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Abstract

This paper addresses the main issue encountered with
the co-simulation of coupled systems that exchange
energy, i.e. the trade-off between computational per-
formances and numerical stability. This property is
first explained in details with the help of a simple
generic test system for which a large oversampling
with respect to the Nyquist frequency is required in
order to keep a good level of accuracy. The linearly
implicit stabilization method from [4] is then imple-
mented and tested thanks to the directional directives
computation capability of the FMI for Co-simulation
2.0 standard. Some minor extensions to the stan-
dard are proposed to efficiently implement the method.
When applied to the test system, it is shown that large
co-simulation steps can be taken, and hence significant
computation time speed-ups are observed.

Keywords: Functional Mock-up Interface; co-
simulation; linear system theory; stability

1 Introduction

Among the existing methods for coupling simulation
models and software, co-simulation is used for per-
forming transient simulations of coupled simulators1.
The fundamental principle of co-simulation is to lo-
cally decouple in time simulators that are synchro-
nized only through a limited set of coupling variables
at scheduled time instants.

The most widespread numerical co-simulation
scheme, is an explicit non-iterative Jacobi-type se-
quence of forward solving steps [7] done by each in-
volved numerical solver (the stepping is described on

1A simulator being defined as the combination of a simulation
model and mathematical libraries with a numerical solver, the lat-
ter being itself a combination of numerical integrators of ODE or
DAE systems, error estimators, step size and order control heuris-
tics, and discrete event schedulers.

figure 1 in the case of two simulators).

Figure 1: The explicit modular stepping scheme ap-
plied to the co-simulation of two coupled subsystems.
Hk is the size of the current co-simulation or macro
step.

As a consequence of this stepping scheme, each
simulator is seen as a discrete dynamical system from
the outside, and although each simulator is able to
reach convergence if taken alone, the co-simulation
process of energetically coupled systems is condition-
ally stable, even if the system is devoid of algebraic
loops. This means that the convergence of the co-
simulation process depends on the size of the co-
simulation step, also called macro-step. An abso-
lute stability limit does exist beyond which divergence
is rapidly reached, and slightly below this limit un-
damped numerical oscillations still propagate between
the subsystems. Divergence and poor accuracy are
usually avoided by taking small enough macro-steps,
which prevents the numerical solvers from taking large
numerical micro-steps and thus leads to reduced com-
putational efficiency with respect to continuously cou-
pled systems that are integrated with a unique variable-
step solver.

This property leads to a trade-off between computa-
tional efficiency and numerical stability which can be
studied on the simple test case of a strongly coupled
system introduced in the next section. In a latter sec-
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tion, a numerical method is then implemented within
the FMI for Co-simulation 2.0 framework, and tested
with the same system, showing that this trade-off can
be significantly enhanced.

2 A conditionally stable co-simulated
system

2.1 Description of the test system

We consider a two degrees of freedom hydraulic sys-
tem [1] obtained by connecting serially two elemen-
tary subsystems (see figure 2) made of:

1. a pipe modeled as a lumped-parameter nonlinear
R-I element, with first-mode inertial effects and
regular head losses

2. a volume modeled as a lumped-parameter non-
linear C-R element, with fluid-related compress-
ibility effects, and singular head losses due to a
leakage to the main circuit tank

The nonlinearities arise from the isothermal fluid prop-
erties that relate the density and compressibility to the
system pressure, and from the laminar-turbulent fric-
tion models of the head losses. Some boundary con-
ditions are introduced to model the surrounding envi-
ronment: a constant pressure source on the left, and a
transient flow rate source on the right.

2.2 Analysis of the continuously coupled sys-
tem

The figure 3 shows the transient response of the con-
tinuously coupled system to the change of flow rate
applied by the source on the right. The system param-
eters (pipe length and diameter, roughness, volume,
head loss, ...) are chosen to be the same in the left
and right subsystems. This choice is made to exem-
plify the nature of the coupling and its consequences
on the dynamics of the coupled system.

Indeed, the dynamics of each subsystem can be
studied by linearizing the system around some oper-
ating points, for example at the steady state following
the first transient, for 0.5 ≤ t < 1. Instead of building
the nonlinear state space and then evaluating the Jaco-
bian matrix, a better understanding of the dynamics is
obtained by analyzing the bond graph of the system.

Following the bond graph analysis of figure 4 and
considering that the energy storage and dissipation el-
ements are modeled using linear behaviour law, each
elementary subsystem can be modeled by a first order

Figure 3: Transient pressure in the two hydraulic
chambers (top) and source flow rate (bottom). Numer-
ical simulation performed with the LSODA variable-
step solver

Figure 4: Bond graph of the system showing the parti-
tioning in two subsystems. The coupling variables are
e1 (output effort from first subsystem on the left) and
f2 (output flow from second subsystem on the right).
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Figure 2: Sketch of an hydraulic two degrees of freedom system obtained by connecting two identical R-I-R-C
subsystems built with LMS Imagine.Lab AMESim

linear system of ordinary differential equations in the
state variables qi and pi associated with the C and I
energy storage elements. For subsystem 1, the state-
space equations are given by:

(
q̇1
ṗ1

)
=

(
−1/τ 1/I
−1/C −2ζ ω0

) (
q1
p1

)

+

(
0 −1
1 0

) (
e0
f2

)
(1)

where ω0 = 1/
√

IC, ζ = r/(2ω0 I) and τ = 1/(RC)
are the usual reduced parameters of a first degree of
freedom linear system, and e0, f2 are respectively the
effort source of the left subsystem, and the flow source
of the right subsystem. The output relation of subsys-
tem 1 provides the effort e1 associated with the capac-
itive element:

e1 =
(

1/C 0
) ( q1

p1

)
+
(

0 0
) ( e0

f2

)
(2)

For subsystem 2, it yields:

(
q̇2
ṗ2

)
=

(
−1/τ 1/I
−1/C −2ζ ω0

) (
q2
p2

)

+

(
0 −1
1 0

) (
e1
f3

)
(3)

where f3 is the flow source on the right of subsystem.
The corresponding output relation gives the flow f2
that is also the input of subsystem 1:

f2 =
(

0 1/I
) ( q2

p2

)
+
(

0 0
) ( e1

f3

)
(4)

For any subsystem, defined by equations (1) or (3),
and provided that the damping parameters ζ and 1/τ
are small, the eigenvalues of the Jacobian matrix are

given by

λi =−ζ ω0 (1 +
1

2ζ ω0 τ
)

± j ω0

√
1−ζ 2 (1− 1

2ζ ω0 τ
)2 for i = 1,2 (5)

whereas the eigenvalues of the whole system obtained
by coupling the equations (1) and (3) through the out-
put relations (2) and (4) are given by

λi =−ζ ω0 (1 +
1

2ζ ω0 τ
)

± j ω0

√
φ 2

i −ζ 2 (1− 1
2ζ ω0 τ

)2 for i = 1,2 (6)

where φ 2
i = 3±

√
5

2 are the coupling coefficients. The

non-unity ratio φ1
φ2

=
√

3+
√

5
3−
√

5
6= 1 expresses the fact

that the two subsystems are strongly coupled and that
part of the dynamics lie in the coupling itself.

2.3 Analysis of the co-simulated system

The nonlinear hydraulic system of figure 2 being parti-
tioned in the two subsystems shown on 5, the resulting
coupled system is co-simulated by assigning to each
subsystem a slave simulator which embeds a numeri-
cal solver. With the explicit modular stepping shown
on figure 1, the output variables of each subsystem e1
and f2 are sampled at the communication points tk, and
are taken as input variables which are held constant on
the duration Hk of the macro-step.

Based on the eigenvalues (6), it should be possible
to schedule the macro-steps (Hk)k=0,··· ,M−1. A first ap-
proach consists in choosing a step size smaller than the
Nyquist frequency, i.e. half the smallest time constant
of the system, in order to ensure a proper sampling of
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Figure 5: Sketch of the two nonlinear hydraulic sub-
systems being co-simulated within LMS Imagine.Lab
AMESim. Blocks labeled SHM and shm are used
for exchanging the coupling variables at the scheduled
communication points. SHM stands for master simu-
lator, whereas shm identifies the slave simulator.

the coupling variables:

Hk ≤
π

max
i=1,2
|λi|

Unfortunately, this bound is too high regarding sta-
bility. This can be shown empirically by performing
co-simulation with macro step sizes slightly smaller
than the Nyquist bound (about one tenth of the above
limit period, for small damping factors of less than
1 %). In a few macro-steps, instabilities propagate be-
tween the two subsystems that rapidly lead to diver-
gence. To understand this phenomena and be able to
correctly schedule the macro step size, it is necessary
to fully analyze the stability of the system with cou-
pling variables subjected to a zero-order sample and
hold process, as shown on figure 6.

Stability analysis of this type of loop sampled sys-
tem is carried by following the methodology described
in [8]. This analysis, which focuses on the dicretiza-
tion of the coupling variables induced by the stepping,
relies in other respects on the assumption that the sub-
systems can be exactly integrated by their respective
numerical solvers2. Since there are only two subsys-
tems connected through a unique loop, the analysis is
done by considering the discrete-time transfer func-
tion associated with any of the two coupling variables
which are obtained from the linearized3 state-space

2or at least that these variable-step solvers are able to bound
the truncation errors by any arbitrary tolerance

3around the same operating point reached in 0.5≤ t < 1
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Figure 6: Bloc diagram of co-simulated system. H is
the length of the current macro-step.

system (1)(2)

e1(z) =−Z
[

1− e−H s

s
G1(s)

C

]
f2(z)

+ Z
[

ω2
0 G1(s)
s + α1

e0(s)
]

(7)

or (3)(4)

f2(z) = Z
[

1− e−H s

s
G2(s)

I

]
e1(z)

+ Z
[

ω2
0 G2(s)
s + α2

f3(s)
]

(8)

with
Gi(s) =

s + αi

(s + α1)(s + α2)+ ω2
0

and
α1 = 2ζ ω0, α2 = 1/τ

By combining the transfer functions (7)(8) and
noticing that z = eH s by definition, the closed-loop
transfer function is given by:

(1 + G?(z))e1(z) = ω2
0 Z
[

G1(s)
s + α1

e0(s)
]

− ω2
0

C
G?

1(z)Z
[

G2(s)
s + α2

f3(s)
]

(9)

in which

G?
i (z) = (1− z−1)Z

[
Gi(s)

s

]
(10)
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and
G?(z) = ω2

0 G?
1(z)G?

2(z) (11)

is the open loop discrete-time transfer function. With-
out giving here all the details about the calculation
of (10) obtained using tables of Z-transforms, the
Nyquist criterion [6] can be applied on the open loop
transfer function (11) to evaluate the stability.

For given values of the reduced parameters, for ex-
ample ζ = 0.1%, and ω0 τ = 0.5, the Nyquist plot (fig-
ure 7) shows that the system is unstable for macro-step
sizes such that H ω0 φ1

π ' 0.1.

Figure 7: (top) Nyquist plot of the open loop trans-
fer function for ζ = 0.1%, ω0 τ = 0.5, and H '
0.1π/ω0 φ1, which is a ten times oversampling of the
Nyquist frequency. (bottom) Zoom on the unit cir-
cle showing the encirclement of the -1 point by the
z = e j ω H contour for 0≤ ω H ≤ π

With the same values of the damping parameters, it
can be shown that the absolute stability limit is reached
for H ω0 φ1

π ' 0.01, and a phase margin of at least 2 ◦ is
obtained for a ratio less than 0.002, which means over-
sampling 500 times the Nyquist frequency. The ef-
fect of the damping coefficients on the phase margin is

analyzed on figure 8. This oversampling requirement

Figure 8: Plot of the phase margin versus macro-step
size H, for different values of the the damping factor
ζ (left), and of the decay time constant τ (right).

makes co-simulation unpractical for strongly coupled
systems that are lightly damped. Indeed, comparison
of the CPU time spent for performing the direct simu-
lation of the continuously coupled system of figure 2,
with the time needed for co-simulation with 500 times
oversampling, exhibits a large slowdown, as shown on
table 1. This is easily explained by looking at the num-
ber of micro-steps taken by the numerical solvers (last
column of table 1). In the case of continuous simula-
tion, the unique LSODA variable-step solver uses only
26000 steps, taking steps as large as 76 µs, which is
only a four times oversampling of the Nyquist limit
period π

ω0 φ1
. With co-simulation the local numerical

solvers used for integrating each subsystem (DOPRI5
variable step solvers) cannot take large steps since the
micro-step size is bounded by the macro-step size. It
yields a large number (2× 106) of dynamics function
evaluation by the two numerical solvers, which is in-
efficient with respect to the frequencies of the coupled
system.

3 Implementing the linearly implicit
stabilization method

The rationale behind this method is to mitigate the
stability-performance trade-off exemplified in the last
section, by extending the phase margin. The linearly
implicit stabilization method, first described by Arnold
[4], makes use of the Jacobian matrices of the subsys-
tems to build reduced linear models of the subsystems
in state-space form that are exactly integrated locally
in time using an unconditionaly stable method. This
allows to take relatively large macro-steps, which in
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Type of simulation CPU Number of Maximum micro-
time [s] micro-steps step size [µs]

Direct simulation with LSODA < 1 26 000 76
variable-step solver

Co-simulation with H = 1 µs 70 2 000 000 1
(H π

ω0 φ1 = 0.002)

Table 1: Comparison of continuous time simulation with co-simulation

turn do not restrict the size of the micro-steps taken by
the embedded numerical solvers.

3.1 Description of the method

According to the FMI specification [5] the external
representation of a system contained in a slave corre-
sponds to a system of ordinary differential equations.
Consequently the mathematical model of the whole
coupled system is described by the following set of
ODEs:

ẋ(t) = f (x(t),u(t)) (12)

y(t) = g(x(t),u(t)) (13)

u(t) = K y(t) (14)

where x(t) = (x1(t), x2(t), · · · , xN(t)) is the
state vector obtained by gathering the state
vectors of the N ≥ 2 subsystems being in-
volved, u(t) = (u1(t), u2(t), · · · , uN(t)) and
y = (y1(t), y2(t), · · · , yN(t)) are the input and
output variables of all subsystems.

The third equation, which is not specified in the
slave subsystems but in the co-simulation master, is
required to close the above system. It defines how the
output variables are connected to the input variables
through a K matrix, which verify the following prop-
erties:

• it is a square matrix, since it can be assumed with
no loss of generality that the output of a subsys-
tem is connected to exactly one input of another
subsystem

• the elements of K take their value in {0,1}
• there is exactly one 1 value per row and column

of K

The FMI specification [5] for Co-simulation allows
a slave subsystem to expose its Jacobian matrices re-
lated to the equations (12-13):

A = ∇x f (x,u) B = ∇u f (x,u)

C = ∇xg(x,u) D = ∇ug(x,u)

The linearly implicit stabilization method intro-
duced by Arnold in [4] relies on the following three
assumptions:

1. the product DK is assumed to be nilpotent [3],
since the class of co-simulation methods consid-
ered here do not take into account algebraic loops
on coupling variables

2. Inside a co-simulation macro-step, when t ∈
[tk, tk + Hk[, part of the system (12-13) can be ap-
proximated by a linear time invariant system ob-
tained by linearizing the ODEs and the output re-
lation around the point x = x(tk), u = u(tk)

3. The linear approximate system is discretized us-
ing either the backward Euler method or the
trapezoidal rule [2]

Assumption 2 leads to consider the following linear
system:

ξ̇ (t) = ẋ(tk)+ Aξ (t)+ B(w(t)−u(tk)) (15)

η(t) = y(tk)+C ξ (t)+ D(w(t)−u(tk)) (16)

where A,B,C,D are obtained at t = tk and ξ , η and
w are the counterpart of x, y and u in the linear system.
With this choice of variable, the corresponding initial
condition is given by ξ (tk) = 0.

The coupling equation (14) is thus rewritten to cou-
ple the dynamic system of each subsystem with the
approximate linear system, inside a macro-step:

u(t) = K η(t) (17)

w(t) = K y(t) (18)

On the duration of a macro-step, the differential
algebraic system made of equations (12), (15), (13),
(17), (16), (18) holds. As there is no algebraic loop
(assumption 1), this DAE can be reduced to a coupled
set of ODEs by taking the derivate the last four equa-
tions.
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Following assumption 3, the ODE (15) is first dis-
cretized using one of the two proposed methods:

(I−r (t−tk)A)ξ (t) = (t−tk) [ẋ(tk)+r B(w(t)−u(tk))]

where r depends on the discretization method and is
either 1 for backward Euler or 0.5 for the trapezoidal
rule. This equation provides an estimate for the state
vector derivative:

ξ̇ (t)'A (t) [ẋ(tk)+ r B(w(t)−u(tk))]

as well as for the output relation (16):

η̇(t) = C ξ̇ (t)+ Dẇ(t)

= CA (t) [ẋ(tk)+ r B(w(t)−u(tk))]+ Dẇ(t)

(19)

with
A (t) = (I− r (t− tk)A)−1

In order to explicitly take into account the lack of
algebraic loop, the equation (18) is approximated us-
ing the assumption 2. This means that the inputs w are
obtained from a linear approximation of the outputs y
of the subsystems around the point t = tk:

w(t)−u(tk) = K [C (x(t)− x(tk))+ DK (η(t)− y(tk))]

ẇ(t) = K [C ẋ(t)+ DK η̇(t)]

After substituting these two relations into (19) and
noticing the nilpotency of DK due to assumption 1,
an explicit differential equation for the outputs η is
obtained:

η̇(t) = CA (t) ẋ(tk)+ DKC f (x(t),K η(t))

+ rCA (t)BK [C (x(t)−x(tk))+DK (η(t)−y(tk))]
(20)

The coupling condition (17) applied to (12) finally
rewrites as:

ẋ(t) = f (x(t),K η(t)) (21)

These two ODE (20) and (21) along with the ini-
tial condition η(tk) = y(tk) explicitly define the dy-
namics of the system on the duration of a macro-step
[tk, tk+1 = tk + Hk[. At the end of the step the outputs
are evaluated and propagated among the subsystems
using (13):

y(tk+1) = g(x(tk+1),K η(tk+1))

3.2 Computational flow

The following notation is introduced to describe the
submatrices obtained by restricting to the variables in-
volved in the slave simulator numbered s∈{1, · · · ,N}:

• Ks,s is the square submatrix of K obtained by tak-
ing the columns corresponding to the output vari-
ables of slave s, and the rows corresponding to
the input variables of the other slave simulators
that are connected to the outputs of slave s;

• Ks,s is the square submatrix of K obtained by tak-
ing the rows corresponding to the input variables
of slave s, and the columns corresponding to the
output variables of the other slave simulators that
are connected to the inputs of slave s.

The computational flow is a two steps process, the
first step taking place at the communication point of
co-simulation, the second step being the continuous
time solving of the coupled DOE system (20)(21) dur-
ing one co-simulation macro-step.

At t = tk: The slave subsystem s ∈ {1, · · · ,N} com-
putes:

• the derivative of its state vector

ẋs(tk) = fs(xs(tk),Ks,s ηs(tk))

• its outputs

ys(tk) = gs(xs(tk),Ks,s ηs(tk))

• the Jacobian matrices

As,s = ∇x fs(xs(tk),Ks,s ηs(tk))

Bs,s = ∇u f (xs(tk),Ks,s ηs(tk))

Cs,s = ∇xgs(xs(tk),Ks,s ηs(tk))

Ds,s = ∇ugs(xs(tk),Ks,s ηs(tk)) (22)

• it also provides the updated value xs(tk) of its
state vector. If k = 0 this is the global initial con-
dition of (12)

• it receives its inputs and set up the stepwise local
initial condition for its extended state:

Ks,s ηs(t+
k ) = Ks,s ys(tk) (23)
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For tk < t ≤ tk+1: The slave subsystem s ∈
{1, · · · ,N} solves a subset of the coupled DOE system
(20)(21):

ẋs(t) = fs(xs(t),Ks,s ηs(t)) (24)

Ks,s η̇s(t) = fs(xs(t),Ks,s ηs(t), t) (25)

where fs is evaluated by the master:

fs(xs,Ks,s ηs, t) = Ks,sCs,.A (t) ẋ(tk)

+ Ks,s Ds,s Ks,sCs,s fs(xs,Ks,s ηs)

+ r Ks,sCs,.A (t)B.,s Ks,s [Cs,s (xs− xs(tk))

+ Ds,s Ks,s (ηs− ys(tk))] (26)

Practically, the derivative of the state vector ẋs is
provided by the slave to the master, which uses it for
evaluating the second term of equation (26) instead
of evaluating the function fs that appears in the right-
hand side of equation (24).

3.3 Implementation within the FMI frame-
work

The guiding principle behind the organization of com-
putation is a strict devolution of responsability be-
tween the slaves and the master in the co-simulation
process. Each slave FMU is responsible locally for the
system being solved and does not have any informa-
tion about the coupling and the surrounding environ-
ment. It is up to the master algorithm to gather and as-
semble this information from the different slaves and
to provide to the slaves ways for evaluating the ad-
ditional ODE that represent the linearized part of the
coupled system. This information is provided partly in
the description4 of the model structure of each slave,
and partly at run-time through appropriate functions
that evaluate the directional derivatives of the system
enclosed in the FMU. With this structure-related infor-
mation, as well as the variables exchanged at commu-
nication like the outputs of the models, state variables
and their derivatives, a cooperation between the mas-
ter simulator and slave simulators can be set up that
keep the organization clean from the point of view of
computational responsabilities.

In addition, the implementation of the stabilized
co-simulation has to be compatible with the classi-
cal modular stepping specified by the FMI for Co-
simulation [5]. This means that the stabilization
method operates only if both the slaves FMU and the

4stored in the corresponding XML file distributed with the
FMU

co-simulation master cooperate. If it is not supported
by any part of the coupled systems, the classical mod-
ular stepping with stepwise extrapolation has to be ap-
plied.

On the side of the slave FMU, it is mandatory to
first enable the computation of the directional direc-
tives of all state variables and connected outputs, with
respect to all state variables and connected inputs.
This is done by declaring the flag providesDirection-
alDerivative and by implementing the fmiGetDirec-
tionalDerivatives function of the FMI specification.
Moreover, the stabilization method being a model-
based extrapolation, it is not compatible with the op-
tional history-based extrapolation schemes that are al-
lowed by the FMI specification. So the current canIn-
terpolateInputs attribute has to be extended to specify
which type of extrapolation is actually supported.

The way the slave handles its input variables has
to be modified: the input variables that appear in the
dynamics equation (24) are now considered as addi-
tional state variables, according to equation (25), and
the input variables now act as initial conditions (equa-
tion (23)) for these state variables. The state vectors to
be solved by the numerical integrator embedded in the
slave is thus (xs,us), where us is actually Ks,s ηs, the
actual mapping between the outputs ηs of the linear
system and the inputs of the slave being done by the
master, since the structural information about connec-
tion (i.e. the elements of the K matrix) is only known
by the master simulator.

If the master does not support stabilization, the
right-hand side of equation (25) reduces to zero and so
the actual inputs of the slave do not vary: a zero-order
hold extrapolation is thus performed as defined in the
FMI specification when the canInterpolateInputs flag
is not set. In that case, the inputs of each slave is di-
rectly given by the initial condition (23), in which ys

are the outputs of the slaves that are fed to the inputs of
the slave number s, through the fmiGetReal and fmiSe-
tReal functions called by the master simulator at each
communication point (tk)k=0,··· ,M−1.

On the side of the master simulator, more tasks are
required to implement the linearly implicit stabiliza-
tion method. The master has to set up a callback func-
tion that is used to evaluate the dynamics associated
with the inputs of the slaves. Before co-simulation,
the model structure information of the slaves is used to
prepare the matrices and the computations that appear
in (26). Then, during co-simulation, these elements
are updated at each communication step, through calls
to the fmiGetContinuousStates, fmiGetDerivatives and
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fmiGetDirectionalDerivatives functions. Notice that
the first two functions are originally defined only in
the Model Exchange part of specification, so the Co-
simulation specification has to be extended in the fu-
ture. The same is true about the availability of the
callback function associated with relation (26). This
function is aimed at being called by the the numerical
solvers of the slaves, when performing the numerical
integration of (24)(25). A proposal for extending the
FMI for Co-simulation is to define a function called for
example fmiGetStabilizedInputDerivatives and having
the following arguments:

• the current time of the slave numerical solver at
which the right hand side of (26) is desired

• the current value of the additional state variables,
i.e. the stabilized inputs us = Ks,s ηs

• the current values of the state variables and state
derivatives (xs, fs(xs,us)) of the slave

• practically, a reference to the master environ-
ment, declared as componentEnvironment during
instantiation, may be needed to help the master
simulator identify the calling slave.

This function should return the vector of derivatives of
the stabilized inputs, according to relation (26). It has
to be declared by the master environment in the fmi-
CallbackFunctions argument of the slave instantiation
function.

The master algorithm is roughly sketched in Algo-
rithm 1, in which the additional tasks required for sta-
bilization are emphasized.

3.4 Test results

The hydraulic test case studied in section 2.1 and
composed of two elementary hydraulic systems con-
nected in serie is tested under various conditions of
co-simulation:

• Reference implementation : transient simulation
of the continously coupled system, using the
LSODA variable-step solver [2]

• Co-simulation with native interfaces in the LMS
Imagine.Lab AMESim simulation environment,
or through a specially crafted prototype of a mas-
ter simulator supporting the FMI 2.0 RC1 [5]
specification with the proposed extensions de-
scribed in section 3.3

Require: N slave FMU s∈ {1, · · · ,N} and a sequence
of M macro-steps {H0, · · · ,HM−1}.
read the model structure description of slaves and
create the connection matrix K
instantiate each slave s and provide to it a callback
function fs

provide the initial conditions for all slave variables
initialize the slaves
initialize time t = t0
for k = 0 to M−1 do

get the outputs of slaves in y
get the state variables and derivatives xs, ẋs of
slaves
get the Jacobian matrices As,s,Bs,s,Cs,s,Ds,s of
slaves
set the inputs of slaves as u = K y
perform one macro-step for the slaves from t up
to t + Hk
update time t← t + Hk

end for
Algorithm 1: Master simulator algorithm. Lines in
blue correspond to the additional tasks required by the
stabilization method.

• Comparison of stabilized co-simulation with ex-
plicit modular stepping

• Comparison of a mixed C/Python implementa-
tion for the co-simulation master, or «direct» C
implementation, both with DOPRI5 variable-step
solver for the slave simulators

For comparison purpose, all tests are performed
with the same values of the reduced damping coeffi-
cients as in section 2.3, namely ζ = 0.1 % and ω0 τ =
0.5. The limit period corresponding to the Nyquist fre-
quency is π/ω0 φ1' 425µs, the absolute stability limit
is reached for H ' 5 µs, and a 2 ◦ phase margin is ob-
tained for H = 1 µs.

The test results are summarized in table 2. The ac-
curacy of co-simulation is measured by taking the root
mean square error on the coupling variables e1 and f2
with respect to the reference implementation and the
mixed tolerance for all the variable-step solvers is set
to 10−5. In all co-simulation tests, the CPU time is
measured by setting the print interval (i.e. the sam-
pling of result variables) to 50 µs, corresponding to the
largest macro-step size used across the tests, in order
to have comparable processing times regarding result
storage and disk access.

The stabilization method allows to choose large
macro-step sizes H, up to the size of the numerical

Session 2A: FMI 2

DOI
10.3384/ECP14096213

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

221



Tested implementation Macro-step RMS CPU
size H [µs] error time [s]

#1. Continously coupled system with variable step solver in
AMESim

reference 1.0

#2. Explicit co-simulation, native AMESim interface 1 104 70.0
#3. Stabilized co-simulation, native AMESim interface 50 207 8.5
#4. FMI 2.0 explicit co-simulation, mixed Python/C prototype 1 123 40.0
#5. FMI 2.0 stabilized co-simulation, mixed Python/C prototype 50 237 36.0
#6. FMI 2.0 explicit co-simulation, direct C prototype 1 123 12.0
#7. FMI 2.0 stabilized co-simulation, backward Euler, direct C
prototype

50 215 1.5

#8. FMI 2.0 stabilized co-simulation, trapezoidal rule, direct C
prototype

50 152 1.5

Table 2: Summary of tests performed with different implementations, macro-step sizes H and discretization
methods.

micro-steps taken by the variable-step solver in the ref-
erence case. Indeed, the absolute stability limit of co-
simulation seems to be reached for macro-step sizes of
about 76 µs, which is the maximum numerical step size
reported in table 1. Consequently, a maximum value
of 50 µs is used for comparison across the tests #3, #5,
#7 and #8.

Clearly, the performances obtained for the maxi-
mum macro step size depend on the implementation.
Additional operations are needed by the stabilization
method like the computation of Jacobian matrices and
integration of the additional state equations related to
the inputs on the side of the slaves, and the evaluation
of the approximate dynamics (26) on the side of the
master. This overhead, if not efficiently implemented,
may cancel out the gain over the number of micro-
steps. This is the case with the mixed Python/C imple-
mentation #5 of the master simulator, which exhibits
poor performances with respect to #3, due to the too
many context switches between the two environments.
On the contrary, the two other C-based implementa-
tions #3 and #7 (or #8), show a large speed-up factor
of about 8 with respect to the corresponding explicit
co-simulations #2 and #6.

Regarding the accuracy, the tests #3, #5 and #7,
which are based on a backward Euler method, yield
nearly the same level of accuracy, about twice the error
obtained with explicit co-simulation at H = 1 µs. The
increase of the RMS error with the macro-step size is
depicted on figure 9 for tests #7 and #8. Clearly, the
use of a second-order method like the trapezoidal rule
provides more accurate results, for the same computa-
tional load.

Figure 9: RMS errors obtained with respect to contin-
uously coupled simulation versus the macro step size.
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4 Conclusions

Although co-simulation is generally considered a ro-
bust method of simulator coupling, this paper pre-
sented the main issue that remains with the co-
simulation of strongly coupled system, namely the
trade-off between stability (or accuracy) and the com-
putational performances. With the help of a simple
yet representative example of this class of system, it
showed how the stability issue may affect the com-
putational load, since an oversampling factor as large
as 500 is observed with respect to the highest dynam-
ics of the system. The implementation of the linearly
implicit stabilization method within the framework of
the FMI for Co-simulation 2.0 standard then showed
that significant speed-up can be regained at the price
of a moderate loss of accuracy, provided that an effi-
cient implementation is available as well as some mi-
nor extensions to the FMI for Co-simulation specifi-
cation. With the advent of the FMI 2.0 specification,
which one of its major enhancements is an interface
for the directional derivative matrices, it seems that
the efficient co-simulation of strongly coupled sys-
tems becomes feasible. Although this paper focused
on the stabilization of the more common type of co-
simulation, i.e. the explicit modular stepping, fur-
ther performance gains are expected with more ad-
vanced types of co-simulation, for instance by combin-
ing the stabilization method with variable macro-step
size heuristics or implicit (iterative) stepping, since
these currently seldom used techniques are now en-
abled by the FMI specifications.
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