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Abstract 

This paper describes a method for automated 
deployment of Modelica models as simulators in 
Microsoft Excel using Functional Mockup Interface 
(FMI) and FMI Add-in for Excel.  Using existing 
interfaces, integration with modeFRONTIER is 
demonstrated and illustrated with several different 
example models in different physical domains to 
highlight the range of applications and types of 
analyses that can be covered with the automated 
toolchain.  This toolchain can be applied to any FMU 
and streamlined with automation enabled by the 
supporting annotations.  

Keywords:     Modelica, Functional Mockup Interface, 

automation, simulator, optimization, robust design, 

Microsoft Excel 

1 Introduction 

Model-based methods for development of physical and 
control systems have been applied across engineering 
domains to streamline development, reduce time to 
market, and manage cost and innovation. As integrated 
systems become increasingly complex with multi-
domain interactions spanning a range of disciplines, the 
role of virtual models and analysis techniques in the 
product development process continues to grow in 
importance. 

To meet the demand for increased model-based 
engineering, the ability to efficiently develop and 
deploy models across an enterprise is a key enabler.  
Models are no longer handled only by domain experts 
in CAE departments but are being deployed to 
engineers who may not have intimate knowledge of the 
underlying models but still are required to use models 
effectively to support engineering processes. With the 
proliferation of models throughout the enterprise, the 
desire for simulators outside of the original model 
development environment is natural and a key enabler 
for increased acceptance and usage of models.  While it 
is clearly in the best interest of model users to receive 
models in a format of their choosing, this desire 
requires careful balancing of the time and effort 

required to deploy the simulators, typically time spent 
by highly-skilled and resource-constrained model 
developers.  Automated simulator deployment can 
certainly help bridge the gap between the model 
development and deployed simulator environments.   

Open standards such as the Modelica modeling 
language and Functional Mockup Interface (FMI) for 
model exchange and co-simulation can streamline the 
modeling and deployment process by providing 
standard, non-proprietary interfaces between tools.  In 
addition to the ability to share and integrate models 
from a variety of tools as FMUs, the FMI co-
simulation standard provides a convenient way to 
deploy models outside of the original development 
environment as simulators.  FMI-based simulators are 
increasingly common and rapidly gaining acceptance 
across industries due to the flexibility offered in 
simulation platforms, IP protection, and also due to the 
potential for flexible licensing of the deployed 
simulators. While FMI capability exists in nearly every 
Modelica-based modeling platform, the rapid adoption 
of FMI continues and also allows for FMI-based 
simulators even outside of traditional CAE tools.  
Common platforms for FMI-based simulators include 
both open source and commercial offerings in a range 
of environments including Python (PyFMI) and 
MATLAB/Simulink (FMI Toolbox for 
MATLAB/Simulink). 

Another key aspect for the efficient utilization of 
deployed models is the ease with which different 
engineering analyses can be created and executed.    
modeFRONTIER (ESTECO SpA, 2015) is a process 
integration and design optimization tool widely used in 
industry.  The process integration platform allows 
multiple third party CAE tools to be coupled together 
to create an automated chain.  With state of the art 
analyses capabilities and algorithms for multi-objective 
and multi-disciplinary optimization, robust design, 
sensitivity, and statistical engineering methods, 
modeFRONTIER offers sophisticated features to 
automate the design simulation process and facilitate 
analytic decision making. The software’s advanced 
post-processing modules include sophisticated data 
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visualization and statistical tools to facilitate 
understanding and gain deep insights into study results.    

 This paper outlines a toolchain for automated 
deployment of models as FMUs as simulators in 
Microsoft Excel. The automation relies on a set of 
annotations in the FMU, and these annotations are fully 
described.  By including the annotations in the 
Modelica code such that they are present in the 
generated FMUs, an automated, streamlined path from 
a Modelica model to a simulator in Excel is 
demonstrated.  Integration of the automated simulators 
in Excel with modeFRONTIER brings a powerful suite 
of analysis and optimization capabilities to the 
simulator toolchain.  Following a description of the 
toolchain and automation enablers, several different 
examples demonstrate the entire toolchain from 
Modelica model to deployed simulator in Excel using 
FMI Add-in for Excel and integrated with 
modeFRONTIER.  These applications also highlight a 
range of different analysis and optimization capabilities 
provided by modeFRONTIER, including parameter 
estimation, multi-objective optimization, and robust 
design.                                                                                                                                                                                                     

2 Toolchain Overview 

This section provides a description of the entire 
automation toolchain.  The toolchain supports any 
FMU annotated as described.  This section describes 
the annotation requirements and demonstrates the 
inclusion of the annotations in the Modelica code to 
provide an automated path from Modelica model to 
deployed simulator in Excel with FMI Add-in for 
Excel (Modelon AB, 2015) and additional integration 
with modeFRONTIER for analysis and optimization.  
The entire workflow is shown in Figure 1 and 
described in detail in the following sections. 

 

 

Figure 1. Workflow overview  

2.1 Annotations 

The toolchain automation is based on a set of 
annotations to identify parameters and outputs in the 
FMU for use in the simulator and subsequent analyses.  
These annotations can be provided in the Modelica 
code to provide a direct path for automated deployment 
of Modelica models as FMI-based simulators in Excel. 

To identify relevant variables for the automation, the 
approach is to add a special substring to the variable 
descriptions per the markup specification in the 
XenGen package from Xogeny (2015).  The general 
syntax for the markup syntax is shown below:   
"Description 

{[GroupName|][Style:][LabelString]}" 

 
Figure 2 shows sample annotations as implemented 

in Modelica code (as described in the markup 
specification, items in [] are optional) to identify an 
output variable and also a parameter.  The overall steps 
are as follows for Modelica models: 

• Annotate Modelica model to identify parameters 
and outputs per markup syntax 

• Create FMU from Modelica model (if required, 
ensure export license usage) 

When the Modelica code is annotated, the variable 
description flows directly to the FMU and is available 
in the variable description XML file. Thus, there is a 
direct path to support downstream automation that is 
implemented and maintained directly in the source 
before FMU generation.  Alternatively, the FMU XML 
could be edited to add the annotations in cases where 
the original code is not accessible for markup (or even 
when the FMU generator is not Modelica-based). The 
downstream processes in the toolchain leverage only 
the FMU with annotations. 
 

 

Figure 2. Sample annotations in Modelica code  

2.2 Automated Simulator in Excel 

FMI Add-in for Excel (Modelon AB, 2015) provides 
the ability to load and simulate FMUs in Microsoft 
Excel.  The standard workflow involves choosing the 
parameters and outputs to be used for experimentation 
via the experiment sheet which is populated with the 
chosen variables and ready for batch simulation.  Both 
the final values and dynamic traces are available for 
post-processing.  FMI Add-in also provides scripting 
capability for controlling the tool from macros. 

Leveraging the scripting capability, automation has 
been added to provide automated deployment of FMUs 
as simulators in Excel.  The automation is implemented 
in a workbook and provides “one click” simulation 
capability in Excel. This capability was first introduced 
to provide a dynamic simulator for small modular 
reactors (Hale 2014). From the main page in the 
workbook shown in Figure 3, the user simply points to 
the FMU, and the automation loads the FMU and 
creates an experiment sheet that includes the annotated 
parameter and output variables (Figure 4a).  On initial 
load of the FMU, the workbook also runs the default 
simulation and plots all outputs (Figure 4b).   
Subsequent simulations as either single runs or batch 
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simulations are controlled by the user from the 
experiment sheet.  Automated plotting including the 
ability to compare results across cases is provided in 
the automation worksheet.  FMI Add-in for Excel 
offers a convenient platform in Excel for FMI-based 
deployment and simulation with a flexible, familiar 
front end for users. 

 

 

Figure 3. Automated workbook main page  

 

 
(a) Experiment sheet for batch simulation 

 
(b) Plotting sheet comparing cases 

Figure 4. Sample experiment and plot sheets from 
workbook automation  

2.3 Integration with modeFRONTIER 

As an analysis and optimization tool, modeFRONTIER 
integrates with many different CAE tools and modeling 
formalisms (lumped parameter, CFD, FEA, etc.).  
Currently modeFRONTIER does not include native 
FMU capability.  Since modeFRONTIER includes a 
widely-used Excel interface, adding FMU simulation 
capability easily via FMI Add-in for Excel is a natural 
extension.  Integration between FMI Add-in for Excel 
and modeFRONTIER leverages the existing Excel 
interface in modeFRONTIER and does not require any 
customization thereby maintaining a consistent 
workflow and user interface. With existing capabilities 
to interact with Excel sheets, modeFRONTIER 
leverages the deployed simulator in Excel via FMI 
Add-in for Excel to set parameters, simulate the FMUs, 
and extract data from the experiment sheet. The 
experiment sheet in FMI Add-in for Excel is treated no 
differently than any other Excel sheet with which 
modeFRONTIER can interact.  A macro to trigger the 
simulation is provided in the automated worksheet.  
Both modeFRONTIER and FMI Add-in for Excel can 
parallelize the simulation runs across available 
machine cores for maximum utilization of computing 
resources.  Figure 5 shows the Excel node 
configuration for a sample deployed simulator in FMI 
Add-in for Excel.  The node configuration provides 
modeFRONTIER with the cell locations (or named 
ranges) for inputs and outputs along with the workbook 
location and macro to trigger the simulation. Multiple 
Excel nodes with FMUs can be coupled in a workflow 
(note that this coupling does not provide transient 
coupling between FMUs, but this coupling can be 
enabled in other FMI co-simulation master tools from 
which a single FMU can be created for use in an Excel 
node).  

This off-the-shelf integration between FMI Add-in 
for Excel and modeFRONTIER provides FMU 
simulation capabilities to support a wide variety and 
rapidly growing list of third party tools with FMI 
support. 
 

    

Figure 5. Excel node configuration in modeFRONTIER 
as applied to a deployed simulator in FMI Add-in for 
Excel  
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3 Application Examples 

This section of the paper describes several different 
example models to illustrate the integration and 
analysis capabilities of modeFRONTIER and Modelica 
models deployed as FMU-based simulators with FMI 
Add-in for Excel.  Co-simulation FMUs for all models 
are created using Dymola (Dassault Systemes, 2015). 
A brief overview of each model will be provided along 
with a description of the analysis problem, formulation 
of the workflow in modeFRONTIER, and key results.   

3.1 HIV Virus Dynamics 

As a simple first example of a dynamic system, a 
model of the dynamics of the HIV virus in human 
blood (Soetart and Petzoldt, 2010) has been 
implemented in Modelica.  The model is similar to the 
standard predator-prey model for the number of 
uninfected (T) and infected (I) cells and the number of 
free virions (V).  The schematic of the pathways is 
shown in Figure 6.  The model is implemented directly 
in Modelica as it consists of three differential equations 
and has a number of parameters which are typically 
estimated based on clinical data from patients. 

 

Figure 6. HIV dynamics model showing creation, 
destruction, and transition paths between cells (Soetart 
and Petzoldt, 2010)   

 
modeFRONTIER uses a graphical workflow to set up 
and execute analysis and optimization tasks. These 
workflows can involve a single simulation node or 
multiple simulation nodes connected together to 
construct more complex, multidisciplinary tasks 
involving multiple tools and modeling formalisms. 
Figure 7 shows the workflow used to execute the HIV 
dynamics model correlation application. The Excel 
node with the FMU simulation is in the middle and 
labeled “FMIE”.  The inputs/parameters are shown at 
the top of the diagram.  The workflow starts by 
executing a Design of Experiments (DOE) for initial 
data.  The outputs are shown at the bottom of the 
diagram along with any constraints or post-processing 
calculations for the algorithms. This application uses 
ESTECO’s proprietary FAST (Montrone, 2014) 
strategy to estimate the model parameters to best fit 
data.  The data fitting is applied to the transient T 

curve. The FAST strategy applies an algorithm to 
response surface models (RSM) to accelerate the fitting 
procedure. In this case, the SIMPLEX (Poles, 2003) 
algorithm was applied. 

 

Figure 7. modeFRONTIER workflow for model 
correlation graphically representing the problem 
statement with inputs, outputs, target objective, 
constraints, and process flow 

The optimization convergence history and dynamic T 
curves can be seen in Figure 8 and Figure 9, 
respectively.  The initial T curve and the curve after 
fitting to the target data are shown in Figure 10.   

 

Figure 8. Optimization history showing only improved 
designs 

 
Figure 9. History as the T curve converges to the target 
data 
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Figure 10. Initial T curve and fit curve to target data 

3.2 Hydraulic Crane 

Figure 11 shows a model of a crane system with a 
hydraulic system with motors for the movement of the 
crane and load.  The base motor, winch motor, and 
hoist jack are all position controlled in closed loop to 
meet a desired trajectory for the crane and load.  A 
screenshot of the animation of the model from Dymola 
is shown in Figure 12 with a trace for the movement of 
the load.   
 

 

Figure 11. Crane model with hydraulic system  

 

 

Figure 12. Crane animation  

 

This application is formulated as a multi-objective 
optimization problem for modeFRONTIER via the 
workflow shown in Figure 13.  The objective is to 
minimize the total tracking error and pump mechanical 
energy required to move the load.  The total error 
objective function is the summation of the winch angle, 
base angle, and hoist position errors. Potential 
variables for optimization include the pump 
characteristics, actuator characteristics, and actuator 
control parameters.  The input variable bounds are 
listed in Table 1.   

               

Figure 13. modeFRONTIER workflow for crane 
optimization showing inputs fed into Excel plugin and 
outputs with objective functions applied 

 

Table 1. Input variable bounds 

Name Description 

Lower 

Bound 

Upper 

Bound Units 

pumpDisp 

Pump 

Displacement 1.00E-04 0.005 m3 

FC_GMax 

threeWay 

FC_Gmax 1.00E-11 1.00E+08 m3/(s.Pa) 

FC_flowRate 

threeWay 

FC_flowRate 0.001 0.05 m3/s 

pumpSpeed 

Pump 

SpeedSet 50 300 rad/s 

PR_GOpen 

Pump 

PR_Gopen 1.00E-12 1.00E-05 m3/(s.Pa) 

 
ESTECO’s proprietary HYBRID (Turco, 2011) 

algorithm was used along with a Multi-Objective 
Genetic Algorithm (MOGA-II) (Poles, 2003). The 
HYBRID algorithm combines the global exploration 
capabilities of a genetic algorithm with a gradient 
based method.  Using both HYBRID and MOGA-II 
algorithms gave improved coverage of the pareto front 
as shown in Figure 14. 

A uniformly distributed Latin Hypercube design of 
experiments of 10 points was used as the starting 
population for both algorithms.  HYBRID generated a 
total of 700 designs; MOGA-II generated a total of 
1300 designs. The pareto results in Figure 14 illustrate 
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the trade-off between the error and pump energy 
objectives.   

 

 

Figure 14. Pareto results from two separate optimizations 
using HYBRID and MOGA-II algorithms 

 
Further analysis was done using modeFRONTIER’s 

Multivariate tool (Stefano, 2009) to detect clusters in 
the pareto data.  Hierarchical clustering was performed 
on the pareto points combining the results from both 
algorithms.  Three clusters were identified and are 
represented as the three bands shown in Figure 15. The 
width of the band represents a 90% confidence 
interval. A different local response of the system is 
expected for each cluster.  Rather than choosing a 
single design point from among the pareto set, a cluster 
can be chosen.  This approach narrows down the 
number of candidate designs while also offering 
variability within the confidence interval region. In this 
case, we have three clusters where the energy and error 
objectives are distinctly different. Each cluster’s 
corresponding configuration can be seen in Figure 15. 

 

 
Figure 15. Clustering results on the pareto points 
showing three distinct pareto solutions (band width 
represents 90% confidence interval) 

3.3 Heat Exchanger Performance with Blockage 

Heat exchanger performance under non-uniform 
boundary conditions is a critical analysis need for 
vehicle thermal management (Batteh et al, 2014).  
Blockage due to heat exchanger stacking, geometric 
interference with the vehicle body, or even fouling can 
drastically affect heat exchanger performance. 

Figure 16 shows a heat exchanger test bench 
implemented with Modelon Heat Exchanger Library 
(Modelon AB, 2015).  Non-uniform air side boundary 
conditions are provided across the face of the heat 
exchanger model using the Modelon DataAccess 
package. DataAccess provides XML reading capability 
and preserves dynamic file access even with the model 
exported as an FMU.  Figure 17 shows the simple 
blockage pattern simulated for the cooler where the 
first 25% of the cooler is completely blocked.   
 

 

Figure 16. Heat exchanger test bench with non-uniform 
boundary conditions via XML  

 

 

(a) Unblocked cooler 

 
(b) Cooler with 25% blockage at flow entrance 

Figure 17. Heat exchanger blockage pattern  

 
The goal of this application is to identify the 

velocity scale factor required for the blocked cooler 
such that the heat transfer performance matches that of 
the unblocked cooler under the same boundary 
conditions. For this case, the desired heat flow rate 
Qdesired is 38.31kW. In addition, a robustness constraint 
is applied to ensure that the heat transfer does not drop 
by more than 1% for a 5% reduction in airflow.  The 
workflow for modeFRONTIER is shown in Figure 18. 
This problem is executed in modeFRONTIER as a 
robust design optimization (RDO) using the SIMPLEX 
algorithm.  A schematic showing the heat transfer 
distribution as a function of airflow distribution is 
shown in Figure 19 for an unfeasible and feasible 
solution based on the problem definition to illustrate 
the approach used for robust design optimization. 
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Figure 18.  modeFRONTIER workflow for heat 
exchanger robust design application showing the 
stochastic input Vscale and reliability objective SSE_Q 
with constraint Constr_Vdelta 

 

 
Figure 19. Schematic of feasible and unfeasible run from 
robust design optimization 

 
The results of the robust design optimization are 

shown in Figure 20.  Note the series of runs around the 
Vscale value of 1.88 which provides the required heat 
transfer but falls just at the constraint boundary.  The 
value of Vscale that meets both the heat transfer 
requirement and the robustness constraint is slightly 
higher. While a relatively straight forward application 
with only a single design variable, this problem 
becomes significantly more complex with several 
design constraints and multiple design variables.  

 

 

Figure 20. Convergence of the robust design optimization 
runs for the heat exchanger blocking problem 

3.4 Hybrid Vehicle Electric Range 

Vehicle range is a key metric for hybrid vehicles with 
electric-only mode.  In addition to key vehicle 
parameters which affect the loads and losses, critical 
battery parameters strongly affect vehicle range.  
Battery performance is affected by both battery 
temperature and battery age.  As batteries age, their 
capacity decreases while the internal resistance 
increases and leads to larger heat losses.  Particular 
battery formulations typically have an optimal 
temperature operating range and performance degrades 
when the temperature strays above or below the range. 

Figure 21 shows a series hybrid truck model 
implemented with the Modelon Vehicle Powertrain 
package which uses the PowerTrain Library (DLR, 
2015).  The battery model is a table-based model that 
provides open circuit voltage and internal resistance as 
a function of current and battery State-Of-Charge 
(SOC).  However, the model has been enhanced to 
include temperature scaling in the battery tables and an 
approximate aging model that increases internal 
resistance and decreases capacity based on an aging 
factor. 

Since actual vehicle populations in the field will 
have some sort of aging distribution based on usage, 
the resulting vehicle electric range for the fleet will be 
a distribution.  It is important to understand the impact 
of aging and temperature on vehicle electric range and 
also analytically determine fleet population 
distributions.  
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Figure 21. Series hybrid truck model 

 
One approach to analytically determine populations 

is to assume a distribution and then run Monte Carlo 
simulations to estimate the fleet output distribution.  
modeFRONTIER can certainly perform Monte Carlo 
analyses.  However, for this simple example, it is 
possible to run the simulations over the battery aging 
factor and then simply construct the distributions 
offline, thereby saving computational resources.  The 
modeFRONTIER workflow for the electric vehicle 
range mapping is shown in Figure 22.  For a given 
battery sink temperature, Latin Hypercube sampling is 
used to span the battery age factor.  The simulations 
are run starting with a battery SOC=1 until the SOC is 
depleted via repeated execution of the New European 
Driving Cycle (NEDC) cycles.  Due to numerical 
effects around zero SOC, the simulation is terminated 
at an epsilon SOC (0.05).  In real practice, to prevent 
damage, a battery is never over charged or discharged.  
When studying relative effects (e.g. battery age on 
vehicle range), the absolute minimum SOC is not 
critical.  

 

 

Figure 22. modeFRONTIER workflow for electric 
vehicle range application 

 
 

Vehicle simulation results are shown in Figure 23 
for a battery with no aging (BatteryAge=0), mid aging 
(BatteryAge=0.5), and extended aging (BatteryAge=1).  
As battery aging increases, vehicle range decreases 
substantially and battery temperatures increase due to 
higher internal resistance and the passive cooling 
strategy employed in this model. The modeFRONTIER 
runs showing vehicle Range over the full BatteryAge 
distribution are shown in Figure 24.   

 

 

(a) Vehicle range (km) 

 
(b) Battery SOC (-) 

 
(c) Battery internal resistance (Ohms) 
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(d) Lumped battery temperature (K) 

Figure 23. Simulation results for BatteryAge=0 (blue), 
BatteryAge=0.5 (red), and BatteryAge=1 (green) 

 

Figure 24. modeFRONTIER runs showing Range over 
BatteryAge distribution 

With the results from modeFRONTIER over the 
entire age range, any arbitrary vehicle age distribution 
can be assumed and the fleet range distribution 
calculated.  Figure 25 shows the calculated distribution 
for a normal BatteryAge distribution with a mean=0.5 
and standard deviation=0.05.  Similar calculations 
could be done over a range of different drive cycles, 
battery ages, and temperatures to estimate more 
complex fleet populations. 

 

Figure 25. Fleet population assuming normal distribution 
with BatteryAge=0.5 and standard deviation=0.05 

4 Conclusions 

This paper demonstrates a method for automated 
deployment of models as FMU-based simulators in 
Microsoft Excel using FMI Add-in for Excel.  A 
method for annotating the Modelica code using the 
XenGen markup syntax supports the automation to 
provide a streamlined path from a Modelica model to a 
deployed simulator in Excel.  Integration of the 
automated simulators in Excel with modeFRONTIER 
brings a powerful suite of analysis and optimization 
capabilities to the simulator toolchain.  Several 
different examples demonstrate the entire toolchain 
from Modelica model to deployed simulator in Excel 
using FMI Add-in for Excel and integrated with 
modeFRONTIER.  These applications also highlight a 
range of different analysis and optimization capabilities 
provided by modeFRONTIER, including parameter 
estimation, multi-objective optimization, and robust 
design. This toolchain can be applied to any FMU and 
streamlined with automation enabled by the supporting 
annotations.   
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