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Abstract 

Conceptual design of systems requires aggregate level 

simulations of the designed system in its operational 

setting. By this way, performance of the system and 

its interactions with the other entities in its environ-

ment can be evaluated. The complex nature of these 

simulations often requires distributed execution. 

IEEE 1516 High Level Architecture (HLA) is a 

widely accepted standard architecture for distributed 

aggregate level simulations. Functional Mock-up In-

terface (FMI) is a recent standardization effort that 

leads to a tool independent systems simulation inter-

face that enables model reuse and co-simulation. This 

paper aims to present a method for developing HLA-

compliant federates using FMI. The method enables a 

Functional Mock-up Unit to join an HLA-compliant 

federation as a member.   

 

Keywords: Functional Mockup Interface; High Level 

Architecture; Distributed Simulation 

1 Introduction 

Systems development process starts with conceptual 

design phase in which designers create concepts and 

conduct trade off analysis. Modeling and simulation 

have always been essential tools for conceptual de-

sign. Early stage systems modeling aims to identify 

the system requirements and its interactions with its 

operating environment. Effect based models, inte-

grated in a large scale operational settings are used to 

evaluate the performance of the system concerning 

the accomplishment of its mission. Simulation of the 

mission space of a system requires modeling large 

number of entities and often simulating them in a dis-

tributed fashion. IEEE 1516 High Level Architecture 

(HLA) standard [1] [2] [3] is commonly used to inte-

grate loosely coupled models of the entities in a mis-

sion space. 

The Functional Mock-up Interface (FMI) is a 

newly developed, tool-independent model interface 

standard [4] [5]. Its main purpose is to model reuse 

between various modeling tools and environments 

throughout the systems development phases. A simu-

lation component conforming to FMI is called a Func-

tional Mock-up Unit (FMU), whose contents include 

a model description file, user defined libraries, source 

codes, model icons and documentation.  

FMI and HLA has completely different behavior. 

While HLA supports to work at process level, the 

master of the FMU does not care about the topics such 

as entity transfer, shared resource management, time 

synchronization or ownership management [10]. 

On the other hand, there is a potential to reuse ex-

isting FMUs as federates in an HLA-compliant dis-

tributed simulation, i.e. federation. By this way, FMI 

will also serve as a model interface for distributed 

simulation entities in the concept of design phase. 

Here in this study, we introduce a mechanism to de-

velop Functional Mockup Unit Federates (FMUFd) 

from FMUs. 

 

1.1 Related Work 

As model based development of engineering systems 

are getting more popular, connecting engineering 

models to the distributed simulation environments is 

also becoming an important issue of concern [6][7]. 

There have been some attempts for developing such 

tools and methodologies. Closely related to our work, 
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there exist two particular efforts providing a mecha-

nism for connecting models to HLA environments. 

MatlabHLA-Toolbox [8] and HLA Blockset [9] 

are available toolboxes to provide HLA communica-

tion feature to the Matlab. With these toolboxes, mod-

elers can create a federate, join a federation and start 

publishing and subscribing entities and events. How-

ever, these solutions can only work in Matlab envi-

ronment. 

In [10], authors introduce an approach to run FMI 

Co-Simulation environment over HLA. They employ 

HLA RTI as a master to synchronize the simulation 

that is composed entirely of FMUs. They define an 

Object Class derived from the interface specifications 

of all participating federates and let each federate out 

of an FMU publish or subscribe its required attributes. 

In contrast, our approach enables participation of 

FMUs in a federation with non-FMU members as 

well.   

2 Functional Mockup Interface 

Functional Mockup Interface provides an interface 

specification for simulation components called Func-

tional Mockup Units. FMI provides two standard in-

terfaces, namely, FMI for Co-Simulation and FMI for 

Model Exchange [4] [5]. 

While FMI for Model Exchange specifies the in-

terface for callers with explicit or implicit integrators, 

FMI for Co-Simulation specifies the interface for sim-

ulation runnables that possess solvers in them. As we 

can view HLA Federates as standalone simulation 

runnables, this effort is based on FMI-Co-Simulation 

interface for federate development. In this work, the 

first version of the standard is used as the baseline [5]. 

2.1 FMI for Co-simulation 

As mentioned above, FMI for Co-Simulation is a 

standard interface for the model output containing its 

solver inside. Therefore, the user does not need to 

know which integration method is actually employed 

to solve the ordinary differential equations within the 

model. 

For each of the FMU in a co-simulation environ-

ment, the communication capabilities are configured 

in a model specific XML file, namely ModelDescrip-

tion.xml file. Communication with an FMU can only 

be realized in a discrete communication point, which 

is a sampling point or a synchronization point of the 

FMU [5].  

2.1.1 Computational Flow 

As show in Figure 1, FMU co-simulation computa-

tional flow has three main states, namely Instantiation 

and Initialization, Running and Termination.  

Instantiation and Initialization  

A new FMU instance is created and initiated to be 

ready to run. Memory allocations and initial value set-

ting for the FMU parameters are performed in this 

phase. 

 Running  

In this phase, FMU model is executed via calling 

doStep() method. Intuitively, before running a step, 

FMU input parameters are set by calling 

FMUSetXXX(…) and after the completion of this step 

the model output parameter are read by the master via 

calling fmiGetXXX(…). 

Termination  

The model component is unloaded and the memory is 

cleaned up in this phase. 
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Figure 1 – FMU Co-Simulation Model Computational 

Flow 

3 High Level Architecture  

The High Level Architecture (HLA) is a common 

framework for distributed simulation systems. HLA 

promotes interoperability between heterogeneous 

simulations and supports the reuse of models in dif-

ferent contexts. HLA provides communicating data 

and synchronization actions between simulation 

members regardless of their computing platforms [1]. 

HLA combines simulations (federates) into a 

larger simulation (federation), where federates are 
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components and federations are component based ap-

plications. The HLA requires runtime infrastructure 

(RTI) software to support the operation of a federation 

execution. RTI provides a set of services and by using 

these services a federate can interact with the federa-

tion at runtime. How a federate can utilize these ser-

vices is defined by the Federate Interface Specifica-

tion [2]. 

Federation Object Model (FOM) is the HLA Fed-

eration Object Model that describes all of the object 

classes and interactions, attributes of object classes 

and parameters of interactions for the federation. 

Also, FOM establishes the information model con-

tract which governs the simulation. Simulation Object 

Model (SOM), on the other hand, is the HLA Simula-

tion Object Model that describes the object classes 

and interactions, attributes of object classes and pa-

rameters of interactions information which are ex-

posed or consumed by a federate [2] . 

3.1 HLA Services 

HLA provides six groups of services to enable distrib-

uted simulation in an aggregate level [2]. Federation 

Management describes how to create, join, resign and 

manage federations, save and restore federation 

states. Declaration Management defines the publish-

ing and subscribing to objects and attributes. Object 

Management service states how to register new in-

stance of an object class or interaction, update the at-

tributes, receive interactions, discover new instances 

and receive updates of attributes. Ownership Manage-

ment defines acquisition of ownership of the regis-

tered objects. Time management describes how a fed-

erate can advance its logical time along with other 

federates and how to deliver the time-stamped events 

ensuring that a federate can never receive an event 

with a timestamp less than the federate’s logical time. 

Data distribution management defines the production 

and consumption of data to bind the relevance of com-

munication data among federates. As a result, RTI can 

recognize the irrelevant data and prevents its delivery 

to consumers.  

3.2 HLA Object Model 

HLA provides object classes and interactions as the 

object models, which are used to publish/subscribe 

the data over distributed simulation environment. 

Providing the data exchange between federates is one 

of the responsibilities of the RTI. 

An object class can be derived from another object 

class. HLAobjectRoot is the base class of the all object 

classes. Each object class can contain one or more at-

tributes. Derived classes also inherit base class attrib-

utes. Attributes are have data types. A federate will 

publish/subscribe only interested attributes of an ob-

ject class; it does not have to deal with all the attrib-

utes in an object class. 

An interaction can be derived from another inter-

action. HLAinteractionRoot is the base class of the all 

interactions. Each interaction contains one or many 

object parameters. Derived interactions takes base in-

teraction parameters also. Parameters have data types. 

A federate should fill all the parameters of an interac-

tion to publish it. 

HLA provides six different data types where user 

can create variety of data structures by using those 

data types. The published/subscribed values are stored 

in these data structures. The details of data types are 

given below [3]: 

 Basic Datatype: Basic data refers to a predefined 
set of data representations. Following data types 
should be defined by any OMT: HLAinteger16BE, 
HLAinteger32BE, HLAinteger64BE, HLAfloat32BE, 
HLAfloat64BE, HLAoctetPairBE, HLAinteger16LE, 
HLAinteger32LE, HLAinteger64LE, HLAfloat32LE, 

HLAfloat64LE, HLAoctetPairLE, and HLAoctet. 

 Simple Datatype: The simple data type table re-
fers to simple, scalar data items. Following data 
types should be defined by any OMT: 
HLAASCIIchar, HLAunicodeChar, and HLAbyte.  

 Enumerated Datatype: The enumerated data type 
refers to data elements that can take on a finite dis-
crete set of possible values. Following data type 
should be defined by any OMT: HLAboolean. 

 Array Datatype: The array data type table refers 
to indexed homogenous collections of data types; 
these constructs are also known as arrays or se-
quences. Following data types should be defined 
by any OMT: HLAASCIIstring, HLAunicodeString, 
and HLAopaqueData.  

 Fixed Record Datatype: The fixed record data 

type table refers to heterogeneous collections of 

types; these constructs are also known as records 

or structures. This allows users to build structures 

of data according to the needs of their federate or 

federation. 

 Variant Record Datatype: The variant record 

data type table refers to discriminated unions of 

types; these constructs are also known as variant 

or choice records. 

3.3 HLA Padding Rules 

HLA requires that certain types of data start at a par-

ticular kind of location. Therefore, usually there is a 

requirement for extra bytes, namely padding bytes, 
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between data fields in a structure. To illustrate, con-

sider a structure where the first field is a byte and sec-

ond field is a double. Double must start at a position 

which is a multiple of 8. Therefore, seven bytes of 

padding is needed between byte field and double field 

for a proper structure.  

The padding rules are used to determine exact po-

sitions of the fields of a data type, which constructs 

the data structure of an attribute.  

These rules for constructed data types (arrays, 

fixed records, and variant records) as described below 

[3]: 

Base Datatype 

Each base type has a boundary value as provided in 

table 1. During the calculation of padding, this table 

is used to calculate structure boundary value. 

Table 1 – Basic Datatype Boundary Values 

Basic representation Octet Boundary Value 

HLAoctet 1 

HLAoctetPairBE 2 

HLAinteger16BE 2 

HLAinteger32BE 4 

HLAinteger64BE 8 

HLAfloat32BE 4 

HLAfloat64BE 8 

HLAoctetPairLE 2 

HLAinteger16LE 2 

HLAinteger32LE 4 

HLAinteger64LE 8 

HLAfloat32LE 4 

HLAfloat64LE 8 

 

Simple Datatype 

Same base data type padding rules also apply for sim-

ple datatype. 

Enumerated Datatype 

Same base data type padding rules also apply for enu-

merated datatype.  

Fixed Record Datatype 

The padding bytes are added to each field when nec-

essary to ensure that the next field in the record is 

properly aligned. After a field the padding bytes can 

be calculated by using the following formula:  

( 𝑂𝑓𝑓𝑠𝑒𝑡𝑖 +  𝑆𝑖𝑧𝑒𝑖 +  𝑃𝑖)𝑚𝑜𝑑 𝑉𝑖+1 = 0  

where 𝑂𝑓𝑓𝑠𝑒𝑡𝑖 refers to the offset of the i'th field of 

the record as bytes,  

 𝑆𝑖𝑧𝑒𝑖 refers to the size of the i'th field of the record as 

bytes, 

𝑉𝑖+1 is the octet boundary value of field (i + 1)th of 

the record. 

Variant Record Datatype 

The HLAvariantRecord encoding shall consist of the 

discriminant followed by a field. This field is chosen 

by using the value of discriminant. The discriminant 

is placed at offset 0 of the record. The padding bytes 

𝑃 are calculated by using the following formula: 

( 𝑆𝑖𝑧𝑒 +  𝑃) 𝑚𝑜𝑑 𝑉 = 0 

where 𝑆𝑖𝑧𝑒 refers to the size of the discriminant as 

bytes, and 𝑉 refers to the maximum of the octet 

boundary values of the alternatives. 

HLA Array Datatype with Fixed Cardinality 

The padding bytes 𝑃𝑖 between i’th and (i+1)th ele-

ments can be calculated by using following formula: 

( 𝑆𝑖𝑧𝑒𝑖 + 𝑃𝑖) 𝑚𝑜𝑑 𝑉 = 0  

where 𝑆𝑖𝑧𝑒𝑖 is the size of the i’th element of the array 

in bytes, 

𝑉 is the octet boundary value of the element type. 

HLA Array Datatype with Variant Cardinality 

The first 4 bytes are used to present the number of the 

elements in the array. These 4 bytes are encoded as 

HLAinteger32BE. The padding bytes can be added be-

tween the inform element and the first element of the 

sequence. The padding bytes can be found by using 

following formula: 

( 4 +  𝑃) 𝑚𝑜𝑑 𝑉 = 0 

where 𝑉 is the octet boundary value of the element 

type. 

4 Functional Mockup Unit Federate 

Design 

The FMI for Co-Simulation standard does not provide 

a specification for connecting FMUs to an HLA fed-

eration, hence, FMI Co-Simulation does not have an 

interface ready to utilize HLA services. Moreover, 

there is no convenient way to convert FMU scalar var-

iables to HLA object class attributes, because FMI 

Co-Simulation only supports the following primitive 

types: real, integer, string, Boolean and Enumeration. On 

the other hand, HLA attributes can represent any data 

type structure, from basic data types to the complex 

data type structures. Since FMI Co-Simulation scalar 

variables can only map to HLA basic data types, a 

simulation environment using complex data types 

cannot be directly supported by FMI Co-Simulation. 
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Hence, there is a need for a wrapper that connects 

an FMU, in the context of FMI Co-Simulation, to the 

HLA distributed simulation environment. The work 

conducted handles the problem by designing a Func-

tional Mockup Unit Federate (FMUFd). FMUFd has 

the following responsibilities: 

 Instantiating, initializing, stepping and terminating 
of a FMU model.  

 Providing the communication of distributed envi-
ronment with services by using the HLA standard 
interface. 

 Converting FMU model outputs to compatible 
HLA data types and sending them as HLA object 
updates. 

 Receiving model inputs from HLA objects and 
converting them to compatible FMU types. 

The top level structure of FMUFd that satisfies 

these requirements is depicted in Figure 2. The 

FMUFd is composed of the FMU model, FMI-HLA 

Map configurations and HLA connection configura-

tion. FMI-HLA Map Configuration is used to inform 

FMUFd about HLA FMI relation. For each FMU, us-

ing this structure an FMUFd is needed to be config-

ured. HLA connection configuration is related with 

the federation and FOM information of distributed 

simulation environment. By using these data, FMUFd 

runs with stepwise activities. As shown in Figure 3, 

these activities can be grouped into four main phases, 

namely, initialization, object discovery, stepping and 

termination. 

In initialization phase, FMUFd loads and initial-

izes the FMU and then connects the HLA federation 

as a federate with related HLA services and declare 

interested object classes for publishing and subscrib-

ing.  

In object reflection phase, the subscribed object 

class instances are discovered and their values are re-

flected. 

The stepping phase is the main phase of the simu-

lation. In this phase, FMU input variables are reflected 

from related HLA objects, FMU runs one time step, 

and then, FMU output values are reflected to related 

HLA objects. 

In termination phase, FMUFd terminates and un-

loads FMU, resigns from federation, frees allocated 

memory and finally stops. 

The details of these steps with the process of con-

necting FMU to the HLA simulation environment will 

be described in the following sections. After that, the 

FMUFd capabilities in terms of the HLA services and 

FMUFd limitations will be mentioned briefly. 

4.1 Loading an FMU 

The loading of FMU takes two phases: In the first 

phase, the model description file is parsed, while the 

FMU is loaded and initialized in the second phase. 

FMU Model description file provides the static in-

formation of all exposed variables and model related 

data. FMUFd uses model description file to identify 

scalar variables with data types and value reference, 

Globally Unique Identifier (GUID) and the model 

name. The scalar variables are used in data flow be-

tween FMUFd and FMU model. GUID is used for val-

idating concrete coded FMU with model description 

file. Model name is used to load shared object and 

FMI functions. The dynamic link library has the same 

name as the model; shared object FMI functions 

should also take the model name as a prefix to their 

functions [5]. 

Functional Mockup Unit

FMU

Model
FMI

Model

Description.xml

FMU Shared 

Library

FMI-HLA

MAP

Configuration

Functional Mockup Federate

HLA

RTI

Other 

Federates

FOM

HLA 

Configuration SOM

 

Figure 2 – Functional Mockup Unit Federate 

 

 

Session 2A: FMI 2

DOI
10.3384/ECP14096247

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

251



 

 
  

The FMU related operations are developed based 

on the FMU SDK [11]. By using these operations, 

FMUFd can load and use the FMU. The shared li-

brary, inside the FMU file should supply FMI Co-

Simulation interface implementations. FMUFd loads 

those implementations automatically and then instan-

tiates the model and gets the model instance. By then, 

FMU is ready to run steps over time.  

4.2 FMU as an HLA Federate 

This section describes how the FMUFd can join a fed-

eration execution as a member federate.  

4.2.1 Connect to the HLA Federation 

The FOM file contains all data exchange related in-

formation of HLA Federation, including object clas-

ses and object class attributes. By using this file, the 

FMUFd identifies the structure of each object class 

with attributes and data types. 

The parsing process of a FOM takes two steps. 

First of all, the data types are parsed and stored in a 

map. For each type of the data, different parsing pro-

cedure is applied as each type has its special fields. 

For example, the size and endian information is set 

only for basic data types. Then, the object classes are 

parsed with their attributes and the data type of each 

attribute is retrieved from the map. If a class is de-

rived, then its inherited attributes are obtained from its 

ancestors. 

After parsing the FOM file, FMUFd tries to con-

nect to the federation. The federation information is 

provided by the user through a configuration file. The 

FMUFd reads this file to get the federation name, path 

of FOM file and the name of its own federate. Then, 

FMUFd tries to create a federation if it has not been 

created yet. Finally, it joins the federation.  

After joining the federation, FMUFd declares RTI 

which object classes with which attributes will be 

published and/or subscribed. This information is pro-

vided by the user with a SOM file. The FMUFd reads 

the file and identifies the published/subscribed objects 

and informs the RTI. 

4.2.2 Create Object Instances 

There are two scenarios for creating the object in-

stances. At the beginning of the simulation, after de-

claring the object classes, the FMUFd creates the ob-

ject class instances for publishing the FMU output pa-

rameters. The initial values of this object can be as-

signed by user with using the configuration files. 

Then, whenever an object class is discovered (new ob-

ject instance is subscribed), the FMUFd creates an in-

stance of the discovered object class.  

Each object contains both object class metadata 

and attributes. Each attribute allocates the memory 

with the same size as its data type. While calculating 

the size of a data type the padding rules are used as 

described in section 3.3. Although there exists some 
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rules, still it may not be straightforward to find the ex-

act size of the data type. For example, fixed record 

data type can contain another fixed record data type 

and a dynamic array data type. In this case, it is not 

possible to find exact size of the data type without fill-

ing the exact data. Therefore, for every update, the 

size of the data type should be recalculated. This re-

calculation may have a problem regarding the perfor-

mance of an application. To address this issue, the 

FMUFd has been designed with two restrictions: 

 The array data type with dynamic cardinality is not 
supported by FMUFd, 

 The discriminant value of the variant record data 
type is explicitly defined in configuration file and 
cannot be changed in runtime.  

With these restrictions, the FMUFd calculates the 

size of each attribute at the beginning of the simula-

tion and uses this size throughout the simulation. As 

the data can contain different data types in it, the cal-

culation may be performed through recursion. The 

basic data type is the only type with known size. 

Whenever the recursion reaches a basic data type, the 

padding rules are applied. The base case of the recur-

sion could be the code segment given in Figure 4. The 

currentOffset value is passed into recursion which 

holds the previously calculated offset. After recursion 

is finished, currentOffset will hold the size of the root 

data type. 

 

 
Figure 4 – The base condition code snapshot for cal-

culating the padding bytes 

4.2.3 Update/Reflect Object Class Attribute 

A complex data type can contain both big endian and 

little endian data types in it, independent from appli-

cation computer’s endian type. Therefore, before up-

dating the object class attribute, the attribute values 

should be encoded to the right type of endian. Like-

wise, after reflecting the attribute, the value should be 

decoded to the computer endian type. The FMUFd al-

ways keeps the data with the same encoding of com-

puter. By doing that, it becomes easier to use the data 

in an application. Whenever an attribute is needed to 

be updated, the attribute is encoded first then update 

operation is called. Likewise, whenever an attribute is 

reflected, the value of that attribute is decoded first 

and kept in decoded form in memory.  

The encode/decode operation is also executed with 

recursion. The basic data type is the only type with 

known endian type. Whenever the recursion reaches 

to the basic data type, the swapping operation is ap-

plied. The base case of the recursion could be the code 

segment given in Figure 5. The returnValue and row-

Data are the void* data type values, with the same size 

of attribute. If the recursion is used for updating the 

attribute operation than rowData refers to the current 

value of the attribute, otherwise, it refers to the re-

flected value of the attribute. The returnValue refers to 

the encoded (or decoded) value of the attribute. 

 
Figure 5 – The base condition code snapshot for en-

coding/decoding the attribute values. 

4.3 Running the Federate 

After introducing how HLA data is de-marshalled, the 

next step is mapping FMU scalar variables to HLA 

basic data types. This mapping is performed through 

user configuration files. These files inform the 

FMUFd about which data from HLA will be set to 

FMU and which data from FMU will be published to 

HLA. 

if(theDataType->type ==  

ObjectClass::Attribute::DataType::BasicData) 

{ 

 int mod = theDataType->size; 

 int padding = (theDataType->size  

- (currentOffset % mod)) 

% mod; 

 theDataType ->offset = currentOffset + padding; 

 currentOffset = newDataType->size  

+ theDataType->offset; 

} 

 

if(dataType.type  

== OjectClass::Attribute 

::DataType::DataTypeType::BasicData) 

{ 

 if(currentNodeEndianType  

!= dataType.endianType ) 

 { 

  T_UINT8* returnValueOffset  

= (((T_UINT8*) returnValue )  

+  dataType.offset); 

  T_UINT8* rowDataOffset  

= (((T_UINT8*) returnValue )  

+  dataType.offset); 

 

  switch(dataType.size) 

  { 

  case sizeof(T_UINT8): 

   *returnValueOffset = *rowDataOffset; 

   break; 

  case sizeof(T_UINT16): 

   *((T_UINT16 *) returnValueOffset)  

= _byteswap_ushort(*(T_UINT16 *) rowDataOffset); 

   break; 

  case sizeof(T_UINT32): 

   *((T_UINT16 *) returnValueOffset)  

= _byteswap_ulong(*(T_UINT16 *) rowDataOffset); 

   break; 

  case sizeof(T_UINT64): 

   *((T_UINT16 *) returnValueOffset)  

= _byteswap_uint64(*(T_UINT16 *) rowDataOffset); 

   break; 

  } 

 } 

} 
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After mapping between FMU scalar variables and 

the HLA attributes, the stepping function can be exe-

cuted.  

Before running a step of FMU, the FMUFd up-

dates each input variable of the model. The input val-

ues are obtained from an instance of related object 

class. If there is no instance for related object class 

then the FMUFd will wait for the instance of that re-

lated object. 

After running a step of FMU, the FMUFd updates 

related attributes of the HLA objects by retrieving the 

values from related FMU scalar variables. Therefore, 

an FMU output values can be mapped to different 

HLA objects, which are controlled by the FMUFd. 

After value updates are finished, the FMUFd will re-

quest the RTI to publish those attributes. 

4.4 FMUFd Structure 

The FMUFd is implemented as an application. In-

spired from paper [14], the application is constructed 

with three base layers as Figure 6. 

Presentation 

Layer

Simulation 

Layer

Communication 

Layer

«uses»«uses»

Functional Mockup Federate

 
Figure 6 – the FMUFd Structure 

4.4.1 Presentation Layer 

The presentation layer is the user interface of the ap-

plication. This layer provides presentation of applica-

tion, input and interaction with the user as shown in 

Figure 7. The plot in the figure shows the change of 

some parameters of the missile and target over time. 

By using this layer, a user can load the necessary con-

figurations to FMUFd and observe scalar variables’ 

value changes in real time. 

 

 
Figure 7 – The FMUFd screenshot while running the 

missile FMU 

4.4.2 Simulation Layer 

The simulation layer processes the application. It in-

cludes the computation of FMI simulation and feder-

ate specific HLA object classes. Its purpose is to run 

FMU and generate the federate behavior.  

Simulation layer is responsible for running the simu-

lation. This layer initializes the FMU, supplies neces-

sary inputs for FMU from HLA class instances, runs 

the models and publishes the model outputs over HLA 

distributed environment.  

One of the key features of the simulation layer is 

to create HLA object class structure dynamically. 

That is, without having the real structure, simulation 

layer can create a void data with the same size of the 

structure by using FOM xml file. Then simulation 

layer can edit this void data parts with the same posi-

tion of any object class attribute fields. 

4.4.3 Communication Layer 

The communication layer deals with the RTI commu-

nication in order to access the object classes and inter-

actions exchanged in the federation execution. RTI is 

the middleware that manages the federation execution 

and object exchange through a federation execution. 

In addition to data exchange, communication layer 

also supports time management service. 

4.5 FMUFd Capabilities 

In this section, FMUFd capabilities are described in 

terms of HLA interface services. Data distribution 

management and ownership management are not used 

in our current implementation. 

Federation Management: If the federation has not 

been created before, the FMUFd creates the federa-

tion. Then it joins the federation. Similarly, after sim-

ulation is finished, the FMUFd resigns from the fed-

eration and if there is no other federate connected to 

the federation, it destroys the federation. 

Declaration Management: FMUFd informs the RTI 

about publishing/subscribing object classes with at-

tributes. 

Object Management: Whenever new object class in-

stance is discovered, FMUFd keeps the handle for this 

instance and allocates memory for it. Whenever a re-

flectAttributeValues event is raised by RTI, the FMUFd 

check whether the object instance is discovered be-

fore. If it is discovered, FMUFd reflects the attribute 

values to the allocated memories of the object in-

stance, and ignores otherwise. Whenever a removeOb-

jectInstance event is raised by RTI, the FMUFd checks 

if the object instance is discovered before. If it is dis-

covered, FMUFd deletes the handle of instance and 

frees the related allocated memory. 
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FMUFd reflects the attribute values to the allo-

cated memory of the object instance, ignores other-

wise. 

Time Management: FMUFd works as a time regu-

lating and time constraining federate. As the nature of 

the time constraint, FMUFd ensures that the sub-

scribed object model instance received reflection no 

less than the currentRTITime. Also, after each running 

step of the model, FMUFd requests to update the fed-

erate time. 

4.6 Limitations 

FMUFd still has some limitations and constraints. 

First of all, HLA interactions are not supported by 

FMUFd as there exists no corresponding logical con-

cept in current FMI for Co-Simulation standard. 

Moreover, the array data type with dynamic cardinal-

ity is not supported by FMUFd. Finally, the discrimi-

nant value of the variant record data type is defined at 

the beginning of the simulation and FMUFd does not 

allow changing it at runtime.   

5 Demonstration 

To demonstrate the FMUFd usage, a simple distrib-

uted simulation environment is developed with MAK 

HLA RTI [12] implementation. For this application, 

the RPR2-D17 FOM file developed by SISO [13] is 

used as a FOM file. The used HLA object classes with 

its parent hierarchy are shown in Figure 8. 

 
Figure 8 – RPR2-D17 FOM classes used in the case 

study. 

There are three nodes connected over an Ethernet 

network in this distributed simulation environment as 

shown in Figure 9. In the missile node, the missile co-

simulation FMU (called MissileFMUFd) is connected 

to distributed simulation environment as the HLA fed-

erate by using FMUFd. Similar to missile PC, the air-

craft co-simulation FMU is also connected to the sim-

ulation environment as a federate by using FMUFd 

(called AircraftFMUFd) in the target aircraft PC. The 

synthetic environment node is used to provide other 

entities in this operational setting, such as the missile 

launch platform, and to visualize the simulation in 2D 

and 3D. To this end, Presagis STAGE is used [15]. 

With two configuration files, one for FMU inputs 

and one for FMU outputs, user should supply infor-

mation to the FMUFd about mapping between FMU 

scalar variables and HLA basic data types. Therefore, 

the entire hierarchy down to the basic data types 

should be explicitly defined for an object model.  

 

 
Figure 9 – The Deployment View Diagram of Simu-

lation Environment 

The example extract from a configuration file is 

provided in Figure 10. This example shows how the 

Target_Ecef_X scalar variable can be mapped with the 

Aircraft object’s Spatial attribute’s data type where 

data type goes down the hierarchy until it reaches the 

basic data type HLAfloat64BE. This mapping is speci-

fied for other scalar variables as well. 

 

Figure 10 – The example mapping between FMU sca-

lar variables and HLA object class attribute data 

types. 

With these configurations, 1500 simulation runs 

have been executed and performance figures for 

framework overhead have been measured. The me-

dian time for updating FMU parameters from HLA 

objects for MissileFMUFd is 254 microseconds. Like-

wise, the median time for updating HLA attributes 

from FMU parameters for MissileFMUFd is 356 mi-

croseconds. Measurement were taken on a computer 

with Intel Xeon 2.66GHz processor, 4GB DDR3 

RAM and Windows 7 Pro 64bit operation system. 

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft  

HLAobjectRoot.BaseEntity.PhysicalEntity.Munition 
 

Target_Ecef_X  = Aicraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW] 

:SpatialFPStruct:WorldLocation:WorldLocationStruct:X 

:HLAfloat64BEmetersperfectalways:HLAfloat64BE 
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6 Conclusion 

The FMI is an emerging standard for co-simulation 

and model exchange in Model Based Integration com-

munity. Also, HLA is a well-accepted standard for the 

distributed simulation. FMUFd supplies a solution for 

participation of FMUs that implement FMI Co-Simu-

lation interface in an HLA Federation. Thus, a system 

model can be simulated as a part of an aggregate sim-

ulation of its operational setting. Moreover, this pro-

motes a high level of reusability of system models 

supporting FMI.  

As an alternative approach, the wrapping process 

may generate an FMU HLA wrapper code automati-

cally by reading the FMU specification and generat-

ing the wrapper that knows how to translate just the 

specific FMU join HLA. This approach, on the other 

hand, is both FMU and federation specific and re-

quires a recompile for each FMU. In our case, we 

aimed at recompilation free integration of FMUs to 

any federation via configuration files. 

Finally, FMUFd is currently released in Roketsan 

Inc. as an in-house developed simulation infrastruc-

ture and being employed in some system development 

projects. 
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