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Abstract

The Functional Mockup Interface (FMI) standard en-
ables hybrid simulation of models from different tools.
Such tools can have different underlying behavioral
semantics, creating challenges when models are com-
bined. A case in point is the combination of the Rhap-
sody tool, widely used to describe and implement dis-
crete control behavior, and Modelica, widely used to
describe continuous plant behavior.

This paper describes a plugin we developed for ex-
porting Functional Mockup Units (FMUs) from Rhap-
sody, and the results of combining generated FMUs
with continuous models. When a Rhapsody FMU is
used in a different environment, some basic assump-
tions on its behavior are challenged. We describe the
semantic mismatches between the tools, to what ex-
tent they can be overcome, and what modelers need to
do in order to preserve the intended semantics of an
exported FMU.
Keywords: FMI, Rhapsody, SysML, Hybrid simulation

1 Motivation and Overview

Complex cyber-physical systems are composed out of
components and subcomponents, often designed and
manufactured by different organizations. Each compo-
nent can come from a wide range of different engineer-
ing domains, including mechanical, electrical, control,
and software. Each engineering domain uses its own
languages and tools; these are often not integrated with
each other. This makes it difficult to perform analysis,
verification, and design-space exploration at the model
level, resulting in errors that are discovered late in the
process (typically during integration), and are expen-
sive to fix.

In some cases there is ad-hoc integration between
a pair of tools; for example, organizations commonly
create connections using ad-hoc scripts. However, this
is expensive, brittle, and sometimes wrong. Func-

tional Mockup Interface (FMI)1 is an open interna-
tional standard for the integration of models between
different tools that may use different underlying se-
mantics (e.g., discrete state machines and differen-
tial algebraic equations). It specifies an interface that
encapsulates a model as a Functional Mockup Unit
(FMU), for communicating with hosting tools. The
standard defines two types of export: model exchange
and co-simulation. The main difference between them
is that the former uses a solver of the hosting tool,
while the latter includes its own solver and the hosting
tool only orchestrates the simulation (transfers vari-
ables values, orders FMUs invocation, and selects the
next communication step size).

SysML2 and UML3 are modeling languages stan-
dardized by the OMG to describe structure and behav-
ior of systems at various levels of abstraction. State-
charts [6] are a popular formalism for specifying be-
havior in SysML and UML; they are an extension of
finite-state machines, and enable very concise decrip-
tions of finite-state models. They are used to describe
reactive systems at a wide range of abstraction, from
the details of embedded controllers to high-level man-
ufacturing processes. Some tools, such as IBM Ratio-
nal Rhapsody®,4 can execute statechart models, and,
in the case of software applications, to synthesize pro-
duction code from these models. Model execution
(sometimes called “simulation”) can be used to ana-
lyze and verify the design.

However, many modern systems are cyber-physical
and include physical models whose behavior is mod-
eled in other languages and tools. In the example
of Section 2, a statechart is used to model the con-
troller of a heating system; other aspects of the sys-
tem, such as the thermal plant, sensors, and actua-

1https://www.fmi-standard.org.
2http://www.omgsysml.org.
3http://www.uml.org.
4http://www-03.ibm.com/software/products/en/

ratirhapfami.
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tors, are modeled in Modelica®.5 In order to simulate
the whole system, it is therefore necessary to combine
the discrete-event simulation of the statechart model in
Rhapsody with the continuous dynamics described in
Modelica. This paper describes the way in which an
FMU that encapsulates the statechart can be exported
from Rhapsody and used inside FMI-compliant tools.6

In Section 3 we analyze the semantic differences be-
tween the behavior of a SysML block in Rhapsody and
that of the exported FMU. We highlight subtle, but in
some cases significant differences. The naive expec-
tation is for two communicating statecharts from the
same Rhapsody model to retain their behavior when
each is exported as an FMU and composed in the same
way in a hosting tool. Because of the different concep-
tual semantics of Rhapsody statecharts and the FMI
standard, this is very challenging. It follows that de-
signers of SysML models that participate in hybrid
simulations as FMUs need to be aware of this and de-
sign appropriately. We present a set of guidelines in
Section 3.6.

2 Example

This section presents an example of a hybrid model, in
which a controller specified as a statechart is exported
as an FMU and used in a Modelica model. Figure 1
shows a Modelica model of a heater7 in the Simula-
tionX tool.8 The model consists of the heater plant
(bottom), a temperature sensor (displayed as a ther-
mometer), a controller (top, in black) that receives the
sensor input and a parameter specifying the desired
temperature, and two actuators that can turn on or off
two heating elements (lower left, in blue). A switch
(labeled “booleanStep1” in the middle of the dia-
gram) turns the heating system on or off.

The plant is specified in Modelica using a set of dif-
ferential algebraic equations, and the sensor and actu-
ators are also simple Modelica models. The controller,
however, is specified as a SysML statechart in Rhap-
sody; it is shown in Figure 2. The controller starts
in state OFF; it moves to ON when the switch signal
changes to true, and moves back when it changes to
false.

In state ON, the controller keeps track of the num-

5https://www.modelica.org.
6See https://www.fmi-standard.org/tools for a list of

tools that support FMI.
7Based on the ControlledTemperature example from the Mod-

elica Standard Library.
8http://www.simulationx.com.
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Figure 3: The interface of the controller block.

ber of active heaters (between 0 and 2); in the ini-
tial sub-state, NoHeating, this is set to zero, and both
heaters are turned off. Each of the three states has a
timeout transition (labeled tm(switchingTimeout)),
it is used to sample the temperature sensor period-
ically. The operation tempDiff() returns the dif-
ference between the reference temperature (provided
as the top input in Figure 1) and the measured tem-
perature (bottom input). The model has two param-
eters, tempDiff1 and tempDiff2. Whenever the
temperature difference is more than tempDiff1, the
first heater is turned on; if the difference exceeds
tempDiff2, both heaters are turned on. This is
achieved by the transitions between the states, which
check the temperature difference. These transitions
have just a condition (specified in brackets) but no trig-
ger. They are checked each time the state is entered;
that is, periodically whenever the timeout expires.

The interface of the controller is a SysML block,
shown in Figure 3. It has three inputs, which are
SysML flow ports: the boolean-valued turnOn, for the
on/off switch, and two float-valued input ports, one for
the reference temperature, and one for the measured
temperature. The last is annotated with the stereotype
«FMUContinuous» to indicate that it is a continuous
input; by default, inputs are assumed to be discrete
(see Section 3.5). Each flow port is associated with
a block attribute of the same name (shown inside the
block); each of these has an associated initial value.
The block has three output flow ports: the first two
are boolean-valued signals that turn the heaters on and
off, and the third is an integer-valued signal that carries
the number of currently active heaters. In addition, the
block has three parameters, for the switching timeout
and the temperature thresholds.

Figure 4 shows the essential parts of the model de-
scription in the FMU generated by the plugin from this
block. It starts with a type definition describing the
float type associated with the block’s inputs. Since
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Figure 1: The heater model in SimulationX.

this type defines single-precision floating-point num-
bers, while the FMI standard defines real numbers us-
ing double precision, it is translated into an FMI real
type with a constrained range. Following the type def-
inition are the specifications of the model variables.
First are the three inputs, the first with a boolean type
and the others with the constrained type. All inputs
have input causality and discrete variability, except for
measuredTemp, which is continuous. Following those
are the two output booleans, and the three parameters.

In order to let the plugin know how to treat the vari-
ous block elements, we defined a UML profile contain-
ing a set of stereotypes. For example, the «FMUPa-
rameter» stereotype denotes the three block attributes
that are to be treated as parameters (Figure 3). The
signal activeHeaters is not exported to the FMU, as
indicated by the stereotype «FMUIgnore» annotating
the block attribute of the same name. The model of
Figure 1 defines how these inputs and outputs are con-
nected to the rest of the model when the exported FMU
is imported into the SimulationX environment. Inside
SimulationX, the imported FMUs are represented as
regular Modelica blocks, so they can be naturally in-

Figure 5: Simulation results with the Rhapsody FMU
in SimulationX.

cluded in any Modelica model.
Figure 5 shows the results of the simulation using

the exported controller FMU in SimulationX. The top
graph shows the ramp1 variable from the block at the
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ON

SingleHeater

Reactions

  setActiveHeaters(1); setHeater1(true); setHeater2(false);

tm(switchingTimeout)

DoubleHeater

Reactions

  setActiveHeaters(2); setHeater1(true); setHeater2(true);

[tempDiff()<tempDiff2]

[tempDiff()>tempDiff2]

tm(switchingTimeout)

NoHeating

Reactions

  setActiveHeaters(0); setHeater1(false); setHeater2(false);

[tempDiff()>tempDiff1]

tm(switchingTimeout)

[tempDiff()<0]

OFF

Reactions

  setActiveHeaters(0); setHeater1(false); setHeater2(false);

chTurnOn[turnOn] chTurnOn[!turnOn]

Figure 2: The heater controller in Rhapsody.

top right of Figure 1; this variable represents the am-
bient temperature, which starts at 0 and climbs to 20
degrees during the second minute. The second graph
shows the on/off switch, with is turned on 5 seconds
after the simulation starts. The next two graphs show
the signals that the controller sends to activate the
heaters. When the switch is initially turned on, the
measured temperature is zero, and both heaters are ac-
tivated. The second heater is deactivated after a few
seconds, while the first heater is turned on and off
according to the measured temperature. The bottom
graph shows the values measured by the temperature
sensor; the value climbs from 0 to a little over 20 de-
grees, then seesaws as a result of the activation of the
heaters. Toward the end of the second minute, once the
ambient temperature is high enough, both heaters are
turned off, and the sensed temperature climbs slowly,
as expected.

3 FMI for SysML

This section describes the FMU export functional-
ity we developed for Rhapsody as a plugin, and dis-
cusses the design decisions and their implications. The
FMI standard defines two export modes: model ex-
change and co-simulation. The major difference be-

tween them is that model exchange requires a host-
ing tool to provide an ordinary differential equation
(ODE) solver to perform the simulation, and there-
fore the models needs to expose all internal equations.
Rhapsody models are discrete and do not need an ODE
solver, so co-simulaton would be appropriate; this in
turn could enable the use of the FMU in environments
that do not provide ODE solvers. Unfortunately, FMI
for co-simulation cannot handle discrete events effi-
ciently [2]. For example, the co-simulation API, un-
like the model exchange API, does not provide a way
to report the next event time. We have therefore cho-
sen to use the model-exchange mode for our plugin.
In any case, most of the points discussed in this paper
apply to co-simulation as well.

The elements of the SysML block that are exported
currently limited to atomic flow ports and attributes.
As we saw in the example, input flow ports of the
SysML block are exposed as inputs of the FMU, and
output flow ports become outputs. Values of attributes
of the block that have corresponding flow ports are
considered by Rhapsody as storage for the values of
the ports, and are therefore represented by the same
input or output variables. Other attributes will become
FMI discrete internal variables; if they are annotated
with «FMUParameter», they will become FMI param-
eters. Initial values of attributes will be translated into
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<TypeDefinitions>

<Type name="real32_Type">

<RealType min="-3.4028234663852886E38" max="3.4028234663852886E38"/>

</Type>

</TypeDefinitions>

<ModelVariables>

<ScalarVariable name="turnOn" valueReference="2" variability="discrete" causality="input">

<Boolean start="false"/>

</ScalarVariable>

<ScalarVariable name="refTemp" valueReference="0" variability="discrete" causality="input">

<Real declaredType="real32_Type" start="0.0"/>

</ScalarVariable>

<ScalarVariable name="measuredTemp" valueReference="1" variability="continuous" causality="input">

<Real declaredType="real32_Type" start="0.0"/>

</ScalarVariable>

<ScalarVariable name="heater1" valueReference="0" variability="discrete" causality="output">

<Boolean start="false"/>

</ScalarVariable>

<ScalarVariable name="heater2" valueReference="1" variability="discrete" causality="output">

<Boolean start="false"/>

</ScalarVariable>

<ScalarVariable name="switchingTimeout" valueReference="0" variability="parameter"

causality="internal">

<Integer start="1000"/>

</ScalarVariable>

<ScalarVariable name="tempDiff1" valueReference="2" variability="parameter" causality="internal">

<Real declaredType="real32_Type" start="5.0"/>

</ScalarVariable>

<ScalarVariable name="tempDiff2" valueReference="3" variability="parameter" causality="internal">

<Real declaredType="real32_Type" start="10.0"/>

</ScalarVariable>

</ModelVariables>

Figure 4: The modelDescription.xml file of the generated FMU (excerpt).

a start value of the corresponding FMU variable. How-
ever, the «FMUIgnore» stereotype will prevent any el-
ement from being exposed. This gives the user fine
control over what parts of the block are to be exposed
externally.

Not all SysML elements are currently supported. In
particular, the following are challenging, because of
mismatches between SysML and the FMI standard:

• Bi-directional flow ports, since the FMI standard
does not allow variables that are both inputs and
outputs. This restriction may be lifted in future,
by artificially creating two variables, one for each
direction of a bi-directional port. However, there
are various issues such as naming of ports and
variables, and synchronizing the values of the in-
put and output variables correctly.

• SysML standard ports, since they carry SysML
events (these are not to be confused with FMI

events), which are not supported by the FMI stan-
dard.

The FMU export functionality is based on the FMU
SDK provided by QTronic,9 which provides a skeleton
implementation of the FMI API. The implementation
of the exported FMU consists of the code normally
generated by Rhapsody for the block, with an addi-
tional wrapper that adapts it to the requirements of the
FMI standard. The FMU export process consists of the
main steps described in Algorithm 1.

The first step collects the various elements to be ex-
posed according to the rules described above; it also
checks for illegal or unsupported combinations and
reports them to the user (such reports can be sup-
pressed by using the «FMUIgnore» stereotype). The
second step creates the modelDescription.xml file,
which describes the interface of the generated FMU.

9http://www.qtronic.de/en/fmusdk.html.
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Algorithm 1 Generate FMU Wrapper

1. Analyze the SysML model to identify input and
output ports and internal varibles, discover and
report errors.

2. Generate the FMU model description file.

3. Apply the standard Rhapsody code generation.

4. Generate the code for the FMU wrapper.

5. Compile and package the FMU.

Algorithm 2 fmiEventUpdate

1. Set Rhapsody time based on the time received in
the last fmiSetTime call.

2. Set the block’s input variables based on the pre-
vious set of fmiSetXXX calls.

3. Invoke the Rhapsody-generated code to execute a
behavioral step.

4. Update the wrapper’s variables corresponding to
the FMU outputs.

5. Set the next event time to the earliest timeout ac-
tive in the block.

The third step invokes Rhapsody’s code-generation fa-
cilities to create the implementation of the behavior
of the block to be exported. The fourth step creates
the code that adapts Rhapsody’s implementation to the
FMI standard. This wrapper code is discussed in most
of the rest of this section. Finally, the code is compiled
and packaged in the .fmu file.

3.1 The FMU Wrapper

The FMU Wrapper generated in step 4 of the FMU
export algorithm supports the FMI interface (currently
version 1.0 for Model Exchange) and translates it to
the Rhapsody interface. The wrapper keeps a set
of variables corresponding to the FMU variables, to-
gether with a set of other internal variables (for ex-
ample, the current simulation time). Most of the
FMI functions are implemented by reading or set-
ting these variables; the real work is done by the
fmiEventUpdate function. The wrapper algorithm
implements this function as described by Algorithm 2.

This algorithm seems quite straightforward, but it

hides many subtle semantic issues. When a block is
exported as an FMU, its behavior can be changed by
the way that the hosting tool delivers variable changes
to the wrapper, using the FMI interface calls, and by
the way that the wrapper handles these calls. While
the former is out of the control of the Rhapsody FMU
export plugin, the latter behavior is, and there are a
number of different ways to create the wrapper, each
of which yields somewhat different semantics. There
are two issues that need to be addressed. The first is
communication: the way inputs are transferred to the
FMU and outputs are received from it. The second
is scheduling: when communication takes place, and
how much activity the FMU encapsulating the SysML
block allows the block to perform before it considers
the step to be completed.

Ideally, Rhapsody blocks exported as FMUs would
retain their behavioral semantics, and blocks written
without consideration for their context could be used
as FMUs. At the very least, the naive expectation
could be that if two or more Rhapsody blocks are ex-
ported as FMUs out of the same model, and are con-
nected in the hosting environment in exactly the same
way they were connected in the Rhapsody model, their
behavior will not change. However, context does mat-
ter, in simulation as well as in physical realizations.
Full preservation of semantics between two exported
blocks is challenging; see Section 3.2. In the context
of non-Rhapsody models, the different semantics of
the FMI standard and of Rhapsody create other diffi-
culties, as discussed in Sections 3.3–3.5.

3.2 Quoted Out of Context

In this section we consider the case of two blocks from
a single Rhapsody model, both of which are exported
as FMUs, and connected in the external tool in the
same way as they were in the original model. How
does the implementation of the wrapper change the se-
mantics of the joint model?

The Rhapsody semantics [7] describes the behavior
of a statechart as consisting of a series of steps; each
step may consist of several state changes, and may pro-
duce several variable-change and other events. There
is a strict order between these events.

Changing the value of a SysML flow port in Rhap-
sody might also create an internal change event (such
as chTurnOn in Figure 2); this event can trigger one
or more transitions. The value of the attribute corre-
sponding to the port is changed immediately. How-
ever, all events in Rhapsody are sent asynchronously;
events sent to each port (from whatever source) are
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queued, and delivered in order. In particular, updat-
ing several variables consecutively creates one event
for each, and these are handled one by one. The order
is therefore significant; the block may perform arbi-
trary actions in response to each event; for example, a
typical response to an event is for the statechart is to
move to a new state. Such actions can change how the
block responds to the next event.

As mentioned above, the FMI standard allows
changing any number of variables in a single event-
processing cycle, and the changes are semantically si-
multaneous. This is a consequence of the synchronous
semantics on which the FMI standard is based. A
Rhapsody block can perform a sequence of discrete
changes in response to a single event. For example,
a single transition might include a series of actions
that sequentially change a number of outputs. This im-
plies that, in order to ensure that the order of the corre-
sponding Rhapsody events is preserved, these discrete
changes must be delivered one by one to the FMU
interface. However, this could cause an inconsistecy
between the values, if several related variables (such
as current and resistance) are not changed simultane-
ously.

The wrapper can implement this strategy by end-
ing step 3 of Algorithm 2 inside each of the setter
functions for the output variables in the Rhapsody-
generated code, and continuing with steps 4–5. In the
next event-processing cycle, the wrapper would allow
Rhapsody to continue from the point it was stopped.
All of these events, except for the last one, will require
another event-iteration cycle by returning fmiFalse in
the iteractionConverged field of the return value of
the fmiEventUpdate function; this does not advance
the simulation time.

This strategy allows other FMUs to generate new
inputs after each output is reported. These inputs can
be delivered by the wrapper to Rhapsody immediately;
that would be consistent with the Rhapsody semantics,
since it represents an execution of the Rhapsody model
in which each block is run in a separate thread and out-
put generation happens to be fully synchronized be-
tween threads. However, Rhapsody semantics allows
other behaviors; for example, those where one thread
is significantly faster than the others.

In this strategy, the exported FMU behaves in ac-
cordance with the original semantics of the SysML
blocks in Rhapsody. Any strategy that batches con-
secutive outputs may violate the semantics, since the
generated FMU can be used in a context in which the
order of these output updates is significant. However,

as mentioned above, the Rhapsody semantics may
expose inconsistent value. Furthermore, this strat-
egy could potentially be very inefficient, forcing the
whole simulation to receive and react to each discrete
change separately. Because of these issues, the cur-
rent implementation of the FMU wrapper delivers all
variable-change events simultaneously; the modeler of
the SysML block should be aware of this and introduce
small delays between sequential changes when the or-
der is important. This strategy takes the other extreme,
in that it allows the block to perform all its possible be-
havior in a single cycle, and only stops when it reaches
a wait for some timeout or event.

A related issue is the treatment of multiple changes
to the same variable. In the example, the command to
turn the first heater on is given by the signal heater1;
the command is recognized when the signal changes
value from false to true. It is possible that some
path in the statechart contains a series of transitions in
the same step, containing the action setVar(false)

followed by setVar(true). In Rhapsody, both ac-
tions will be communicated to the connected element,
resulting in two changes in the value of the signal, with
two corresponding change events, causing the com-
mand to be recognized. However, if this signal is ex-
ported as an FMU output, the behavior will depend on
how the wrapper treats multiple changes to the same
variable. In the implemented version of the wrapper,
the second change will override the first, causing the
signal to retain its previous value without change. The
other block will therefore receive only the last value
update, which contains the variable’s original value;
this might result in different behavior.

In the other strategy, both changes will be delivered
separately, and the command will be recognized. A
third scheduling strategy, in the middle between these
two extremes, is to present changes to different vari-
ables together, as in the implemented version, but sep-
arate changes to the same variable. This can be done
by having the wrapper divide the stream of events re-
ceived from Rhapsody into segments, each starting
with a change to a variable that already has another
change in a previous segment. All the events in a sin-
gle segment will be presented at once, but different
segments will be presented separately.

On input (step 2 of Algorithm 2), the wrapper must
be ready to accept simultaneous changes of discrete
variables, even if it only produces them one at a time,
since inputs may be provided by other types of FMUs.
There are a number of ways to treat multiple such
events. The first is for the wrapper to issue the events
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Table 1: Two behaviors of the rounding strategy.
FMI Time Rhapsody Time x1 x2 x3 y

(sec.) (msec.)
Scenario 1

0.0000 0 1 2 3 2
0.0050 5 −1 2 3 2
0.0100 10 1 2 3 2

Scenario 2
0.0000 0 1 2 3 2
0.0050 5 −1 2 3 2
0.0096 10 −1 2 −3 −2
0.0100 10 1 2 3 −2

to Rhapsody in an arbitrary order, and require model-
ers of SysML blocks to be exported to ensure that the
order does not matter; this is the option currently taken
by the plugin. A second option is to impose a specific
order on the events; this order can be specified by a
SysML stereotype.

3.3 A Question of Time

In the current FMI standard, time is measured as a
double-precision floating-point value in units of sec-
onds, whereas in Rhapsody time is represented as an
integer, in units of milliseconds. This mismatch is an-
other cause for semantic incompatibilities. (The same
problem would exist even if the standard used inte-
gral units at a different time resolution, such as mi-
croseconds.) How should the FMU wrapper handle
fmiSetTime calls that set the time between two Rhap-
sody clock ticks?

Of course, a perfect match of the time-lines is im-
possible. An obvious candidate strategy is to round
times to the nearest integral value. However, this strat-
egy causes strange phenomena, where the addition
of an unrelated fmiEventUpdate call can completely
change the behavior. For example, consider a SysML
block with three discrete inputs, x1, x2, and x3, and
one discrete output, y. The behavior of the block is
very simple; periodically every 10 milliseconds, it up-
dates y to be either x2 or −x2, depending on whether
x1 > 0 or not. Input x3 is not used at all and should not
influence this behavior in any way.

Table 1 displays two possible behaviors of this
block, under the rounding strategy. In the first sce-
nario, y is updated at time 0.0, and again at time 0.01.
The change of x1 at time 0.005 does not update the
value of y, since the block is still waiting for its time-
out. The second scenario starts in the same way, ex-
cept that at FMI time 0.0096, variable x3 gets a new

value. Because this time is rounded to Rhapsody time
10, the block is activated and updates the value of y.
When x1 is changed back to 1 at FMI time 0.01, the
block is already waiting for its next timeout, at (Rhap-
sody) time 20, and y is not updated again. The result
is a different value for y, due to a spurious update of
x3. For continuous systems, due to numerical issues,
such differences might be acceptable. For discrete sys-
tem, working at precise clocks, however, this type of
behavior is obviously unacceptable.

Because of this issue, the FMU export plugin uses
truncation rather than rounding. With truncation, such
undesirable behaviors cannot occur, since intermedi-
ate event updates such as the one in the example will
not trigger the FMU’s timeout and will not advance its
internal clock. In the example, FMI time 0.0096 will
be translated to Rhapsody time 9, will not trigger the
timeout transition, and will not change the value of y.

It is common in continuous systems to consider a
discrete unit of time strictly as a sampling interval,
by ignoring all changes that occur between two sam-
pling points except for the last one. However, this ap-
proach can result in counterintuitive behavior for dis-
crete models; for example, a slight shift in the timing
of a discrete signal change can cause it to be ignored.

3.4 Types

A Rhapsody model can employ the full type system
of the target language (which, in this paper, we con-
sider to be C). The FMI standard defines a different
set of types; these only contain scalar types (real, inte-
ger, boolean, string, and enumeration). Each of these
can be customized; for example, real and integer types
can have an associated range, as shown in the type
definition of Figure 4. The FMU export plugin at-
tempts to define the closest possible FMI type for the
C type used in the block. Obviously, integral C types
are expressed as FMI integers, and floating-point types
(float, double) as FMI reals. Ranges are applied
in the FMI types based on the ranges of the C types;
however, not all types can be accurately represented
in this way. For example, in the 32-bit FMI platform,
fmiInteger is defined as a C int; this means that the
C type unsigned int has a wider range than that ad-
mitted by an FMI integer, which is always signed.

3.5 Discrete or Continuous?

Rhapsody is based on a discrete-time model; triggers
for transitions between states are all discrete events,
and variables are modified in a discrete way (that is,
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signals are piecewise constant). Modelers in Rhapsody
therefore think of all variables as discrete. However,
when a Rhapsody FMU is used in a hybrid model,
some of its inputs may be connected to continuous sig-
nals. This places restrictions on the way such inputs
may be used in the statechart.

Transitions in a statechart are activated by triggers,
which are discrete events. Triggers include variable-
update events (such as chTurnOn in Figure 2, which
signals a change in the turnOn input). The time of
a change event for a continuous variable is not well
defined, because at a call of fmiEventUpdate all FMI
variables are updated, whether relevant or not (as in the
second scenario of Table 1). This can cause the behav-
ior of the statechart to become unpredictable. Model-
ers must therefore avoid change events for continuous
inputs. The use of continuous inputs in other places is
not restricted. For example, checking the value of an
input in a transition guard (such as tempDiff()<0)
does not cause a problem, even if the input is con-
tinuous, since the guard is only evaluated at timeout
events. The same holds for using a continuous input in
an action.

3.6 Guidelines for Exportable Blocks

Based on the previous discussion, the following points
should be considered when designing a Rhapsody
model to be exported as an FMU. First, change events
must not be used for continuous signals, although
their values can be freely used otherwise. Second, if
the order of changes in output variables is important,
non-zero delay should be introduced between changes.
Third, non-zero delay should be introduced between
changes of the same variable if all intermediate values
need to be observed. Finally, to preserve communi-
cation semantics between Rhapsody blocks or include
features that are not yet supported by the FMU export
functionality, the composition of the blocks should be
exported as a single FMU.

4 Related work

Modeling and simulation of hybrid systems is an ac-
tive research topic [5, 3]. Carloni et al. [4] pro-
vide a detailed analysis and comparison of the se-
mantics of commonly-used tools. They conclude that
there is a strong need to allow integration of different
tools, and suggest leveraging the Hybrid Systems In-
terchange Format (HSIF) to mediate model semantics
between tools. This approach is very different from

the FMI code-generation-based approach used in our
work, since FMI is mainly focused on the standardiza-
tion of a model execution API, and exposes only the
model information required for this purpose (for ex-
ample, whether variables are discrete or continuous,
and dependencies between variables).

Other interesting approaches for integrating SysML
and Modelica are based on extensions of SysML such
as the SysML-Modelica Transformation standard,10 or
of ModelicaML [10] where Modelica could be de-
scribed using the UML profile extension mechanism.
Specifically, Schamai et al. [11] suggest a formal ap-
proach to modeling UML statecharts using Modelica,
and highlight various semantic differences. For ex-
ample, in ModelicaML, all available events are pro-
cessed in parallel in the next evaluation of the state ma-
chine, while in Rhapsody statechart events are queued
and processed in order according to the UML run-to-
completion semantics [7].

In practice, changing languages or tools is a major
undertaking, and users are reluctant to do so. Our work
therefore concentrates on using the popular Rhapsody
tool in new contexts. As discussed in Section 3, this
requires some attention to modeling details that might
differ in other contexts, but there is no need to change
the tool itself. This is similar to the approach taken by
Sakairi et al. [9] to integrate Rhapsody and Simulink®,
except that they use a proprietary S-function inter-
face.11 Because we use the FMI standard, our ap-
proach is not limited to integration with a single tool or
language, but can work with any FMI-complaint sim-
ulator.

Pohlmann et al. [8] export FMUs for Mechatron-
icUML [1] instead of Rhapsody SysML. They do not
describe any semantic differences between Mecha-
tronicUML and the generated FMU. They do say
that “a discrete port implements an array of message
queues,” since communication in MechatronicUML is
asynchronous; it seems, therefore, that the same issues
described in Section 3.2 are relevant there as well.

5 Conclusions

The FMI standard can be used for hybrid simulation
of systems modeled using several tools. We described
the Rhapsody plugin that exports FMUs enapsulat-
ing SysML blocks whose behavior is defined using
statecharts, and demonstrated it on an example that

10http://www.omg.org/spec/SyM/1.0.
11http://www.mathworks.com/help/simulink/sfg/

what-is-an-s-function.html.
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combines the SysML model with a Modelica model.
We highlighted subtle but important semantic differ-
ences between Rhapsody and FMI, causing the com-
positional behavior of the FMUs to differ from that of
the original blocks, and provided guidelines that will
prevent such behavioral differences. Since different
tools come with their own semantics, we expect that
such mismatches are common, especially when con-
necting continuous-time with discrete models, and that
our guidelines will generalize to many such cases.
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