novelty presented in this paper is the 
consistency of the plant models used in the 
integration chain supporting consistent model 
data propagation: Functional Mock-up Units 
(FMU) defined by the open standard of the 
Functional Mock-up Interface1 (FMI). 

Keywords: FMI, FMU, MIL, SIL, PIL, HIL, plant 
models, Modelica 

1 Background 
Volvo develops and calibrates its own engine 
control software. The model based design 
(MBD) process has been deployed for many 
years. The legislation on exhaust emissions 
and fuel consumption has become significantly 
stricter the past years. The change in 
legislation increases the burden of developing 
control software, calibration of parameters and 
validation of the mechatronic system. As a 
result efficiency improvements to the MBD 
process are required. 

Experiences tell that the average development 
and project engineer does not feel comfortable 
with all aspects of MBD. It might simply be 
out of their comfort zone. Part of the project 
assignment was to bring MBD to the test and 
calibration engineer instead. These engineers 
shall be able to work with their de facto 
industry standard measurement, calibration and 
diagnostic (MCD) tools. The aim is to have a 
transparency for the software calibration tools 
as depicted in Figure 6. 

2 Introduction 
The FMI technology has been adapted fast by 
many modelling and simulation software 
vendors. This rapid adaptation of this open 
standard clearly is proof of an industry demand 
for (plant) model exchange. In the past the 
chain from MIL to HIL has been bridged by 

DOI
10.3384/ECP140961277

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1277



 

 

many hours of manual labour to mix-and-
match many, often for reasons of IP black-box, 
models from different sources and developed 
on different platforms. This was tedious work 
and error prone. 

In the ideal case the plant model follows the 
entire integration process without any model 
modification. With the introduction of the FMI 
toolbox for MATLAB® Coder (FMIT-Coder) 
this vision is achieved. 

Yet, the entire development chain from model 
in the loop to hardware in the loop can make 
use of one and the same source for a plant 
model exported as a Functional Mock-up Unit, 
FMU. 

The main contributions of this paper are the 
use of consistent models throughout the 
integration workflow from desktop to test bed 
in the engine controller development, which by 
the introduction of the FMIT Coder has been 
made available. It is a solution to Volvo’s 
mission to bring simulations to the test 
engineer. The engine test and calibration 
engineer can with help of industry standard 
protocols and tools, like the INCA9 based 
product suite, do his/her calibration work 
against models or hardware. 

The paper is outlined as follows. An 
introduction to the FMI technology is briefly 
drawn up, with emphasis on the toolbox 
available in MATLAB®. The engine and 
vehicle plant model based on commercially 
available Modelica libraries are introduced. 
This is to follow of a more detailed integration 
flow discussion with help of consistent use of 
FMU based plant models. 

3 The Functional Mock-up 
Interface 

3.1 Introduction8 
The FMI is a tool independent standard to 
support both model exchange (ME) and co-
simulation (CS) of dynamic models using a 
combination of xml-files and compiled code. 

The first version was published in 2010. The 
FMI development was initiated by Daimler AG 
with the goal to improve the exchange of 
simulation models between suppliers and 
OEMs. FMI is supported by many CAE tools 
and is used by automotive and non-automotive 
organizations throughout Europe, Asia and 
North America. 

3.2 FMI Toolbox for MATLAB 
FMI Toolbox for MATLAB enables users to 
import FMUs into Simulink® models by means 
of a block-set supporting FMI for Model 
Exchange 1.06 and FMI for Co-simulation 1.07. 
The FMU blocks can then be connected to 
native Simulink blocks, e.g., to support 
development of control systems and MIL 
scenarios. The FMU blocks offer a graphical 
user interface to parameterize the FMU, set 
initial conditions, configure outputs and to set 
the FMU log level, see Figure 1. 

 

Figure 1 FMIT Dialog 

3.3 The FMI ME Calling Sequence 
The option for co-simulation is a self-
contained sampled system, but the model 
exchange alternative requires some tight 
interfacing with the master solver. 

The FMI standard defines a calling sequence 
for simulating the FMU, see Figure 2. The FMI 
functions are executed in the appropriate order 
from the FMU block in the Simulink model. 
The FMU block is based upon an S-Function 
block which defines a list of call back 
functions. When the simulation loop is started, 
the S-function’s call back functions are called 
which then calls the FMI functions. 

Consistent Simulation Environment with FMI based Tool Chain

1278 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961277



 

 

3.4 FMIT Coder for MATLAB 
FMIT Coder, which is an extension to FMIT, 
supports export of FMUs from Simulink 
(plant) models. Export of FMUs according to 
FMI for Model Exchange 1.0 and FMI for Co-
simulation 1.0 (using the fixed-step solvers 
available in Simulink) is supported. This 
feature, which relies on Simulink Coder™, 
enables easy integration of Simulink models in 
FMI compliant tools. 

 

Figure 2 FMI for Model Exchange 1.0 state machine 
calling sequence. 

FMIT Coder also supports code generation 
from Simulink models containing FMU blocks, 
possibly from other sources than Dymola, by 
means of Simulink Coder. Currently only 
source code FMUs are supported. Supported 
targets include besides S-functions one real-
time platform. The latter target enables HIL 
simulation, where a source code FMU is 
connected to native Simulink blocks and the 
aggregated Simulink model is compiled into 
binaries that are executed on a real-time 
computer. This solution provides a tool 
independent approach to FMI-based HIL 
simulation. 

A target definition in Simulink Coder controls 
the code generation and can invoke function 

calls into the build process at the different 
stages of building. An S-function block may 
also hook into the build process that affects the 
code generation. By defining the S-function 
callback function mdlRTW, the S-function has 
to define a TLC-file and may also write data to 
the *.rtw file. The Target Language Compiler 
can then use this data to generate code for the 
FMU block. To control the compilation and 
linkage of the FMU block, the rtwmakecfg.m 
can be used. The rtwmakecfg returns a 
predefined structure with libraries and source 
code to use in the build process. 

The FMIT GUI allows the user to edit output 
signals from the FMUs and make these 
accessible on the real-time target together with 
the other Simulink signals. This allows 
debugging for FMU internal signals on the 
HIL platform too. 

4 Plant model 
To support the different steps in the systems 
integration process, the plant model is ideally 
configured with multi-fidelity4 configurability 
in mind. 

As an example the engine model, shown in 
Figure 3, is implemented using the Dymola® 
Engine Dynamics Library®. The model 
accounts for 1D gas dynamics, lumped thermal 
masses and inertia of the turbo machinery. 
Thanks to the flexibility of the Modelica 
language, relevant modeling assumptions can 
be modified by setting model parameters or 
switching the gas property model. The user can 
for example, within the same model, choose to 
disregard the thermal dynamics of metal 
masses and the gas, disable generation of 
events at flow reversal and adjust time 
constants of gas dynamics. From a 
parameterized plant model with detailed 
dynamic representation, by setting flags related 
to physical modeling assumptions, a simplified 
model well suited for fixed step solvers and 
HIL can be obtained. 

Poster Session

DOI
10.3384/ECP140961277

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1279



 

 

For defining the engine load a vehicle model 
created with help of the Vehicle Dynamics 
Library® is deployed. The deployment of the 
vehicle model can either be in the same FMU 
as the engine model, because both used 
libraries are supported in Dymola, but may be 
two separate FMU’s. The latter supports a 
transparent and consistent use of models all the 
way from desk top to an engine test bed. 

 

Figure 3 Engine model diagram layer 

5 Systems integration process 

5.1 Introduction 
For completeness many integration steps are 
outlined and discussed below, but a deployed 
development process does not necessarily 
include all presented steps in this document. 

5.2 Model in the loop 
The accessibility and quality of code 
generators has improved tremendously during 
the nineties. This has been an enabler for 
development of controllers in a simulation 
environment. 

Developing control software in a simulation 
environment, like Simulink® in Figure 4, 
allows algorithm testing in a very early stage 
of development. The design iterations can be 
much faster, because the simulation 
environment allows the control engineer to 

quickly change algorithms and instantly 
simulate and thus test. 

Because the plant model is supplied as an 
FMU and run with help of the FMI Toolbox 
for MATLAB5 (FMIT), the development 
engineer that actually masters the domain of 
the hardware can produce a plant model in his 
favourite and ideal modelling environment. In 
this case Dymola® Engine Dynamics Library®. 

 

Figure 4 A MIL (blue block) example of a simple 
engine controller and an EDL based engine model 
exported as an FMU (white block) 

5.3 Software in the loop 
Once the algorithms in the MIL stage perform 
as designed the controller model can be 
transformed into c-code with a coder like 
Simulink Coder or TargetLink® including 
debug information. This exported software 
code can in its turn be linked with external 
sources of code or manual written code if 
desired. 

The created code can firstly be tested in 
Simulink as shown in Figure 5. This solution 
mimics the MIL solution very closely. 

The created code can also be hooked up to 
communicate with other systems and sub-
systems in for instance Silver™ by QTronic3. 
Silver supports virtual module integration and 
test automation. An important benefit for 
Volvo using Silver is the support it has for the 
already deployed engine calibration tools and 
protocols. The calibration engineer won’t see 
the difference if s/he is calibrating a virtual or 
a real engine. 

Consistent Simulation Environment with FMI based Tool Chain

1280 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961277



 

 

The great benefit of SIL is the possibility to 
debug code intended for implementation in a 
mechatronic system. Of course, code can be 
debugged on HIL rigs too, but with SIL the 
algorithms can be tested by means of virtually 
holding time in contrast to HIL based testing 
where time marches on and the external signals 
continue to be updated. 

 

Figure 5 A SIL (blue block) example of a simple 
engine controller and an EDL based engine model 
exported as an FMU (white block) 

All SIL testing can be performed against the 
same plant model FMU as in MIL. 

5.4 Processor in the loop 
The next integration step would be processor 
in the loop. Processor in the loop may be seen 
as a half-way house for HIL. The actual target 
processor is used. High speed IO is directly 
connected to the simulation environment and 
the real sensors and actuators are omitted. PIL 
enables the developer to analyse stack memory 
and CPU load analyses for instance. 

PIL requires a plant model which runs in real-
time and from an FMI perspective would have 
the same requirements as the HIL solution (see 
section below). 

In order to allow high fidelity plant models, 
Virtual PIL2 can be deployed because there is 
no real-time constraint in this configuration. 
This solution creates the ability of target code 
debugging on algorithm level against high 
fidelity signals because time can be stepped 
through, in contrast to PIL and HIL where time 
marches on after a break point in the code. 

5.5 Hardware in the loop 
First, if not foregone by PIL, when the actual 
electronic controller is to be tested on a HIL 
rig with its actual sensors and actuators (these 
are possibly emulated), a demand for real time 
capable FMU’s arises. At the same time there 
exists a wide variety of RT platforms and 
hence the plant model FMU needs to be 
exported as source code. Many of FMU export 
compliant tools will be able to produce source 
code, but may need a special license module. 

Access to source code allows cross compiling 
to RT systems for HIL simulations. 

5.6 Engine calibration support 
Test and calibration engineers use typical 
automotive measurement, calibration and 
diagnostic applications that communicate with 
embedded targets with standardised protocols. 
Silver connects with INCA and thus all 
alternatives from SIL onwards to test bed (and 
in vehicle actually) can use the same 
calibration and measurement tool. Please refer 
to Figure 6 to get an overview of the process. 

With the deployment of FMUs across all 
integration levels, Volvo is able to offer its test 
and calibration engineers one and the same 
interface independent of the integration phase. 
The engineer won’t necessarily know if s/he is 
calibrating virtual or in real life. 

A high fidelity engine plant model consisting 
of a data-driven combustion model and first 
principles air charge model will support virtual 
engine calibration at SIL/VPIL level and 
reduce the number of test beds (and vehicle 
prototypes for that matter) necessary for 
calibration. 

5.7 Test cell support 
The above discussed engine plant model in the 
MIL to HIL chain can be replaced by a 
physical engine in a test bed. The loads in the 
test bed are determined virtually with the 
FMU-Vehicle representing the drive line and 
road loads on the vehicle. This test cell support 
enables calibration of engine controllers with 
respect to different driving cycles. One benefit 

Poster Session

DOI
10.3384/ECP140961277

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1281



 

 

of using virtual vehicle models is that the 
environmental conditions are more controllable 
than in real vehicles tests. 

The consistent usage of plant models across 
the different experimental domains allows 
propagation of parameters for the physical 
models and data for the empirical models for 
the plant models at different fidelity level all 
the way back to MIL. 

Data retrieved from tests will be part of data- 
and model regression and the process is thus 
improving quality of results over time. 

6 Process summary 
The process summary is depicted in Figure 6. 
Dymola is the environment where the plant 
models for the physical systems, engine and 
vehicle in this case, are created. These models 
are exported as FMU’s. On binary level these 
FMUs can with help of FMIT be used in 
Simulink and can also be natively imported to 
Silver. In Simulink the control software model 

(CSW) is interacting with the physical plant 
models. 

Simulink Coder or TargetLink allow the CSW 
to be exported to Silver. This solution allows 
for SIL and VPIL. Silver supports standard 
CAN protocols and thus standard already 
available measurement, calibration and 
diagnostic (MCD) software can be used. 

The next logical step is the export of plant 
models to the HIL environment with FMIT 
Coder. The model fidelity might be lower to 
account for the real time constraints this 
solution has. The CSW is in the real ECU 
hardware exported with TargetLink. Of course 
the standard MCD software can be invoked to 
alter the ECU calibration. 

Currently the final stage will be the engine test 
bed that has its loads determined with an FMU 
for the vehicle with driveline. For the MCD 
software this is exactly the same use case as 
the HIL solution. 

Figure 6 FMU’s central role in control system integration process. For sake 
of simplicity the PIL solutions are omitted. TL=TargetLink, SC=Simulink 
Coder, CSW=Control Software. 

Consistent Simulation Environment with FMI based Tool Chain

1282 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961277



 

 

The test bed results can be fed back into the 
model parameters and data to evolve fidelity 
and quality of models. An iterative process is 
created to continuously improve model fidelity 
and quality. 

At the end of the process of course, the engine 
and engine controllers are assembled in the 
vehicle. The same MCD-toolset can be used. 

7 Conclusions 
With the speed FMI technology is embraced in 
the industry is clear sign it has solved a long 
existing challenge for systems integration and 
validation engineers. Often tedious and error 
prone manual modifications to adopt the 
supplied models and data to different 
simulation environments have become a 
technology of the past with the introduction of 
FMI compliant FMUs. 

With the FMIT-Coder the FMI based chain of 
FMU deployment is complete. Yet the entire 
suite of validation and verification 
development stages is covered by FMI 
technology. 

The consistent use of FMI compliant models 
has been an enabler for improved work flow 
efficiency and model quality of the MBD 
process. 

Part of the project assignment was to bring 
MBD to the test and calibration engineer. 
These engineers shall be able to work with 
their de facto industry standard measurement, 
calibration and diagnostic tools. The aim to 
have a transparency for the MCD tools is 
accomplished and depicted in Figure 6. 

8 Copyright notice 
All trademarks mentioned belong to their 
respective owners. 

 

9 References 
1. Blochwitz, T., Otter, M., Arnold, M., 

Bausch, C., Clauß, C., Elmqvist, H., 
Junghanns, A., Mauss, J., Monteiro M., 
Neidhold, T., Neumerkel, D., Olsson, H., 
Peetz, J.-V., Wolf, S., The Functional 
Mockup Interface for Tool independent 
Exchange of Simulation Models, 8th 
Modelica Conference, Dresden, Germany, 
2011 

2. Liebezeit, Bräuer, Serway, Junghanns: 
Virtual ECUs for developing automotive 
transmission software, 10th CTI 
Symposium Innovative Fahrzeug-Getriebe 
Hybrid- und Elektro-Antriebe, 5.-
8.12.2011, Berlin, Germany 

3. Junghanns, A., Virtual integration of 
Automotive Hard- and Software with 
Silver, Qtronic GmbH, Berlin 

4. Andreasson, J., Andersson, D., Batteh, J., 
Gohl, J., Griffin, J., Krueger, I., Integrated 
simulation of a e4WD vehicle using 
Modelica, Advances in Automotive 
Control, Volume#7, Part#1, 2013 

5. FMI Toolbox User's Guide 1.7, Modelon 
AB, Lund, Sweden, 2013 

6. Functional Mock-up Interface for Model 
Exchange, Version 1.0 

7. Functional Mock-up Interface for Co-
Simulation, Version 1.0 

8. https://www.fmi-standard.org/ 
9. Measurement, ECU Calibration, and 

Diagnostics –Development Solutions for 
Automotive Embedded Systems, ETAS 
GmbH, Stuttgart, Germany, 2010 

Poster Session

DOI
10.3384/ECP140961277

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1283


