
Design choices for thermofluid flow components and systems that

are exported as Functional Mockup Units

Michael Wetter1 Marcus Fuchs2 Thierry S. Nouidui1

1Lawrence Berkeley National Laboratory, Energy Technologies Area, Building Technology and Urban Systems

Division, Simulation Research Group, Berkeley CA, USA, {mwetter,tsnouidui}@lbl.gov
2RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany, mfuchs@eonerc.rwth-aachen.de

Abstract

This paper discusses design decisions for exporting

Modelica thermofluid flow components as Functional

Mockup Units. The purpose is to provide guidelines

that will allow building energy simulation programs

and HVAC equipment manufacturers to effectively use

FMUs for modeling of HVAC components and systems.

We provide an analysis for direct input-output depen-

dencies of such components and discuss how these de-

pendencies can lead to algebraic loops that are formed

when connecting thermofluid flow components. Based

on this analysis, we provide recommendations that in-

crease the computing efficiency of such components and

systems that are formed by connecting multiple compo-

nents. We explain what code optimizations are lost when

providing thermofluid flow components as FMUs rather

than Modelica code. We present an implementation of

a package for FMU export of such components, explain

the rationale for selecting the connector variables of the

FMUs and finally provide computing benchmarks for

different design choices. It turns out that selecting tem-

perature rather than specific enthalpy as input and output

signals does not lead to a measurable increase in com-

puting time, but selecting nine small FMUs rather than a

large FMU increases computing time by 70%.

Keywords: FMI, Modelica, thermofluid flow

1 Introduction

The Functional Mockup Interface Standard (Modelica

Association, 2014) is an open standard that has been de-

veloped to export models or whole simulators from one

simulation software and import them into another simu-

lation software to perform a coupled simulation of time

dependent systems. It enables interoperability among

simulation software by standardizing (i) an application

programming interface and its semantics, (ii) an xml

schema that describes the model structure and capabil-

ities, and (iii) the structure of a zip file that is used to

package the model, its resources and documentation.

This type of simulation software interoperability is in-

teresting for various use cases in building energy simu-

lation. First, it allows building energy simulation pro-

grams, for which it currently is difficult for users to

add new models, to add an interface that allow users

to insert own component models that may be written

in and exported by a variety of simulation software

that support the FMI standard (see https://www.

fmi-standard.org/tools for a list). As a point

in case, EnergyPlus currently undergoes a prototype re-

design in which HVAC simulation will be based on

FMUs (Wetter et al., 2015). Second, the American Soci-

ety of Heating, Refrigerating, and Air-Conditioning En-

gineers (ASHRAE) is currently developing Standard 205

that standardizes the representation of HVAC equipment

performance data for building energy simulation.1 As

the built-in control and staging algorithms of such equip-

ment affects the performance, participants of the stan-

dards committee expressed the need for sharing mod-

els as executable code rather than simple performance

maps. Here, FMU may be a solution for such model rep-

resentation. Third, Swegon AB, an international HVAC

equipment manufacturer, expressed the need for receiv-

ing from their suppliers component models to allow them

to optimize the integration of these components into their

products. Swegon also is interested in providing equip-

ment models as FMUs to energy simulation programs.

For these use cases, FMI is an interesting technology

as it is an open standard that has been designed for the

exchange of such models. However, various design ques-

tions have to be answered for its effective use, namely:

(i) Are both versions of the standard, FMI for model-

exchange and FMI for co-simulation, applicable? (ii) If

an FMU represents an individual equipment, how would

a system simulation program have to execute this com-

ponent if used as part of an whole HVAC simulation?

(iii) What recommendations should one follow to allow

an efficient simulation of FMUs if part of an HVAC sys-

tem simulation? (iv) What code optimization is lost if

FMUs are used rather than Modelica, the latter allowing

1 See http://spc205.ashraepcs.org/.

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

31

−1 0 1

y1

y2

x/δ

Figure 1. Plot of the function y = R(x,y1,y2,δ).

symbolic processing prior to code generation. (v) What

variables should the parameters, inputs and outputs of an

FMU have? Would specific enthalpy as is used in the

Modelica.Fluid library be a good choice?

This paper addresses the above questions. It is struc-

tured as follows: Section 2 states assumptions and in-

troduces notation. In Section 3, we discuss the applica-

bility of the two standards. In Section 4, we provide an

analysis of execution sequences and provide recommen-

dations for efficient model implementation. In Section 5,

we discuss the design of connector variables. Section 6

explains code optimizations that are no longer possible if

FMUs rather than Modelica are used. Section 7 discusses

the implementation of FMU export for thermofluid flow

components in a development version of the Modelica

Buildings library (Wetter et al., 2014), and Section 8

shows numerical benchmarks for different implementa-

tions.

2 Terminology and assumptions

2.1 Conventions

1. If a component has two acausal fluid ports, then they

are denoted by subscript a and b, respectively, where

a is the port into which mass flows under the design

flow direction.

2. Consider a model that has an input u ∈ R, an out-

put y ∈ R
2 and a parameter p ∈ R. Suppose y1 = pu

and dy2/dt = u. We say that there is a direct depen-

dency between u and y1 as the value of u needs to be

known to produce the output y1. In contrast, y2 does

not directly depend on u as it can be produced without

knowing the current value of u.

2.2 Notation

To enable robust iterative computation of a numerical

approximation to the solution of differential and alge-

braic systems of equations, the Modelica Specification

defines special functions to handle systems in which the

flow reverses its direction, and the Modelica Standard

Library 3.2 implements regularization functions (Franke

et al., 2009; Modelica, 2010). This section explains these

functions and the nomenclature that we will use for these

functions.

The regularization function Modelica.Fluid.

Utilities.regStep(x,y1,y2,x_small) ap-

proximates

y =

{

y1, if x > 0,

y2, otherwise,
(1)

m2

a b
m1

b
m3

a

Figure 2. Connection diagram of three models that is used to

explain the concept of stream variables.

by the once continuously differentiable function that is

shown in Figure 1. In our discussions, we will denote this

function by y =R(x,y1,y2,δ), with δ > 0. The function

is defined as

R(x,y1,y2,δ) =











y1, if x > δ ,

y2, if x <−δ ,

r(x,y1,y2,δ), otherwise.

(2)

where r(·, ·, ·, ·) is

r(x,y1,y2,δ) =
x

δ

(

(x

δ

)2

−3

)

y2 − y1

4
+

y1 + y2

2
. (3)

Note that some models use Modelica.Media.Air.

MoistAir.Utilities.spliceFunction()

rather than Modelica.Fluid.Utilities.

regStep(). While these functions are different, their

input-output dependency is identical. We will therefore

always use the notation R(·, ·, ·, ·) as our discussion is

identical for both implementations. 2

To describe in a numerically reliable way the bi-

directional transport of specific quantities that are carried

by mass flow rate, such as enthalpy, Modelica 3.2 pro-

vides the inStream() function. Let m1, m2 and m3 be

models, and let a and b be fluid ports that are connected

as shown in Figure 2. Let h_outflow be the specific

enthalpy in the connection point if mass leaves the com-

ponent (regardless of the current flow direction). For

the configuration shown in Figure 2, the inStream()

function satisfies

inStream(m2.a.h_outflow) = m1.b.h_outflow;

inStream(m2.b.h_outflow) = m3.a.h_outflow;

In our discussions, we will use the notation ι(ha) to

denote the value of inStream(a.h_outflow).

2.3 Assumptions

We will make the following assumptions:

1. All components conserve mass, e.g., ∑i ṁi +∆ṁ = 0

where the sum is over all ports and ∆ṁ is the moisture

added or removed by a humidifier or a cooling coil.

2. Each component has as inputs the mass flow rate ṁa,

the pressure pa, the temperature Ta,i (or specific en-

thalpy ha,i) of the medium that flows into port a if

ṁa ≥ 0, and the temperature Tb,i (or specific enthalpy

hb,i) of the medium that flows into port b if ṁa < 0.

2In a benchmark for the Annex 60 model library (see https:

//github.com/iea-annex60/modelica-annex60/

issues/300) we measured that the function regStep() is on

average about 8% faster than spliceFunction(). Therefore,

work is in progress to update the Annex60 and Buildings

libraries accordingly.

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

32 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

3. Each component has as outputs the mass flow rate ṁb,

the pressure pb, the temperature Tb,o (or specific en-

thalpy hb,o) of the medium that flows out of port b if

ṁa ≥ 0, and the temperature Ta,o (or specific enthalpy

ha,o) of the medium that flows out of port a if ṁa < 0.

4. We assume the following direct dependencies: The

outlet temperatures are Tb,o = f (Ta,i, ṁa) and, simi-

larly, Ta,o = g(Tb,i, ṁa) for some functions f ,g : R×
R→ R.

5. The pressure drop of flow resistances is assumed to

be a function of the mass flow rate rather than volume

flow rate. The reason for this assumption will become

clear in Section 4.

Hence, to simplify the discussion, we typically say

that input and output to a component are temperature T .

Clearly, models that treat moist air also have water vapor

mass fraction Xw as input and output. Except for the dis-

cussion of dehumidifying or humidifying components,

we do not specifically mention water vapor mass frac-

tion as other components conserve mass. Furthermore

the discussion also holds if one were to use specific en-

thalpy rather than temperature as input and output vari-

ables.

3 FMI Standards

FMI 2.0 defines two standards: FMI for model-exchange

(FMI-ME) and FMI for co-simulation (FMI-CS): In

FMI-ME, the host simulator is responsible for the numer-

ical integration of the model equations, whereas in FMI-

CS, the FMU implements its own mechanism for advanc-

ing the values of its state variables. FMI-CS provides no

mechanism for an FMU to output an instantaneous reac-

tion to a changed input value.3 Hence, FMI-CS cannot be

used for steady-state component models of HVAC equip-

ment. However, FMI-ME is applicable. Specifically,

FMI-ME allows to set inputs by calling fmi2SetReal

followed directly by fmi2GetReal to obtain outputs.

Furthermore, the standard says that fmi2SetReal "re-

initializes caching of variables that depend on these vari-

ables [being set]". Hence, fmi2SetReal causes the

equations to be evaluated. Therefore, we restrict this dis-

cussion to FMI-ME.

4 Direct input-output dependencies

of thermofluid flow components

and systems

The purpose of this section is to provide guidance to

users and developers who connect multiple thermofluid

flow component models so they understand when

algebraic loops are performed, and how such algebraic

loops can be avoided. While in general the existence

3 Specifically, FMU-CS does not allow calling fmi2SetReal

followed by fmi2GetReal without first invoking fmi2DoStep

(see p. 104 of the standard). Furthermore, fmi2DoStep does not

allow a communication step size of 0.

of algebraic loops can readily be obtained from the

translation information of Modelica tools, the insight we

give in this section should inform users and developers

a-priori about how different component formulations,

system compositions and media selections affect the

existence of algebraic loops, and how such algebraic

loops can be avoided. Based on these discussions, we

also provide recommendations for efficient component

model formulation.

Questions that this sections answers are:

1. Suppose we know the mass flow rate at each flow leg.

Under which arrangements do FMUs, each represent-

ing a steady-state fluid flow component, cause an al-

gebraic loop?

2. How does the answer to the above question change

if computing the value of the mass flow rate requires

solving a flow rate versus pressure drop calculation?

3. Under what conditions does the use of the regulariza-

tion function to treat near zero mass flow rates cause

algebraic loops, and how can they be avoided?

In the next section, we discuss direct input-output de-

pendencies in major HVAC components, and afterwards

discuss situations where these components are connected

to form HVAC systems.

4.1 Major HVAC components

This section describes the direct input-output dependen-

cies of major HVAC components under the assumption

that they are modeled steady-state, as is common in

building energy simulation. The purpose of the discus-

sion in this section is to understand what outputs depend

directly on what inputs and how direct dependencies can

be reduced.

4.1.1 Heater

heater

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 3. FMU of a heater.

We will start with a simple component of a heater that

injects a known amount of heat Q̇ into a fluid stream. In

such a component, the outlet pressure is pb = pa+ f (ṁa)
for some function f : R→ R, and the outlet temperature

is Tb = g(ṁa, ι(Ta)) for some function g : R×R → R.

For example, for an ideal water heater, g(ṁa, ι(Ta)) =
ι(Ta) + Q̇/(ṁa cp). We will depict graphically such a

component as shown in Figure 3, where the arrows indi-

cate inputs (for this component, inputs are on the left and

outputs on the right). The dotted lines inside the compo-

nent show on what inputs an output directly depends on.

We selected to use this graphical representation rather

than writing the incidence matrix as the graphical repre-

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

33

sentation allows us to graphically connect components to

form HVAC systems.

4.1.2 Dehumidifying or humidifying components

humidifying or

dehumidifying component

(with exact mass balance)

humidifying or

dehumidifying component

(mass balance ignores change

in water vapor)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 4. FMU of a humidifying or dehumidifying compo-

nent. The component on the right implements Recommenda-

tion 4.2, and hence the red dashed line is removed.

We now discuss the situation in which the heat ex-

changer in Figure 3 dehumidifies or humidifies the air.

This can be the case for a humidifier or for a cooling

coil that cools the air below its dew point. In this situ-

ation, the rate of heat and mass transfer affect the out-

let mass flow rate. Therefore, if the outlet mass frac-

tion of the humidifying or dehumidifying component

depends on the thermodynamic state of the inlet fluid,

which generally is the case, then the pressure drop equa-

tions are coupled to the heat transfer equations. Hence,

such a component has the structure shown in Figure 4.

Note that for this component, there generally is no need

to properly characterize its thermodynamic behavior for

reverse flow because such equipment is only operated

when the fan is on. When the fan is off, small re-

verse flows may occur, but for this situation, it suffices

to set Ta = ι(Tb) and Xa = ι(Xb), or Ta = Tde f ault and

Xa = ι(Xde f ault), where Tde f ault and Xde f ault are default

values for temperature and mass fraction. The latter ver-

sion can lead to smaller system of equations if compo-

nents are used in a flow network.4 We therefore de-

cided in Figure 4 that the change in mass flow rate has

the functional form ṁb−ṁa = f (ṁa, ι(Ta), ι(Xa)) rather

than ṁb − ṁa = f (ṁa, ι(Ta), ι(Xa), ι(Tb), ι(Xb)). I.e.,

the thermodynamic properties of the reverse flow are not

used to compute the amount of humidification or dehu-

midification. We therefore make the following recom-

mendation:

Recommendation 4.1 To reduce the number of direct

input-output dependencies of components that humid-

ify or dehumidify the air, such components should im-

plement for the reverse flow port_a.h_outflow=

Medium.h_default, where Medium.h_default

is the default specific enthalpy of the medium. Otherwise,

4See https://github.com/iea-annex60/

modelica-annex60/issues/281 for a discussion.

the energy equations for the backward flow become part

of the residual functions of the pressure and mass flow

rate equations.

Because the outlet mass flow rate is ṁb = ṁa (1 +
∆Xw), where ∆Xw is the change in water vapor mass frac-

tion across the component, this component couples the

energy calculation to the pressure drop versus mass flow

rate calculations. However, in typical building HVAC

systems, ∆Xw < 0.005kg/kg. Hence, by tolerating a rel-

ative error of 0.005 in the mass balance, one can decou-

ple these equations. Decoupling these equations avoids

having to compute the energy balance of the humidifier

and its upstream components when solving for the pres-

sure drop of downstream components5. We therefore

make the following recommendation:

Recommendation 4.2 If an error in the mass balance

of about 0.5% is acceptable, then one can implement a

humidifier or dehumidifier that neglects in the mass bal-

ance equation the change in water vapor mass fraction.

This can allow computing the mass flow rate versus pres-

sure drop equations without having to couple the energy

balance, or the control input of a humidifier or dehumid-

ifier, to these equations.

As in building simulation, there is considerable uncer-

tainty in air flow rate calculations, and also because

larger effects such as duct leakage are generally ignored,

taking a relative error of 0.5% into account seems ac-

ceptable in typical applications. See also Jorissen et al.

(2015) for a discussion.

4.1.3 Fan

fan (head dependent

on actual density)

fan (head simplified to be

independent of actual density)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 5. FMU of a fan. The component on the right imple-

ments Recommendation 4.3, and hence the red dashed line is

removed.

According to the laws of fluid dynamics, the pres-

sure rise over a fan is related to the volume flow rate

rather than the mass flow rate. Therefore, the functional

form for the fan head is pb − pa = f (ṁa, ι(Ta), ι(Xa))
and the input-output dependency is as shown in the left-

hand side of Figure 5. However, if one were to simplify

5In the Buildings library, only downstream components are af-

fected because the humidifier evaluates a component’s pressure drop

for ṁa and not for ṁb.

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

34 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

the fan laws and use a constant mass density, then the di-

rect input-output dependency of the inlet thermodynamic

properties could be eliminated, as shown in the right-

hand side of Figure 5. We therefore make the following

recommendation:

Recommendation 4.3 If the operating temperature of a

fan (or pump) does not change much, or if large uncer-

tainties exist in parameters or the models for the pressure

drop calculation of the duct (or pipe) network, then one

should assume a constant mass density in the fan model,

as this leads to fewer coupled equations.

4.1.4 Heat exchanger between supply and return air

heat exchanger

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 6. FMU of a component that exchanges heat between

two fluid streams.

Figure 6 shows the direct input-output dependency of

a heat exchanger. On top left is the inlet of one fluid

stream and on the bottom right is the inlet of the other

fluid stream. Such heat exchangers are typically modeled

using two different implementations.

1. The simplest form is a constant effectiveness heat ex-

changer. In this situation, the rate of heat transfer is

Q̇ = ε Ċmin (Tin,1 − Tin,2), where ε ∈ (0, 1) is a con-

stant, Ċmin = min(|ṁa,1 cp,1|, |ṁa,2 cp,2|) is the min-

imum heat capacity flow rate and Tin,1 is the inlet

temperature of the fluid 1, which is equal to ι(Ta,1)
or ι(Tb,1). Hence, the in-streaming thermodynamic

properties of the forward and reverse flow must be

known in order to compute the thermodynamic prop-

erties of the out-streaming fluid for forward and re-

verse flow.

2. A more elaborate model is one that uses the ε −NTU

model. In this situation the same direct input-output

dependency is obtained as for the model with constant

effectiveness.

This discussion shows that heat exchangers lead to com-

plex direct input-output dependencies. If one were to

compromise on not being able to properly compute the

heat transfer if one or both streams reverse their di-

rection, then one could simplify the model to the form

shown in Figure 7. Here, we changed the model so that

the transferred heat is zero if any of the flows is differ-

ent from the design flow direction. Initial experiments

indeed confirmed that such a simplified implementation

leads to smaller systems of coupled equations. We there-

heat exchanger

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 7. FMU of a component that exchanges heat between

two fluid streams but with the simplification that no heat is

exchanged if any of the flows is different from the design flow

direction.

fore make the following recommendation:

Recommendation 4.4 If the thermodynamic behavior

of a heat exchanger under reverse flow directions is not

of interest to the application, then the equations should

only be formulated for forward flow. For reverse flow sit-

uations, one should simply assign Tb,k = ι(Ta,k) for both

streams k ∈ {1, 2}. Note that reverse flow may occur in

HVAC systems due physical reasons such as wind pres-

sure on the facade (when the fan is off) or due to numeri-

cal artifacts because numerical solvers only compute an

approximate numerical solution and hence small nega-

tive flows can exist when the HVAC system is off.

4.1.5 Temperature or humidity control

The user guide Annex60.Fluid.Sensors.

UsersGuide and of libraries that use Annex60, such

as AixLib, Buildings, BuildingSystems and

IDEAS, recommend to measure temperature, relative

humidity, mass fraction, trace substances and specific

enthalpy with a sensor that has two ports, and use a

dynamic balance to compute the measured quantity.

This dynamic balance has shown to be beneficial in large

systems that can have zero flow rate. If such sensors

are used as an FMU, they have the advantage that the

dynamic balance causes the measured quantity to be a

state variable. Hence, if used in combination with a P or

PI controller, the use of this state variable avoids having

to solve an algebraic loop.

Therefore, in the subsequent discussion, we will as-

sume that a dynamic sensor is used.

4.2 Components in series

Figure 8 shows four FMUs in series. This represents

the case where a mass flow rate of outside air is con-

ditioned and transported to a room that has a dynamic

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

35

component 1

(outside)
component 2

(heater)

component 3

(fan)

component 4

(room)

to residual function

to iterate on mass flow rate

bc or iv

bc

bc

bc

bc: known boundary condition

iv: independent variable, solution to linear or nonlinear eqn.

s: state variable

s

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 8. FMUs connected in series.

energy balance, and hence the room air temperature is a

state variable whose value is determined by an integra-

tion algorithm. The outside air imposes a pressure and

temperature boundary condition. The outdoor mass flow

rate is either an independent variable or a boundary con-

dition. In the first case, the outdoor mass flow rate is

iterated upon until the pressure equations are satisfied.

In the second case, the pressure drop equations could be

removed from the set of equations.

The equations for this arrangement can be solved as

follows. First, by assumption, the pressure drop only

depends on the mass flow rate and not on temperature.

Therefore, the mass flow rate can be solved iteratively

by setting an initial value, evaluating the pressure drop

equations of component 1, 2, 3 and 4 in series until a

convergence criteria on the difference between the out-

let pressure of component 3 and the room air pressure

(component 4) is met. Once the mass flow rate is known,

components 1, 2, 3 and 4 can be called in sequence to

obtain the temperatures for the forward flow direction.

For the reverse flow direction, components 4, 3, 2 and 1

need to be called in sequence.

The red line in the fan of Figure 8 is only present if

Recommendation 4.3 is not implemented. In this situa-

tion, the energy equation of the heater need to be eval-

uated in order to compute the mass flow rate, thereby

increasing the number of operations required to evaluate

the residual function.

Analyzing Figure 8 leads us to the following remark:

Remark 4.1 Evaluating the energy equations for for-

ward flow and then for backward flow is only possible if

the energy equations only depend on the thermodynamic

state of the inflowing medium. For example, if a compo-

nent were to use the regularization

h_in = spliceFunction(

pos = inStream(port_a.h_outflow),

neg = inStream(port_b.h_outflow),

x = m_flow,

deltax = m_flow_nominal/100)

then the thermodynamic properties of the backward flow

must be known to compute the thermodynamic properties

of the forward flow. Moreover, if, in Figure 8, compo-

nents 2 and 3 both use the above spliceFunction,

then a nonlinear equation must be solved to compute the

thermodynamic properties.

Hence, we make the following recommendation:

Recommendation 4.5 Regularization in which the ar-

guments of the regularization function directly depend

on the thermodynamic properties of the forward and re-

verse flow should be avoided as this can lead to nonlin-

ear equations.

Note, however, the following:

Remark 4.2 Simply replacing

h_in = spliceFunction(

pos = inStream(port_a.h_outflow),

neg = inStream(port_b.h_outflow),

x = m_flow,

deltax = m_flow_nominal/100)

with

h_in = if m_flow >= 0

then inStream(port_a.h_outflow),

else inStream(port_b.h_outflow);

is not a solution to Recommendation 4.5. In fact, this

would also lead to a non-linear equation, but with a

discontinuity in the residual equation, which can lead

to problems in Netwon-Raphson solvers. Rather, one

could attempt to set h_in=inStream(port_a.h_

outflow) and let the transfered heat go to zero as the

mass flow rate approaches zero from above.

4.3 Components in parallel

Figure 9 is as Figure 8 except that it has two rooms, each

with a variable air volume (VAV) terminal. The VAV ter-

minals can increase the flow resistance based on a con-

trol signal, and possibly provide heating or cooling (here,

we assumed no dehumidification at the terminal unit).

To implement such a system, a flow splitter is needed.

The flow splitter has as an input the split of the mass

flow fraction between the two outlet ports. This input

is required as otherwise the splitter is underdetermined.

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

36 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

component 1

(outside)
component 2

(heater)

component 3

(fan)
components 7 and 8

(room)

to residual function to iterate on outdoor

mass flow rate and on split of room mass

flow rates

bc or iv

bc

bc

bc

s

components 5 and 6

(VAV terminal)

component 4

(flow splitter)

bc

s

iv:

split of room

mass flow rates,

obtained from

solver

bc: known boundary condition

iv: independent variable, solution to linear or nonlinear eqn.

s: state variable

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 9. FMUs connected in series that serve two rooms.

The input may be a variable determined by a numerical

solver. The VAV terminal has the same input-output re-

lation as the heater.

The equations for this arrangement can be solved as

follows: A solver determines the outdoor mass flow rate

and the split of the mass flow rates until the residual func-

tion of the pressure is satisfied. This can be accomplished

by evaluating the pressure drop equations of all FMUs

along the flow direction. If the fan does not implement

Recommendation 4.3, then the energy equation of com-

ponents 2 and 3 also need to be evaluated. Once the mass

flow rate has converged to its solution, components 1, 2,

3, 4, 5, 6, 7 and 8 can be evaluated for forward flow.

Finally, components 7, 8, 5, 6, 4, 3, 2 and 1 can be eval-

uated for reverse flow.

4.4 Air loops

Figure 10 shows an air loop that consists of the heat ex-

changer that implements Recommendation 4.4, two fans

that implement Recommendation 4.3, and a return duct.

The room conserves mass and has a pressure equation for

the outlet pressure. Therefore, during the iterative solu-

tion of the mass flow rate, convergence is checked on the

pressure of the exhaust air.

The equations can be solved as follows: First, compo-

nents 1, 2, 3, 4, 5, 6 and again 2 are evaluated to solve

for the mass flow rate. Next, the energy equation can be

solved for forward flow by evaluating components 5 (to

get the state T) and 6 to obtain the return air inlet temper-

ature of the heat exchanger. Then, components 1, 2, 3,

4 and 5 can be evaluated, which concludes the computa-

tions for the forward flow. For the reverse flow direction,

components 1, 5, 4, 3, 2, 6 and again 1 and 5 can be eval-

uated. Note that the order is not unique as one could have

started with component 5.

Remark 4.3 Note that the heat exchanger is called at

least four times if flow reversal is allowed, i.e., twice for

the iteration for the mass flow rate, once for forward flow

and once for reverse flow. Without flow reversal, the heat

exchanger is called at least three times. This indicates

the inherent inefficiencies when using FMUs for individ-

ual fluid flow components, rather than letting the sym-

bolic processor of a Modelica tool rearrange the equa-

tions to a block lower triangular form.

4.5 Control Loops

As discussed in Section 4.1.5, feedback control loops

for thermodynamic properties such as temperature or

humidity do not cause an algebraic loop if a dynamic

sensor is used. Specifically, if a sensor from the pack-

age Buildings.Fluid.Sensor is used and its time

constant tau is set to a value larger than zero, then

the sensor will output a state variable and hence the

feedback control loop does not cause an algebraic loop.

If tau=0 and the controller has direct feedthrough,

then such control loops for steady-state HVAC com-

ponents cause an algebraic loop. To avoid such al-

gebraic loops, the controller could be idealized and

implemented directly in the HVAC component, as is

done for example in the model Buildings.Fluid.

HeatExchangers.HeaterCooler_T.

5 Connector variables
In this section, we discuss the selection of the vari-

ables that will appear as inputs and outputs of the

FMU. We recall that Modelica.Fluid, Annex60.

Fluid and libraries that depend on it such as AixLib,

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

37

component 1

(outside)
component 2

(heat exchanger)

component 4

(fan)

component 5

(room)

to residual function

to iterate on mass flow rate

bc or iv

bc

bc s

component 6

(fan)

component 3

(heater)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 10. FMUs connected in a loop with a heat exchanger between the outside air intake and the exhaust air.

Buildings, BuildingSystems and IDEAS, use

for the pressure the total pressure in Pascal, for the mass

flow rate kg/s and for the mass concentration for moist

air kg/kg total air. We will use the same variables for the

parameters, input and output signals of the FMU. While

the connectors in the above libraries use specific enthalpy

h, we will use the absolute temperature T in Kelvin in-

stead. The reasons for this selection are as follows:

1. If we were to use the specific enthalpy h as a connector

variable, then an FMU would not be self-contained.

Rather, to use the FMU, one would require knowledge

of the function that is used by the FMU to relate tem-

perature and mass fraction to enthalpy. Consequently,

exchanging models in FMUs would not be possible

without also providing such a function.

2. In Modelica, using h is motivated as it allows mix-

ing of fluid streams in a port, e.g., in a port, hmix =
∑i max(0, ṁi)hi/∑i max(0, ṁi), where hi is the en-

thalpy of the fluid that flows into the port. Using

temperature in the mixing equations that are gener-

ated by the fluid connections can give wrong results

as Tmix = ∑i max(0, ṁi)Ti/∑i max(0, ṁi) only holds if

the specific heat capacity cp is constant. However, this

is not a concern for FMUs as mixing in ports is sup-

ported in Modelica but not when FMUs are connected

among each other.

We also had to make a choice about using Kelvin or de-

gree Celsius for the temperature. Whereas users may be

more accustomed to use degree Celsius, we decided to

use Kelvin for the following reasons:

1. FMUs for model-exchange and for co-simulation not

only expose input and output signal, but also state

variable and parameters. The state variables in models

of the Buildings library are temperature in Kelvin.

Changing them to degree Celsius would require re-

designing the library, and hence using a unit conven-

tion in the Buildings library that is different from

what is used in the Modelica Standard Library.

2. Without such a redesign, FMUs would require some

temperatures in Celsius and others in Kelvin.

3. Many models have parameters for design tempera-

tures, and also compute outputs that are temperatures,

such as temperature sensors or the temperature of a

furnace. These quantities have units of Kelvin. Hence,

for all parameters and all such signals, a unit conver-

sion would need to be implemented, which would be

quite cumbersome. Moreover, such parameters and

variables may still show up as an FMU interface vari-

able, thereby introducing mixed units.

Because using mixed units is confusing and error-prone,

we use Kelvin and propose that tools handle unit

conversions between the computed quantities and the

quantities that are displayed to the user, as is done for

example in Dymola 2016.

With these design decisions, an FMU that has two

fluid ports called inlet and outlet will have the fol-

lowing interface variables.

inlet.m_flow

p

forward.T

X_w

C

backward.T

X_w

C

where m_flow is the mass flow rate, p is the abso-

lute pressure (which is conditionally removed if use_

p_in=false) and forward and backward are the

thermodynamic properties for the forward flow and

backward flow. If allowFlowReversal=false,

then backward is removed. The thermodynamic vari-

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

38 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

ables are temperature T in Kelvin, water vapor mass frac-

tion X_w in kg/kg total air, which is removed for water,

and trace substances C, which is removed if Medium.

nC=0.

6 Code optimizations lost by using

small FMUs

This section describes code optimizations that are no

longer done when models are shared as an FMU as op-

posed to sharing Modelica mode, because FMUs either

contain compiled code or C-code, neither of which al-

lows the level of computer algebra possible with Model-

ica. While the Modelica specification does not prescribe

the code optimization, most Modelica compilers are ex-

pected to conduct the optimizations described below.

1. Consider Figure 8. A Modelica compiler would use

one variable for the mass flow rate that enters the com-

ponent, and one for the leaving mass flow rate. Results

can be written efficiently by storing only the mass

flow rate ṁ1,b that leaves component 1, and declaring

in the output file that ṁk,b = ṁ1,b for k ∈ {2,3} and

ṁk,a = ṁ1,b for k ∈ {2,3,4}. However, such knowl-

edge is no longer available if multiple FMUs are used.

Hence, mass flow rates must be set, read, stored and

written to disk multiple times. Similar discussions

apply for thermodynamic properties that remain un-

changed in a component, such as T , Xw and C in an

air damper.

The efficiency loss that incurs if the output has

the same value as the input could, however, be

avoided using optional features of the FMI stan-

dard. For example, first, if variables share the same

valueReference in the modelDescription.

xml file, then they have the same value. Second, if

dependenciesKind="fixed" is declared in the

modelDescription.xml file, then the output is,

after fmi2ExitInitializationMode, equal to

a fixed factor times the input, and hence a master al-

gorithm can deduce that they are equal. Dymola 2016

uses the latter construct.

2. Consider Figure 8. If ṁ1,b is an iteration variable,

components 2 and 3 can be configured to compute

pressure drop as a function of the mass flow rate,

rather than mass flow rate as a function of the pres-

sure drop, thereby keeping the number of iteration

variables as small as possible. Such a selection is no

longer possible if a component is exported as an FMU.

See also Jorissen et al. (2015) for how this can affect

computing time.

3. Consider Figure 8. A Modelica compiler may do au-

tomatic differentiation of the Modelica code to com-

pute a symbolic expression of the Jacobian matrix that

is used to iteratively solve for the mass flow rate that

satisfies the constraint on the pressure.

4. In Figure 9, if the VAV terminals 5 and 6 both require

the evaluation of psychometric functions that depend

com

T Q_flow

com.port_a.p - com.port_b.p

dpCom

bouIn

m

inlet

p

bouOut

outlet

p

-

pOut

inlet outlet

inlet outlet

TSet
Q_flow

Figure 11. Block that contains a replaceable model of a heater

and that defines input and output signals for export as an FMU.

on its inlet temperature and humidity, which are equal

for components 5 and 6, then Modelica compilers can

compute these functions once and assign the results to

both components using what is called common subex-

pression evaluation.

5. If no pressure drop calculation is requested, in Mod-

elica it is possible to remove all these computations.

In FMUs, while computations can be disabled with a

boolean parameter, there will still be an input-output

dependency, causing a system simulator to wrongfully

believe that there is an algebraic loop.

6. If multiple components form a system of equations,

Modelica compilers may solve it explicitly if it is

small and linear. If it is nonlinear, a Modelica com-

piler can use block-lower triangularization and tearing

to reduce its dimension (Cellier and Kofman, 2006).

As a drawback when allowing these optimizations, one

would require a Modelica translator and a C-compiler

on the host simulator. Also, for large Modelica mod-

els that involve buildings and HVAC systems, translation

and compilation time can be in the order of minutes in

tools such as Dymola or OpenModelica. This, however,

could be reduced by compiling only the HVAC system,

and by doing incremental parallel compilation.

7 Implementation

We implemented the package Buildings.Fluid.

FMI that contains connectors, blocks that have replace-

able thermofluid components, examples blocks that can

be exported as FMUs, and examples in which we con-

nected these example blocks to form system models.

Figure 11 shows such an example block. In the mid-

dle is the actual thermofluid component. In this case, it

is a heater or cooler, but it may be a whole subsystem

that contains multiple thermofluid components as long

as it extends Buildings.Fluid.Interfaces.

PartialTwoPort. To the left and right are adaptors

that convert between the signal flow and the acausal fluid

connectors. At the bottom is the computation of the pres-

sure difference across the component. This is required

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

39

as one adaptor needs to set the flow rate and the other

the pressure in order for the component to be balanced.

The connectors inlet and outlet contain the input

and output signals. The inlet connector is defined as

follows (most annotations have been removed for better

readability):

within Buildings.Fluid.FMI.Interfaces;

connector Inlet " Connec tor f o r f l u i d i n l e t "

import FMI = Buildings.Fluid.FMI;

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium

" Medium model ";

parameter Boolean use_p_in = true

"= t r u e t o use a p r e s s u r e from c o n n e c t o r ";

parameter Boolean allowFlowReversal = true

"= t r u e t o a l l o w f l o w r e v e r s a l ";

input Medium.MassFlowRate m_flow

" Mass f l o w r a t e i n t o t h e component ";

FMI.Interfaces.PressureInput p

if use_p_in

" Thermodynamic p r e s s u r e ";

input FMI.Interfaces.FluidProperties

forward(

redeclare final package Medium = Medium)

" I n f l o w i n g p r o p e r t i e s ";

output FMI.Interfaces.FluidProperties

backward(

redeclare final package Medium = Medium)

if allowFlowReversal

" O u t f l o w i n g p r o p e r t i e s ";

end Inlet;

The connector Buildings.Fluid.FMI.

Interfaces.FluidProperties contains the

thermodynamic properties, and is defined as follows:

within Buildings.Fluid.FMI.Interfaces;

connector FluidProperties

" Type d e f i n i t i o n f o r f l u i d p r o p e r t i e s "

import FMI = Buildings.Fluid.FMI;

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium

" Medium model ";

Medium.SpecificEnthalpy h

" S p e c i f i c thermodynamic e n t h a l p y ";

FMI.Interfaces.MassFractionConnector X_w

if Medium.nXi > 0

" Water vapor mass f r a c t i o n s per kg t o t a l a i r ";

Medium.ExtraProperty C[Medium.nC]

" P r o p e r t i e s c _ i /m";

end FluidProperties;

Note that we introduced the new connectors

Buildings.Fluid.FMI.Interfaces.

PressureInput and Buildings.Fluid.

FMI.Interfaces.MassFractionConnector.

The first was required to conditionally remove the

pressure from the connector. For example, if a user

is not interested in computing the pressure drop, then

setting the parameter use_p_in=false will elim-

inate p from the connector, remove all pressure drop

calculations and setting the pressure of the component to

Medium.p_default. We also decided to introduce

the new connector

within Buildings.Fluid.FMI.Interfaces;

connector MassFractionConnector =

Modelica.SIunits.MassFraction

" Water vapor mass f r a c t i o n per kg t o t a l mass ";

to avoid having a vector with one component for the

water vapor mass fraction. This was done so that the

FMUs have as an input or output for the water mass

fraction a scalar variable X_w rather than having a vector

with one component for the water vapor mass fraction.

In the Buildings library, when running the regres-

sion tests, for each model that is exported as an FMU

a file will be generated that shows the dependencies of

outputs, states and initial unknowns. This file can be in-

spected to see what dependencies thermofluid flow com-

ponents have, and the file will be used in subsequent re-

gression tests to verify that the dependencies do not in-

advertently change when models are revised.

8 Numerical experiments

8.1 Connector Variables

To benchmark the computing time with temperature T

versus specific enthalpy h in the FMU input and output,

we simulated an HVAC system. The HVAC system is a

VAV system with economizer, heating and cooling coil

in the air handler unit, and models of return duct, split-

ter, terminal heaters and controls. The FMUs either had

T or h as input and output variables. Internally, the mod-

els use enthalpy balance, and hence if T is an input and

output variable, a conversion from T to h is required for

the input and from h to T for the output. We exported

the components as nine FMUs from Dymola 2015 FD01

and connected and simulated them in Ptolemy II (Ptole-

maeus, 2014) for the same number of steps. To bridge

from Java used in Ptolemy II to FMI, we used the Java

Native Interface (JNI). This experiment did not show a

difference in computing time.

Next, we simulated the Modelica implementations

with T or h in the inlet and outlet signals, connected to

a first order room response, directly in Dymola with the

Rkfix3 integration algorithm, without use of any FMUs.

This experiment also showed no difference in computing

time.

These two experiments indicate that there is no perfor-

mance penalty of choosing T rather than h for the input

and output signals.

8.2 Code optimizations lost by using small

FMUs

To investigate the impact of lost code optimization, we

simulated the HVAC model of Section 8.1 that was ex-

ported as either one or as nine FMUs. Both systems were

simulated in Ptolemy II for 35,040 steps, which would

correspond to an annual simulation with an average time

step of 15 minutes. The simulation time was 2 seconds

for the case with one FMU, and 3.4 seconds for the case

with nine FMUs. Hence, using nine FMUs increased the

computing time by 70%. The difference is attributed to

the lost code optimization in FMUs, the overhead of call-

ing many FMUs, and transferring data between outputs

and inputs of FMUs. Note however that the version of

Ptolemy II that we used for our experiments does not

Design Choices for Thermofluid Flow Components and Systems that are Exported as Functional Mockup Units

40 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511831

make use of the dependenciesKind information ex-

plained in Section 6, item 1.

9 Conclusions

The analysis in Section 4 showed that regularization

and the use of the inStream function can cause direct

input-output dependencies in FMUs that contain steady-

state HVAC equipment models. Recommendations to

avoid such dependencies are provided. We also pro-

vided various recommendations to implement approxi-

mate equations in thermofluid flow models that lead to

fewer input-output dependencies, and hence smaller cou-

pled systems of equations.

Our analysis showed that using multiple small FMUs

prevents system-level code optimization that is otherwise

done in Modelica. This was confirmed by our numerical

experiments.

For users, we provide a Modelica package that allows

export of thermofluid flow components and systems for

different media, with and without pressure drop calcula-

tions.

In summary, the efficiency of using FMUs for ther-

mofluid flow components strongly depends on compo-

nent design, and various code optimizations are lost

when using small FMUs rather than Modelica models.

10 Acknowledgment

This research was supported by the Assistant Secretary

for Energy Efficiency and Renewable Energy, Office of

Building Technologies of the U.S. Department of En-

ergy, under Contract No. DE-AC02-05CH11231.

This work emerged from the Annex 60 project, an in-

ternational project conducted under the umbrella of the

International Energy Agency (IEA) within the Energy in

Buildings and Communities (EBC) Programme. Annex

60 will develop and demonstrate new generation com-

putational tools for building and community energy sys-

tems based on Modelica, Functional Mockup Interface

and Building Information Modeling standards.

References
François E. Cellier and Ernesto Kofman. Continuous System

Simulation. Springer, 2006.

Rüdiger Franke, Francesco Casella, Martin Otter, Michael

Sielemann, Hilding Elmqvist, Sven Erik Mattsson, and

Hans Olsson. Stream connectors – an extension of

modelica for device-oriented modeling of convective

transport phenomena. In Francesco Casella, editor,

Proc. of the 7-th International Modelica Conference,

Como, Italy, September 2009. Modelica Association.

URL https://www.modelica.org/events/

modelica2009/Proceedings/memorystick/

pages/papers/0078/0078.pdf.

Filip Jorissen, Michael Wetter, and Lieve Helsen. Simulation

speed analysis and improvements of Modelica models for

building energy simulation. In 11-th International Model-

ica Conference, Paris, France, September 2015. Modelica

Association.

Modelica, 2010. Modelica – A Unified Object-Oriented Lan-

guage for Physical Systems Modeling, Language Specifi-

cation, Version 3.2. Modelica Association, March 2010.

URL https://www.modelica.org/documents/

ModelicaSpec32.pdf.

Modelica Association. Functional Mock-up Interface for

Model-Exchange and Co-Simulation version 2.0, 2014.

https://www.fmi-standard.org/downloads.

Claudius Ptolemaeus, editor. System Design, Modeling, and

Simulation using Ptolemy II. Ptolemy.org, 2014. URL

http://ptolemy.org/books/Systems.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xi-

ufeng Pang. Modelica Buildings library. Journal of

Building Performance Simulation, 7(4):253–270, 2014.

doi:10.1080/19401493.2013.765506.

Michael Wetter, Thierry S. Nouidui, David Lorenzetti, Ed-

ward A. Lee, and Amir Roth. Prototyping the next genera-

tion energyplus simulation engine. Accepted: 13-th IBPSA

Conference. International Building Performance Simula-

tion Association, December 2015. URL http://www.

ibpsa.org/.

Session 2A: FMI 1

DOI
10.3384/ecp1511831

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

41

