
A Novel Proposal on how to Parameterize Models in Dymola

Utilizing External Files under Consideration of a Subsequent

Model Export using the Functional Mock-Up Interface

Thomas Schmitt1 Markus Andres1 Stephan Ziegler1 Stephan Diehl1

13DS GmbH, Germany, ④t❤♦♠❛s✳s❝❤♠✐tt✱ ♠❛r❦✉s✳❛♥❞r❡s✱ st❡♣❤❛♥✳③✐❡❣❧❡r✱ st❡♣❤❛♥✳❞✐❡❤❧⑥❅✸❞s✳❝♦♠

Abstract

This paper introduces a novel proposal on how to pa-

rameterize models with data, taking a subsequent model

export into account, using e.g. the Functional Mock-Up

Interface (FMI). During model export parameters are ei-

ther assigned with values directly or they are linked to

external data-files. If the design of models or libraries is

done without considering how data is handled in an ex-

ported model, those concepts are often mixed, resulting

in an inconsistent data management which is cumber-

some or even error prone for the user.

Keywords: model parameterization, data files, model

export, functional mock-up interface, FMI, FMU

1 Introduction

In 2011 a new model export standard was released by

Modelisar: The Functional Mock-Up Interface (FMI)

(Blochwitz et al., 2011), (Association, 2015). FMI was

immediately accepted and promoted by many tool ven-

dors and Original Equipment Manufacturers (OEMs).

Unfortunately, there are a couple of known pitfalls re-

lated to the export of models (Bertsch et al., 2014). One

especially relevant for an a-causal modeling language

like Modelica is related to the change of an a-causal to

a causal model. This required adaption can cause higher

index problems and/or algebraic loops (Blochwitz et al.,

2012). However, this paper shall deal with a topic not yet

intensely discussed by the Modelica community but of

central importance for industrial use cases: Parameteri-

zation of models, considering a subsequent model export

and the handling of data in this case.

From our experience library developers should put

considerable effort into proper model parameterization

when it comes to a subsequent model export. Fortu-

nately, the Modelica language offers several possibilities

to parameterize a model, i.e. to assign parameters with

values.

In Modelica it is common to specify parameter val-

ues in records. The parameterization can either be done

by coding values into the record with the Modelica en-

vironment or by reading the data from an external file

for which the format can vary. Both solutions have their

pros and cons and are absolutely justifiable. (Köhler

and Banerjee, 2005) shows a case where custom text-

based files are used as parameter files, which can be

accessed by multiple simulation environments. On the

other hand, Modelica-based parameter files (records) are

usually more convenient for the user, especially for be-

ginners as they can be edited directly in the Modelica

environment.

1.1 Use-Cases of Exported Models

In this paper we will focus on the export of FMUs from

Dymola1, discussing different use-cases in which the

FMU is utilized after the export. Depending on the par-

ticular use-case the model export underlies different re-

quirements regarding convenient data handling. To our

experience the following cases cover most of the appli-

cations used in industry today.

1. Parameter values are stored inside the FMU.

2. Parameters are stored in an external data-file. The

FMU reads the parameter values during initializa-

tion of the simulation.

3. The data-file is stored inside the FMU’s

r❡s♦✉r❝❡s folder, i.e. the FMU reads the

parameters during initialization, but no external

files are necessary.

Each of those use-cases requires a different implementa-

tion in terms of model parameterization.

1.2 User Convenience

From our experience it turns out that enabling all three

uses-cases significantly enhances the flexibility of the de-

signed models and especially its exported version e.g. an

1Although other ways of exporting like using the ❞②♠♦s✐♠✳❡①❡

or exported source code should behave the same way.

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

23



FMU. This enables the same models to be applied as a

complete unit coupling models and parameters (use-case

1), as well as using a single model in multiple applica-

tions varying parameters by simply replacing data on a

file system2 (use-case 2) or enabling a combination of

both (use-case 3). Although covering all use-cases would

be the most satisfying solution, it is also valuable to de-

cide for the single most important use-case and imple-

ment this one throughout the whole library.

Therefore we are very pleased to present a first pro-

posal within this paper. Until today the presented ap-

proach is restricted to scalars and tables up to a dimen-

sion of two, but an extension to higher dimensions seems

reasonable.

2 A Small Modelica Library

For a better understanding the parameterization of the

models and the subsequent model export will be demon-

strated using an exemplary Modelica library: The

❚❛❜❧❡❇❛s❡❞❉✐♦❞❡s library (refer to Figure 1).

Figure 1: Package structure of the Modelica library

The packages and the models will be explained in the

following sections.

2.1 The Utilized Model

The model illustrated in Figure 2, which is located in

❇❛s❡❈♦♠♣♦♥❡♥ts✳❙t❛t✐❝❉✐♦❞❡❇❛s✐❝, will be used

to demonstrate both the parameterization and the export

of the model.

2Or alternatively modifying the string pointing to the file.

If = f(Vf) 

signalCurrent 

Characteristic 

V 

voltageSensor 

reverseBlockingDiode p n 

forward

Figure 2: Static model of a diode: I f = f (Vf )

2.2 Model Parameters

To parameterize the model, the diode’s forward char-

acteristic, i.e. I f = f (Vf ) is implemented using the

one-dimensional table of the MSL (❈♦♠❜✐❚❛❜❧❡✶❉).

Since the reverse characteristic is not always provided

in datasheets an additional reverse blocking diode (ideal

diode of the MSL) is used to ensure that no current will

flow in reverse direction. The parameters of this diode

are two scalars describing the on-state resistance ❘♦♥ and

the off-state conductance ●♦❢❢.

2.3 Record Structure

To provide different data sets, the parameters

are usually declared in records. We propose to

provide a partial record, i.e. ❘❡❝♦r❞s✳❇❛s❡✳✲
❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝ that contains the parameter

declarations. This (base) record shall then be extended

to assign the parameters with values via modifiers.

Listing 1: Base record of the static diode model

♣❛rt✐❛❧ r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝

❡①t❡♥❞s ▼♦❞❡❧✐❝❛✳■❝♦♥s✳❘❡❝♦r❞❀

✐♠♣♦rt ❙■ ❂ ▼♦❞❡❧✐❝❛✳❙■✉♥✐ts❀

♣❛r❛♠❡t❡r ❙tr✐♥❣ ❋✐❧❡♥❛♠❡ ❂ ✧♥♦❋✐❧❡✧❀

♣❛r❛♠❡t❡r ❇♦♦❧❡❛♥ t❛❜❧❡❖♥❋✐❧❡ ❂ ❢❛❧s❡❀

♣❛r❛♠❡t❡r ❙■✳❈✉rr❡♥t ❢♦r✇❛r❞ ❬✿✱✿❪ ❂ ❢✐❧❧✭✵✳✵

✱ ✵✱ ✷✮ ✧❞✐♦❞❡✬s ❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝

✐ ❂ ❢✭✈✮✧❀

♣❛r❛♠❡t❡r ❙■✳❘❡s✐st❛♥❝❡ ❘♦♥✭♠✐♥ ❂ ✵✱ st❛rt ❂

✶❡✲✺✮ ✧❝❧♦s❡❞ ❞✐♦❞❡ r❡s✐st❛♥❝❡✧❀

♣❛r❛♠❡t❡r ❙■✳❈♦♥❞✉❝t❛♥❝❡ ●♦❢❢✭♠✐♥ ❂ ✵✱ st❛rt

❂ ✶❡✲✺✮ ✧♦♣❡♥❡❞ ❞✐♦❞❡ ❝♦♥❞✉❝t❛♥❝❡✧❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝❀

2.4 Combining Model and Data

A composition of the diode model shown in Figure 2 and

the record in Listing 1 will result in the model depicted

in Figure 3.

The parameters of ❇❛s❡❈♦♠♣♦♥❡♥ts✳❙t❛t✐❝✲
❉✐♦❞❡❇❛s✐❝ will be assigned with values stored in the

data record via dot-notation. The corresponding code is

illustrated in Listing 2.

A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a
Subsequent Model Export using the Functional Mock-Up Interface

24 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511823



data 

staticDiodeBasic 

p n 

Figure 3: Model and data are combined

Listing 2: Text layer of the static diode model shown in

Figure 3

♠♦❞❡❧ ❙t❛t✐❝❉✐♦❞❡

✳✳✳

r❡♣❧❛❝❡❛❜❧❡

❘❡❝♦r❞s✳❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝ ❞❛t❛

❛♥♥♦t❛t✐♦♥✭❝❤♦✐❝❡s❆❧❧▼❛t❝❤✐♥❣✮❀

❇❛s❡❈♦♠♣♦♥❡♥ts✳❙t❛t✐❝❉✐♦❞❡❇❛s✐❝

st❛t✐❝❉✐♦❞❡❇❛s✐❝✭

t❛❜❧❡❖♥❋✐❧❡❂❞❛t❛✳t❛❜❧❡❖♥❋✐❧❡ ✱

t❛❜❧❡❂❞❛t❛✳❢♦r✇❛r❞ ✱

t❛❜❧❡◆❛♠❡❂✧❢♦r✇❛r❞❈❤❛r✧✱

❢✐❧❡◆❛♠❡❂❞❛t❛✳❋✐❧❡♥❛♠❡ ✱

❘♦♥❂❞❛t❛✳❘♦♥ ✱

●♦❢❢❂❞❛t❛✳●♦❢❢✮❀

✳✳✳

❡♥❞ ❙t❛t✐❝❉✐♦❞❡❀

In Figure 3 a partial record is instantiated, i.e. a re-

placeable model is introduced. If we add the annotation

❝❤♦✐❝❡s❆❧❧▼❛t❝❤✐♥❣ a drop-down menu appears in

the model’s parameter window (refer to Figure 4).

Figure 4: Parameter window of the static diode model

Now, every record that extends the partial (base)

record can be selected in the ❞❛t❛ menu. This will be

important to be able to easily distinguish the use-cases.

2.5 Getting Data from Files

If data-files are used, it is possible to influence when the

parameters of the model are assigned with values speci-

fied in the data-file. Assigning can either happen during

model translation3 or at the beginning of the simulation,

3Generating an FMU is a functionality similar to translating a

model, resulting in a lot of common properties.

i.e. during initialization. Assigning parameters during

translation means that all values from the data-file are

written into the model’s code directly. Therefore the file

from which the data was read during translation is not

needed anymore when the model is simulated. In con-

trast to that, assigning parameters during initialization of

the simulation needs the file available to start the simula-

tion.

Both of the mentioned possibilities can be favorable

depending on the scenario the model is used in. There-

fore, four implementations will be demonstrated in Sec-

tion 3 demonstrating how to influence when the param-

eterization happens. First we will discuss how to handle

paths to files efficiently within Modelica.

2.6 File Handling

Typically the data-files are put into a folder located in

the libraries root directory, e.g. ❚❛❜❧❡❇❛s❡❞❉✐♦❞❡s as

shown in Figure 1. The data folder is called ❉❛t❛. It

is common to provide the relative path to this folder in-

side the Modelica library by introducing, e.g. the pack-

age ❉✐r❡❝t♦r② shown in Listing 3.

Listing 3: Directory Package

♣❛❝❦❛❣❡ ❉✐r❡❝t♦r②

❝♦♥st❛♥t ❙tr✐♥❣ ❞❛t❛❋♦❧❞❡r ❂

▼♦❞❡❧✐❝❛✳❯t✐❧✐t✐❡s✳❋✐❧❡s✳❧♦❛❞❘❡s♦✉r❝❡✭✧

♠♦❞❡❧✐❝❛ ✿✴✴ ❚❛❜❧❡❇❛s❡❞❉✐♦❞❡s✴✧✮ ✰ ✧❉❛t❛✴✧

❀

❡♥❞ ❉✐r❡❝t♦r②❀

3 Parameterization of the Model

In the following chapter, four different implementations

are introduced to cover the proposed use-cases. Those

will be discussed in the following sections.

3.1 Implementation 1: Parameters are As-

signed in the Record Directly

A very common case for Modelica library developers is

to specify the value of a parameter directly inside the

record. This generates an exported model (FMU) that

does not need any data-file. This is particularly useful

when the user just wants to change only few parameters

- preferably scalar values - but not the whole parameter

set containing big tables.

Listing 4 illustrates the parameters of the diode’s for-

ward characteristic which can be found in the datasheet

of Infineon’s Hybrid Pack 2.

Listing 4: Data stored in the record

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❢♦r✇❛r❞ ❂ ❬✵✱✵❀ ✵✳✺ ✱✵✳✵✶❀

✵✳✼✹✸ ✱✼✳✼✹✾❀ ✶✳✵✵✼ ✱✶✵✾ ✳✷✵✸❀

Session 2A: FMI 1

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

25



✶✳✶✷✻ ✱✷✵✼ ✳✽✸✽❀ ✶✳✷✷✻ ✱✸✵✾ ✳✷✾✶❀

✶✳✸✵✻ ✱✹✵✼ ✳✾✷✻❀ ✶✳✸✼✾ ✱✺✵✾ ✳✸✼✾❀

✶✳✹✹✵ ✱✻✵✽ ✳✵✶✹❀ ✶✳✺✵✷ ✱✼✵✾ ✳✹✻✼❀

✶✳✺✺✺ ✱✽✵✽ ✳✶✵✷❀ ✶✳✻✵✾ ✱✾✵✾ ✳✺✺✺❀

✶✳✻✻✸ ✱ ✶✵✵✽ ✳✶✾✵❀ ✶✳✼✶✸ ✱✶✶✵✾ ✳✻✹✸❀

✶✳✼✺✺ ✱✶✷✵✽ ✳✷✼✽❀ ✶✳✽✵✺ ✱✶✸✵✾ ✳✼✸✶❀

✶✳✽✹✼ ✱ ✶✹✵✽ ✳✸✻✻❀ ✶✳✽✾✸ ✱✶✺✵✾ ✳✽✷❪✱

❘♦♥ ❂ ✶❡✲✺✱

●♦❢❢ ❂ ✶❡✲✺✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❀

One possible drawback when specifying data directly

inside the record is that it is rather inconvenient to mod-

ify arrays and matrices. Hence, data is often provided

inside data-files, i.e. ♠❛t-files, ❝s✈-files, ❤❞❢✺-files or

any other file formats or even user-specific file formats.

3.2 Implementation 2: Read Data from File

during Model Translation

To read data from ❝s✈ or ♠❛t files Dymola provides

functions within the ❉❛t❛❋✐❧❡s package. The func-

tion r❡❛❞▼❆❚♠❛tr✐①✭✮ needs two arguments, the file-

name and the variable name stored inside the file. The

s❝❛❧❛r✭✮ function is needed to convert the ✭✶①✶✮-

matrix into a scalar value. In Listing 5 the data is read

from the file ❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t. When the

model is translated the values of the data-file are stored

inside the record, i.e. the data-file is not needed to simu-

late the model.

Listing 5: Data read from file during model translation

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❚r❛♥s❧❛t✐♦♥

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸ ❢r♦♠ ❢✐❧❡

❞✉r✐♥❣ ❚r❛♥s❧❛t✐♦♥✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❢♦r✇❛r❞ ❂ ❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱ ✧❢♦r✇❛r❞❈❤❛r✧✮

✱

❘♦♥ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱ ✧❘♦♥✧✮✮✱

●♦❢❢ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱ ✧●♦❢❢✧✮✮✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❚r❛♥s❧❛t✐♦♥❀

In case of a subsequent model export the exported

model will behave exactly the same as the one covered

in implementation 1. The major difference is, that in this

implementation parameter values are read from a file in-

stead of Modelica code during translation. This can be

convenient, as tools specialized on data manipulation can

be used to generate the data file and they can be indepen-

dent of the simulation environment as e.g. in (Köhler and

Banerjee, 2005).

3.3 Implementation 3: Read Data from File

during Model Initialization

This implementation becomes favorable if the user wants

to exchange whole data sets of one and the same model.

This can be the case when the user wants to generate only

one FMU of a model, using different sets of parameters

based on data files.

If the record shown in Listing 5 is modified to the

record illustrated in Listing 6 the data will not be saved

in the model. This is due to two major differences in the

implementation.

For the scalar values Dymola’s Modelica compiler as-

sumes that the parameter ❋✐❧❡♥❛♠❡ replacing the con-

stant String in Section 3.2 is intended to be changed, and

is therefore kept as a parameter in the compiled model.

This makes it possible to change the ❋✐❧❡♥❛♠❡ after

model compilation.

For the table values, the ability of the MSL’s

❈♦♠❜✐❚❛❜❧❡s is used, which enables the user to de-

cide if an external file or a table from Dymola shall be

used. In this case no internal table is used as shown in

Section 3.2, but a reference to a file instead. Therefore

the table only receives the path to the file containing the

data. During simulation the functions within the table it-

self will access the data directly from the file specified

as ❋✐❧❡♥❛♠❡. As the data is not written to the model,

the size of the tables within the file are not determined

during compilation and the sizes of the tables within the

datafile can change without modifying the model itself.

Listing 6: Data read from file during simulation

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸ ❢r♦♠ ❢✐❧❡

❞✉r✐♥❣ ❙✐♠✉❧❛t✐♦♥✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❋✐❧❡♥❛♠❡ ❂ ❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✱

t❛❜❧❡❖♥❋✐❧❡ ❂ tr✉❡ ✱

❘♦♥ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧❘♦♥✧✮✮✱

●♦❢❢ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧●♦❢❢✧✮✮✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥❀

As one can see in Listing 6, the parameter ❢♦r✇❛r❞
(shown in Listing 5) was removed and the parameter

t❛❜❧❡❖♥❋✐❧❡ was set to tr✉❡ to enable the function-

ality described above.

String Parameters in Dymola

If the record ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥ is cho-

sen (Listing 6), the parameter values are not stored in

the FMU. They will be read automatically from the data-

file during model initialization. The generated FMU will

solely contain the string parameter ❋✐❧❡♥❛♠❡ specifying

the path to the data-file. Dymola users have to set the fol-

lowing flag to ensure that string parameters appear inside

the FMU:

A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a
Subsequent Model Export using the Functional Mock-Up Interface

26 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511823



❆❞✈❛♥❝❡❞✳❆❧❧♦✇❙tr✐♥❣P❛r❛♠❡t❡rs ❂ tr✉❡

Now one can simply change the to path to the data-file

by changing the string parameter.

3.4 Implementation 4: Read Data from File

during Model Initialization with Data in

the FMU

In many cases it is desired to put the data-files into the

FMU since many users don’t want to separate model and

data when it comes to model export to avoid potential

sources of errors. One very common error in that re-

gard is, that data-files are not found as they are not being

passed on with the FMU or their (relative) path on the

hard drive changed.

Therefore it makes sense to store the data-file in the

FMU’s r❡s♦✉r❝❡s folder. To do so only a slight modi-

fication of implementation 3 (Listing 6) is necessary. The

resulting code is shown in (Listing 7).

Listing 7: Record used to store the data-file in the FMU’s

resources folder

r❡❝♦r❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❧♦❛❞❘❡s♦✉r❝❡

✧❢♦r✇❛r❞ ❝❤❛r❛❝t❡r✐st✐❝ ❋❙✽✵✵❘✵✼❆✷❊✸ ❢r♦♠ ❢✐❧❡

❧♦❛❞ ❘❡s♦✉r❝❡✧

❡①t❡♥❞s ❇❛s❡✳❋♦r✇❛r❞❈❤❛r❛❝t❡r✐st✐❝✭

❋✐❧❡♥❛♠❡ ❂

▼♦❞❡❧✐❝❛✳❯t✐❧✐t✐❡s✳❋✐❧❡s✳❧♦❛❞❘❡s♦✉r❝❡

✭❉✐r❡❝t♦r②✳❞❛t❛❋♦❧❞❡r ✰ ✧

❉✐♦❞❡❋❙✽✵✵❘✵✼❆✷❊✸✳♠❛t✧✮✱

t❛❜❧❡❖♥❋✐❧❡ ❂ tr✉❡ ✱

❘♦♥ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧❘♦♥✧✮✮✱

●♦❢❢ ❂ s❝❛❧❛r✭❉❛t❛❋✐❧❡s✳r❡❛❞▼❆❚♠❛tr✐①✭

❋✐❧❡♥❛♠❡ ✱ ✧●♦❢❢✧✮✮✮❀

❡♥❞ ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❧♦❛❞❘❡s♦✉r❝❡❀

The only difference to the record shown in Listing 6

is the ❧♦❛❞❘❡s♦✉r❝❡✭✮ function applied with the file-

name as parameter.

Dymola and the FMU’s Resources Folder

To make Dymola copy the file to the FMU, the op-

tion Copy resources to FMU in the Dymola Simulation

Setup has to be activated. With this flag set and the

❧♦❛❞❘❡s♦✉r❝❡s function in use, the resulting FMU will

contain a r❡s♦✉r❝❡s folder including the data-file.

As mentioned before this implementation enhances

usability, as the user does not have to care about the lo-

cation of the data files. Still this reduces flexibility as it

is not possible anymore to simply change the path to the

data file by changing the string parameter introduced in

Listing 6. To change the data-file currently the user has

to extract the FMU4, change the data file and compress it

again, which is obviously more effort than just changing

a parameter.

4Which is just a renamed .zip file.

4 Model Export via FMI

For the model export via FMI we use the model

▼♦❞❡❧❊①♣♦rt✳❍❛❧❢❲❛✈❡❘❡❝t✐❢✐❡r❋▼❯ depicted in

Figure 5.

staticDiodeBasic 

R
=

1
0
.0

 

re
s
is

to
r 

ground 

C
=

1
0
e
-3

 

c
a

p
a

c
ito

r 

s
ig

n
a

lV
o

lta
g

e
 

+ 

- 

V
 

v
o

lta
g

e
S

e
n

s
o

r 

A 

currentSensor 

u 

vLoad 

iLoad 

Figure 5: Model used to generate FMUs

We will export the model using the records intro-

duced in the former sections (which can be found

in the ❘❡❝♦r❞s✳❉❛t❛ package shown in Figure 1).

Changing the record by selecting an entry in the pull-

down menu will obviously only change the behavior

of the st❛t✐❝❉✐♦❞❡❇❛s✐❝. The parameters of the

❝❛♣❛❝✐t♦r and the r❡s✐st♦r are not affected by the

settings of the diode.

Within the drop-down menu that appears when open-

ing the parameter window of the st❛t✐❝❉✐♦❞❡❇❛s✐❝,

one of the four implementations presented in Section 3

can be chosen. Those are:

1. ❋♦r✇❛r❞❈❤❛r❴❍P✷

2. ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❚r❛♥s❧❛t✐♦♥

3. ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❙✐♠✉❧❛t✐♦♥

4. ❋♦r✇❛r❞❈❤❛r❴❍P✷❴❧♦❛❞❘❡s♦✉r❝❡

The identifiers shown in Figure 6 are determined by the

model description defined in respective implementations

in Listings 4, 5, 6 and 7.

Figure 6: Parameter window of the diode model

By selecting an entry in the pull-down the behavior of

both, the model itself in Dymola and the exported FMU

Session 2A: FMI 1

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

27



are changed. We can now link the implementations to

the use-cases described in Section 1.1.

1. Selecting entry 1 or 2 will both result in a use-case 1

model. The difference will be that entry 1 will rely

on data directly stored in the Modelica code and

entry 2 will read data from an external file when

the model is translated. Still this will not affect the

behavior of the generated FMU.

2. Choosing entry 3 will create a use-case 2 model, i.e.

load parameters from a data-file which is located in

the ❉❛t❛ folder with an optional string parameter

to change the path to the file (see Section 3.3).

3. Compared to the last point selecting entry 4 will

only change the behavior in case of FMU gen-

eration representing use-case 3. The data files

specified by the ❧♦❛❞❘❡s♦✉r❝❡s function will be

copied to the FMU’s r❡s♦✉r❝❡s folder.

5 Tables with Dimensions Greater

than Two

It turns out that the implementation is relatively straight-

forward for scalar parameters and tables with two inde-

pendent variables, with simple scalar parameters and ta-

bles being based on the MSL’s ❈♦♠❜✐❚❛❜❧❡s5. Still,

today it is not possible - at least with reasonable effort

- to provide Modelica libraries covering every use-case

as soon as tables with a dimension greater than two are

necessary. As tables are of essential importance in the

industrial use, some of the problems regarding parame-

ter handling with table-based models will be highlighted

now, focusing on an arbitrary number of dimensions.

Implementations of tables with dimensions greater

than two (n-dimensional) are provided e.g. by Dymola

within the ❉❛t❛❋✐❧❡s package ❚❛❜❧❡◆❉ and by 3DS

GmbH’s ❙✐♠❉❡✈❚♦♦❧s (◆❉❚❛❜❧❡).

However, Dymola’s n-dimensional table offers no

possibility to enter tables directly or read data from a file

during model initialization. Thus, not all use-cases can

be covered.

Providing proprietary solutions like the

❙✐♠❉❡✈❚♦♦❧s fails until today, since Dymola re-

quires to pre-compile functions before the translation of

the model (e.g. for the determination of the table size).

This has to be done manually until today, resulting in a

unacceptable inconvenience for the user.

Mixing different table types implicates a number of

disadvantages. Regarding the possible use cases, for a

model that includes both, e.g. MSL’s ❈♦♠❜✐❚❛❜❧❡s
for dimensions up to two and ❉❛t❛❋✐❧❡s’s ❚❛❜❧❡◆❉
for higher dimensions, solely use-case 1 can be covered

since the Dymola table reads the values from a data-file

5Which only offer tables up to a dimension of two.

during model translation and in turn stores them inside

the model. Additionally those tables behave differently

when it comes to interpolation and extrapolation, which

is not directly related to model parameterization, but is a

major drawback during simulation and debugging. Table

1 shows a summary of the features of the table imple-

mentations available today.

In order to enhance table-based modeling which is of

central importance in system simulation within an indus-

trial environment, we want to encourage the Modelica

community to put even more effort into this topic. Espe-

cially into:

• Extending the tables functionality such that it is

possible to use data with more than two indepen-

dent dimensions by default.

• Providing the possibility to import additional data

formats, e.g. ❤❞❢✺, ideally in a user-expendable

fashion for arbitrary data formats.

6 Compatibility with Other Modelica

Simulation Environments

The implementations shown in Section 3 which are re-

quired to enable the different use-cases shown in Sec-

tion 1.1 were created using Dymola and its ❉❛t❛❋✐❧❡s
package as well as the MSL. Unfortunately, we were not

able to test how other Modelica environments (refer to

❤tt♣s✿✴✴♠♦❞❡❧✐❝❛✳♦r❣✴t♦♦❧s) treat the implemen-

tations, which would be important as the resulting behav-

ior is likely to be tool-dependent.

For the Modelica community it would be highly favor-

able to have a solution like Dymola’s ❉❛t❛❋✐❧❡s pack-

age available in the MSL. This would enable the user to

read data from external files6 independent of the simu-

lation environment. Ideally it should be extendable to

enable customer specific or future data formats.

7 Conclusion

The paper presents three use-cases of model parameter-

ization and four implementations which cover all three

use-cases, specifically aimed at a subsequent model ex-

port. Additionally it is shown how to implement records

with the possibility to choose how an exported model

shall behave, by selecting a set of parameters. This prop-

erty can be set by changing the set of parameters using

Modelica based functionality.

This approach is currently only possible for param-

eters which are scalars, 1D and 2D tables. For higher

dimensions it has been pointed out why this is currently

not possible.

6Arrays as well as scalars

A Novel Proposal on how to Parameterize Models in Dymola Utilizing External Files under Consideration of a
Subsequent Model Export using the Functional Mock-Up Interface

28 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511823



Library Dims Formats Interplation Extrapolation Data Source
Parametri-

zation

MSL CombiTables 1-2
txt, mat, csv

(import)

hold, linear,

smooth first

derivative

linear Modelica/files
translation,

initialization

DataFiles 1-n mat v4, csv linear hold files translation

SimDevTools 1-32 sdf (hdf5)
hold, linear,

Akima

no, hold, lin-

ear
files initialization

Table 1: Table implementations covered in the paper.

References

Modelica Association. ❤tt♣✿✴✴❢♠✐✲st❛♥❞❛r❞✳♦r❣✴, 2015.

Christian Bertsch, Elmar Ahle, and Ulrich Schulmeister. The

functional mockup interface - seen from an industrial per-

spective. In Proceedings of the 10th International Modelica

Conference, 2014.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,

H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Nei-

dhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf.

The functional mockup interface for tool independent ex-

change of simulation models. In Proceedings of the 8th In-

ternational Modelica Conference, 2011.

T. Blochwitz, M. Otter, J. Akesson M., Arnold 4, C. Clauß,

H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,

D. Neumerkel, H. Olsson, and A. Viel. Functional mockup

interface 2.0: The standard for tool independent exchange of

simulation models. In Proceedings of the 9th International

Modelica Conference, 2012.

J. Köhler and A. Banerjee. Usage of modelica for transmission

simulation in zf. In Proceedings of the 4th International

Modelica Conference, 2005.

Session 2A: FMI 1

DOI
10.3384/ecp1511823

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

29


