
FMI for physical models on automotive embedded targets 

Christian Bertsch
1
     Jonathan Neudorfer

1
     Elmar Ahle

1
 

Siva Sankar Arumugham
2
     Karthikeyan Ramachandran

2
     Andreas Thuy

3
 

 
1
Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, 71272 Renningen, Germany 

2
Robert

 
Bosch Engineering and Business Solutions Private Limited, 560 103 Bangalore, India 

3
 ETAS GmbH, 70469 Stuttgart, Germany 

 
Christian.Bertsch@de.bosch.com     Jonathan.Neudorfer@de.bosch.com     Elmar.Ahle@de.bosch.com 

SivaSankar.Arumugham@in.bosch.com     Karthikeyan.R@in.bosch.com     Andreas.Thuy@etas.com  

 

 

Abstract 

This paper explores the possibility to include and 

execute source code functional mockup units on Bosch 

electronic control units. A prototypical realization is 

presented, and assumptions as well as limitations are 

documented. Special emphasis is laid on requirements 

for the contained C-code. Furthermore, aspects for an 

extension to adapt the FMI to the usage on automotive 

embedded real-time systems are summarized. 

Keywords: Automotive, FMI, Embedded Systems, 

Electronic Control Units 

 

1 Introduction 

The Functional Mock-up Interface (FMI) is a well 

received tool independent approach for model 

exchange (Blochwitz et al. 2011, 2012) and a 

promising candidate to become the industry standard 

for exchange of models and cross-company 

collaboration (Bertsch et al. 2014). From the beginning 

in the MODELISAR project, a wide range of possible 

simulation target platforms for FMI was foreseen, 

ranging from offline simulation platforms over 

Hardware-in-the-Loop (HiL) real-time systems to 

embedded systems (Chombard 2012). While in the 

offline simulation world FMI is well-established, this is 

not the case for embedded applications. 

This paper presents results of a prototypical FMI 

implementation for physical models on automotive 

embedded targets. Furthermore, the usage and 

adaptation of the FMI as a standard for the automotive 

embedded world is investigated.  

Section 2 provides an overview of the state of the art 

of physical models on real-time systems. In Section 3, 

a prototype implementation of FMI on an Electronic 

Control Unit (ECU) is introduced. Section 4 proposes 

aspects for an extension to adapt the FMI to the usage 

on automotive embedded real-time systems before 

Section 5 concludes with a summary and an outlook. 

2 Physical models for real-time systems 

First, an overview of real-time systems is given where 

physical models are already implemented using the 

FMI standard (Section 2.1). Then, the status on 

embedded systems is examined (Sections 2.2 and 2.3) 

and the idea as well as advantages of the FMI on 

embedded systems is presented in Section 2.4. 

2.1  FMI for real-time systems: state of the art 

The usage of FMI for real-time simulation is gaining 

importance. The import of Functional Mock-up Units 

(FMUs) is supported on major HiL systems in the 

automotive domain, e.g., ETAS LABCAR (Mitrohin 

2014). The same is true for rapid prototyping 

applications (Brembeck et al. 2014). There are even 

first applications of FMI for productive online control 

and optimization tasks of power plants (Franke 2015). 

All of these real-time applications have one thing in 

common, i.e., they run on personal computers (PC) or 

similar systems. 

2.2  Embedded systems and ECUs 

In contrast to real-time applications running on PCs, 

software on automotive ECUs has special 

requirements. Some of them are more generally true 

for embedded systems, some of them apply only to 

automotive embedded systems such as special coding 

guidelines (MISRA 2013) or software architecture 

(AUTOSAR 2015). 

Typically, a modern vehicle has a lot of different 

ECUs for different tasks such as a vehicle control unit, 

an electronic stability control unit, and last but not least 

an engine control unit for internal combustion engines. 

ECUs are embedded systems with a different design 

compared to other computer systems such as PCs: 

Usually they have restrictions on 

 memory usage, 

 power consumption as well as computational 

power, 

 hard real time requirements, and 

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

43



 available libraries: Not all mathematical functions 

known in the offline world, e.g., as declared in  

math.h, are available for embedded targets. 

2.3 Physical models on ECUs: state of the art 

Physical models play an important role in the advanced 

control of internal combustion engines. Application 

fields are, e.g., in the advanced control of the air 

system of internal combustion engines. Also the real-

time capable implementation of advanced numerical 

methods such as implicit discretization of stiff ordinary 

differential equations for ECU software functions have 

been successfully implemented (Wagner et al. 2008) 

and are used in real-life applications. One major 

advantage of physical models is that they can reduce 

calibration effort and the number of characteristic maps 

(Seuling et al. 2012). 

The demand for the implementation of physical 

models is rapidly growing due to the growing 

complexity of systems (e.g., hybrid electrical systems), 

higher demands on control and diagnosis due to 

efficiency and legislation. There is a need for new 

model-based methods for  

 virtual sensors, i.e., observers,  

 model-based diagnosis, 

 inverse physical models as feed forward part of 

control structures, and 

 model predictive control. 

In many cases the solution of the physical equations 

can be separated from other of the control algorithms 

and thus this part could be encapsulated an FMU. An 

example for this is shown for the model-based 

diagnosis, as depicted in Figure 1. 

 

 

Figure 1: Encapsulated physical model as FMU in 

model–based diagnosis, adapted from (Ding 2013)   

 

 For the offline development and simulation of such 

physical model, powerful tools are available. However, 

the generated C-code from the majority of the tools 

cannot be ported directly to an ECU. Today, these 

models are often (re-)implemented individually for the 

specific use case on the ECU. This requires expert 

knowledge and significant effort. 

Furthermore, there is no standardized interface for 

physical models available on the ECU. Although the 

AUTOSAR standard is widely accepted in the 

automotive domain, it is not supported by typical 

modeling tools for physical models. Also, AUTOSAR 

does not provide an interface for solvers of Ordinary 

Differential Equations (ODEs) and related 

mathematical description.  

2.4 The idea and advantages of FMI on the ECU 

The idea of using FMI not only in PC-based 

environments but also for embedded systems is already 

considered as a possibility in the existing FMI 

standard. Our motivation to work in this direction is to 

facilitate the implementation of physical models on the 

ECU by defining re-usable interface-functions and 

numerical algorithms. This enables improvement in the 

development process for physical models within ECU 

software: The models could be seamlessly reused from 

early design (offline), over rapid control prototyping, 

and then finally ported to the ECU. This will also 

facilitate the collaborative development of ECU 

software between original equipment manufacturers 

(OEMs) and their suppliers in the context of physical 

models. 

There are a lot of tools available for physical 

modeling that support the FMI standard (also with 

C-code generation), but only very few that support the 

AUTOSAR standard. In a first step, one can apply the 

prototype presented below for rapid (control) 

prototyping purposes with physical models being 

exported as FMUs from different tools.  

Later – when additional requirements on the 

included C-code would be fulfilled and the standard 

would be adapted – it could also be used to exchange 

code for real ECU projects. The core question is how 

to integrate the FMU and its numeric framework into 

an ECU software architecture like AUTOSAR. 

3 Prototype implementation of FMI on an 

ECU 

A first prototype for using FMI as an intermediate 

format in AUTOSAR was described in (Thiele et al. 

2011) with the intention of using FMI as a lean 

standard to exchange software components. There it is 

pointed out that compared to AUTOSAR, the FMI 

standard is much smaller and more straightforward, 

and support of the FMI standard is a more manageable 

task. Additionally, (Thiele et al. 2011) describes in 

detail the mapping of FMI and AUTOSAR 

XML configuration files and interfaces. In our 

approach this is done in a similar way, as described in 

Section 3.2.1. However, in contrast to our intention, the 

emphasis of (Thiele et al. 2011) was on pure control 

software and on the software architecture. In this paper, 

the focus is laid on porting physical models to an ECU 

and actually computing them on the target platform. 

 

Process

Process Model 

as FMU

input

-

output

Residual generation

Residual 

evaluation
+ Knowledge

of faults

FMI for Physical Models on Automotive Embedded Targets

44 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843



 

Figure 2: Bosch MDG1 ECU 

 

As a demonstration platform the latest ECU 

platform of Bosch for powertrain applications is 

selected - the new “MDG1 ECU” as depicted in 

Figure 2. It is a scalable multi core processor system, 

see (Rüger et al. 2013) for details. As shown in 

Figure 3, this platform supports both application 

software (ASW) in a Bosch specific format compatible 

with former Bosch ECU generation “MEDC17”, and 

AUTOSAR. The base software is fully AUTOSAR 

compliant and communicates with the AUTOSAR 

application software via the run-time environment 

(RTE) and with MEDC17 application software with a 

Bosch-specific interface. 

This is the platform for which the execution of 

FMUs has been prototypically realized within the real 

ECU software infrastructure (i.e., the build toolchain 

and special compilers).  

 

 

Figure 3: Software architecture of MDG1 ECU,  

(Rüger et al. 2013) 

3.1 Considerations for the prototypical porting 

of FMUs to the ECU 

The prototype is intended to work with source code 

FMUs from publicly available modeling tools. These 

tools were selected by inspection of the generated 

source C-code, w.r.t. the criteria listed in Section 4.2. 

As even the most suitable C-code did not fulfill all our 

requirements, modifications of the C-code are 

necessary. For this purpose a conversion tool was 

developed to perform this semi-automatically. 

When considering the usage on FMI for embedded 

software, one has to choose between model exchange 

or co-simulation FMUs. Both types of FMUs have 

their pros and cons: co-simulation is closer to task-

based execution in ECU software, while model 

exchange can interface special re-usable numerical 

algorithms optimized for the ECU that can be provided 

within a solver library.  

The choice of the FMU type also depends on what 

the modeling tool can export: Some tools export very 

good variable step solvers for co-simulation FMUs 

intended for the PC-world but with no chance to 

compile and use such solvers for an embedded target. 

More suited for embedded targets are inline integration 

methods (Elmqvist et al. 1995). 

On the other hand, model-exchange FMUs can take 

advantage of optimized solvers and numerics for the 

target platform without the above mentioned target 

dependency of the FMU. For this reason both, co-

simulation and model exchange FMUs, are selected. 

However, regarding real-time capability, especially for 

model exchange FMUs, the prototype only supports a 

subset of the FMI standard necessary for the 

description of continuous ODEs neglecting events. The 

assumptions and limitations of the implementation are 

described in Section 3.4. 

3.2 A prototypical workflow to bring FMUs on 

Bosch ECUs 

This prototypical workflow addresses the 

transformation that an FMU must go through to be a 

part of an ECU software component, by utilizing the 

available ECU resources and numerical capability.  

The whole conversion process can be done in a 

preparation phase offline on a development platform 

(typically a PC), where  

 the FMU is unzipped, 

 the modelDescription.xml file is parsed and 

mapped to the corresponding configuration 

XML file on the ECU software side, and 

 the C-code is manipulated so that it can be 

compiled for the target ECU within the standard 

ECU software architecture before finally 

 the manipulated C-code is included in an 

application software component that can be 

included in the overall ECU software. 

Session 2A: FMI 1

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

45



Then, the software can be compiled and flashed to the 

ECU and then executed and validated. 

3.2.1  Mapping of configuration files and interface 

definitions 

The data description file of the FMI standard 

modelDescription.xml must be converted to the 

data description format for ECUs (e.g., ARXML in 

AUTOSAR). This is performed analogously to the way 

described by (Thiele et al. 2011). This task is done by 

the first stage of a script-based conversion tool (see 

Figure 4).  

 

 

Figure 4: FMU file artifacts converted automatically into 

an ECU compatible software component 

 

3.2.2 Conversion of C-source code from FMUs to 

ECU software C-code 

Some changes like the selection of suitable data types 

(e.g., single precision float for fmi2Real) can be 

configured in the platform dependent configuration 

files fmi2TypesPlatform.h and 

fmi2Functions.h.  

For other changes the second stage of the tool-

supported conversion process applies: the C-code 

contained in the source code FMUs is converted to 

C-code that can be compiled for an ECU with the 

standard toolchain for Bosch engine control software. 

Since the FMU source code is generated from 

simulation tools typically operating in a PC 

environment, there are some code adaptations involved 

in the process of running them on ECU. However, the 

goal is to keep the code change as low as possible. 

Some examples of the changes of the C-code are: 

 All macro definitions in fmu.c must be moved to 

private headers to avoid multiple definitions while 

compiling multiple FMUs together. For example, 

definitions such as the following should be put in 

private headers: 
#define NUMBER_OF_REALS XX 
#define NUMBER_OF_INTEGERS YY 

 Information from FMUs that must be exposed to 

the outside shall be defined in public header files, 

e.g., reference to the FMU interfaces or function 

declaration prototypes such as 
void modelName_fmi2instantiate(…); 

 Some header inclusions generated in FMU source 

files like stdio.h, math.h etc., must be 

removed or excluded since they are not available 

on the embedded platform. 

 Mathematical function calls must be mapped to 

the available functions from the AUTOSAR base 

software. 

 Floating point variables and constants within the 

code have to be converted to single precision. A 

notable compiler specific change is that for any 

arithmetic expression in model equations where 

float constants are used, they must be suffixed by 

f to enable the compiler to identify that it is a 

single precision float variable and not double 

precision. This means that the original code  
mu*((1.0-x0*x0)*x1)-x0;                           

is replaced by                                                                    
mu*((1.0f-x0*x0)*x1)-x0; 

 Implicit type castings are replaced by explicit type 

castings. 

 Any explicit print functions like fprintf(), 

printf() should be removed. 

 

The structure of the C-code contained in source code 

FMUs is very specific to the exporting tool. At the 

moment FMUs generated from three different tools are 

supported. The conversion of the C-code is performed 

mainly automatically, but still the inspection of the 

modified C-code and some manual adaptations are 

necessary. 

3.2.3 Modification of memory allocation 

On the ECU, dynamic memory allocation is not 

allowed. Instead, the memory demand must be known 

at compile time. Therefore, the required memory must 

be pre-allocated and later assigned via the FMI 

callback function allocateMemory(). However, it 

is not sufficient for the ECU implementation of the 

callback function to return just a pointer to any free 

space in memory. Instead, memory for each variable is 

pre-allocated individually and the correct memory 

location for each allocation request must be returned. 

This is important for debugging and calibration. The 

respective tools must be able to map the variable 

names to the resp. space in memory. For instance, a 

model might use a struct containing the parameters 

a, b, and c. Here, the calibration tool must be able to 

unambiguously map the variables a, b, and c to their 

respective locations in memory. 

3.2.4 Concept of FMU computation algorithm 

The modified C-code is called by the “FMU 

computation algorithm” which takes the role of the 

solver in the case of model exchange FMUs and the 

master algorithm in the case of co-simulation FMUs. 

This FMU computation algorithm is the application 

software component that can communicate with the 

other parts of the ECU software and is scheduled by 

the operating system. 

The FMU computation algorithm can make use of 

solver libraries in the case of model exchange. It 

FMI for Physical Models on Automotive Embedded Targets

46 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843



interacts with the modified C-code from the FMUs via 

the standard FMI interface functions according to the 

supported part of the FMI standard calling sequence. 

This design enables easy integration of FMU 

components as ECU components, thereby enabling 

interfacing with the FMU computation algorithm, 

solver libraries, and other ECU components. A 

graphical representation of the FMU software 

components’ organization inside the ECU is shown in 

Figure 5. 

 

 

Figure 5: FMU software component for model exchange 

FMUs 

 

As shown in the depicted setup, the FMU is 

accessed via the FMI interface functions, thus keeping 

the FMU’s C-code with minimal changes while 

executing it on the ECU. The FMU computation 

algorithm is a combined set of functions defined, 

organized and distributed across different source files 

under a common container.  

3.2.5  Example: double mass spring damper model 

Several FMUs have been ported to the Bosch MDG1 

ECU with different properties of the physical models 

such as number of states (up to >10), stiffness of the 

included ODEs and physical domains covered. The 

prototype workflow allows bringing physical models 

very easily on the ECU in a fraction of the time 

necessary to hand-code the model and solvers from 

scratch. 

 

 

Figure 6: Schematic representation of the double mass 

spring damper model 

To demonstrate the execution of FMUs running on 

an ECU, a stiff model of a double mass spring damper 

as depicted in Figure 6 is considered. This example 

serves as a benchmark problem for a stiff powertrain 

model that could be used in applications listed in 

Section 2.3. For this simple model, source code FMUs 

were generated with several Modelica-based 

simulation tools. The size of the contained C-code 

differed from 54kByte to 2.9MByte, i.e., differing by a 

factor of more than 50. This correlated also with the 

complexity and “readability” of the contained C-code 

and is a first indication, how feasible it is to re-use this 

C-code on embedded targets. 

 
For the above model, the system of equations is 

given by 

 
          

    

           

 

(1) 

 

with the following parameters: 
= =1kg, = =1N/m, =100Ns/m, =1Ns/m  

and initial conditions: 
=2m, =0m/s, =2m, =0m/s. 

 

The solution calculated with a linear-implicit Euler 

solver with a step size of 10 ms demonstrates the 

expected damped oscillation of the masses. An explicit 

Euler solver is unstable for the same step size, as 

shown in Figure 7.  
 

 

Figure 7: Displacement of mass  provided by explicit 

and linear implicit Euler methods 

 

This well know behavior of explicit solvers for stiff 

ODEs with large time steps also demonstrates the 

benefit of FMI for porting physical models on the 

ECU: (linear-)implicit solvers can be easily realized 

either by: 

‐1

‐0,5

0

0,5

1

1,5

2

0 5 10 15 20

D
is
p
la
ce
m
e
n
t (
m
)

Time (s)

Explicit Euler

Linear Implicit Euler

Session 2A: FMI 1

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

47



 Co-simulation FMUs generated by exporting tools 

supporting inline integration for implicit 

discretization methods of ODEs (Elmqvist et al. 

1995) 

 Model-exchange FMUs providing a standardized 

interface between the model equations (even with 

the possibility to calculate the Jacobian matrix in 

FMI 2.0) and an optimized implementation of 

numerical algorithms for the target platform. 

 

In this example, a model exchange FMU generated 

from a commercial tool is used as well as our own 

implementation of explicit and linear-implicit Euler 

solvers on the Bosch MDG1 ECU. 

 

3.3 Validation of FMUs running on the ECU 

The computation results of the FMUs ported to the 

MDG1 ECU are validated in several steps: 

 Creating reference signals by simulating the FMU 

offline on a PC. The FMU can also be embedded 

in a closed loop system model to derive 

meaningful stimuli for the further tests. 

 Compiling the modified FMU within an ECU 

software with the Bosch standard toolchain and 

creating a Windows DLL that can be tested within 

the ETAS test tool RT2.  

 Compiling the modified FMU within an ECU 

software with the Bosch standard toolchain for the 

target processor and running it on virtual 

hardware (Leupers et al. 2012). 

 Running the FMU on the real target platform 

(Bosch ECU test board or series product). 

Stimulate and measure with an ETAS LABCAR 

Hardware-in-the-Loop (HiL) setup or a 

measurement and calibration tool such as ETAS 

INCA. 

3.4  Restrictions of the prototype implementation 

There are also some restrictions in the prototypical 

implementation of FMU like no event handling for 

model exchange and no variable step size for solvers. 

Otherwise one would have to take additional measures 

to guarantee real-time behavior and to map calculations 

to ECU tasks. Special assumptions on the contained 

C-code are made and adapted to the prototype to cope 

with FMUs generated from three different tools 

(including Modelica-based tools) which address the 

desire of using FMUs from commercial tools. 

However, C-code from many commercial tools is not 

suitable to run on an ECU due to their size and 

complexity since it was not intended to run on an 

embedded system. 

At the moment, the prototype does not yet fulfill all 

requirements, e.g., regarding compliance with the 

software development guidelines for the C 

programming language by the Motor Industry Software 

Reliability Association (MISRA 2013), for series 

engine control software.  

With the successful prototypical implementation, the 

next steps will be:  

 Usage of FMUs for the computation of physical 

models as virtual sensors or in advanced control 

and diagnosis tasks as described in Section 2.3. 

 Extension of the offline preprocessing and 

calculation algorithm for connected FMUs as well 

as the connection to other software components 

 Full AUTOSAR support 

4 Key findings and outlook 

Based on the sample FMUs implemented on a Bosch 

ECU, the key findings are summarized and an outlook 

is given. 

4.1 Aspects for embedded systems already 

contained in the FMI standard 

In the original development of the FMI, some 

consideration was already given to the usage of FMI on 

embedded systems (cf. the FMI 2.0 standard), resulting 

in the following features which are required by such 

systems: 

 Source code FMUs come with C-code, the most 

common language to program embedded systems. 

 It is easy to replace data types (double precision 

float to single precision float). 

 The interface description in an XML file can be 

mapped easily to corresponding XML files for 

ECU software components. 

 Co-simulation FMUs with fixed communication 

step size can be mapped easily to ECU tasks with 

periodic activation 

 Callback functions are defined for memory 

allocation and logging, which can be replaced or 

disabled by special mechanisms for the target 

platform.  

4.2 Key findings: changes to source code FMUs for 

embedded targets 

On ECUs, one is confronted with computation 

limitations compared to the offline world or the real-

time PC environment. These limitations should be 

reflected in an FMU that is suitable for applications 

running on an ECU. 

 Limitation 1: Memory 

The FMI purposefully leaves the organization of a 

model’s data (e.g., parameters, internal variables) 

to the FMU in order to achieve maximum 

freedom. In contrast, ECU software is organized 

with respect to memory to allow transparency, 

simplicity, and efficiency. That means, if data 

structures are left to the freedom of the 

implementer, they still have to be transparent to 

the outside at least so far as to allow 

FMI for Physical Models on Automotive Embedded Targets

48 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843



parameterization and signal observation. 

Currently, this is not possible with the FMI since 

parameters, states, inputs, and outputs are not 

exposed directly to the outside but hidden behind 

access functions. 

 Limitation 2: Event handling 

In general, events could increase the runtime for 

real-time systems in an unpredictable manner. 

There may be any number of events within a 

second which all trigger their respective event 

handling algorithms. Thus, in order to guarantee 

that models with event handling satisfy real-time 

requirements one will have to take extra 

measures. 

 Limitation 3: Algebraic loops 

Similar to event handling, algebraic loops 

generally have an unpredictable impact on the run 

time of an FMU where they require an iterative 

solution. This restriction applies both to connected 

FMUs and to iterative solution methods within 

one FMU. 

 Limitation 4: User-interaction is impossible 

Several features which make sense for offline 

simulations are either overhead or even dangerous 

for computations on the ECU. Such features 

which are either supported or not explicitly 

forbidden in the FMI include logging and I/O 

operations such as print(). 

 Limitation 5: Support functions 

Support functions such as available from the 

math.h library are usually not available on the 

ECU. State of the art ECUs provide their own set 

of support functions through an AUTOSAR 

library. However, function names and usage of 

these are generally different from their offline 

counterparts. 

 Limitation 6: C-code compliance 

Strict coding guidelines apply for source code that 

is executed on an ECU. Such requirements are 

standardized by the Motor Industry Software 

Reliability Association (MISRA 2013). 

 Limitation 7: Cross-compilation and object 

code FMUs 

As ECUs are quite special platforms, they require 

special compilers and build processes as well. 

Object file FMUs have to be cross-compiled 

accordingly which requires the availability of the 

suitable toolchain for the target platform 

 Limitation 8: Available data types 

In order to provide optimized code, the set of 

available data types should be enlarged. For 

example, one should be able to distinguish a 

uint8 from a uint32 variable. 

Beyond the mentioned restrictions, to achieve a 

convincing performance of FMUs running on an ECU, 

careful consideration of the target platform is required:  

 The solver must be able to make use of the 

platform’s computing capabilities, which differ 

widely from one platform to another. 

 Computations are mostly performed using single 

precision floats. 

 Heap and stack usage must be minimized. 

4.3 Outlook towards a future FMI variant for 

embedded systems  

The limitations listed in the previous section will have 

to be addressed by a possible future FMI standard. 

Major changes to the existing FMI 2.0 standard will be 

necessary that it does not seem to be possible to 

include them very easily, as there will be not only 

requirements on the interface such as for FMI today, 

but also on the contained C-code. Thus, a variant of the 

FMI standard especially for automotive embedded 

targets and a connection to the AUTOSAR standard is 

desirable. FMUs generated according to such a 

standard could then be executed on ECUs without the 

conversion steps presented in Section 3 of this paper. 

Such FMUs could really be seamlessly used for all 

cycles of the development process until running on 

automotive embedded systems.  

5 Summary 

In this paper, it is shown by a prototype that the current 

FMI standard with some modifications which are 

highly tool-dependent allows the computation of 

FMUs of physical models on an ECU (as a 

representative for embedded controllers) as long as the 

FMU satisfies some assumptions and limitations. This 

was demonstrated for FMUs generated from different 

tools on a Bosch MDG1 engine control unit, where the 

modified FMUs have been included in the real 

software build process. The prototype can be used for 

rapid control prototyping with physical models. 

For usage of FMUs out of the box in productive 

ECU software, the standard will have to be modified, 

mostly enforcing the above mentioned restrictions 

(Section 4.2). ECU software must be lean, efficient, 

and above all, safe. We foresee the benefits for the 

establishment of an “FMI for automotive embedded 

systems” for seamless model-based design until the 

execution on the target platform. 

Acknowledgements 

We would like to thank Martin Otter, Andreas Pfeiffer, 

and Jonathan Brembeck from DLR as well as our 

colleagues Andrea Flexeder, Eckart Mayer-John, 

Matthews Peter, Dibakar Mahalanabish, Naresh 

Mandipalli, Wolfgang Lengerer, and Marcus Bossler 

for fruitful discussions. 

  

Session 2A: FMI 1

DOI
10.3384/ecp1511843

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

49



References 

AUTOSAR Consortium, Autosar Standard 4.2, available at 

http://www.autosar.org/, 2015 

Bertsch, C., Ahle, E., Schulmeister, U., The Functional 

Mockup Interface - seen from an industrial perspective, In: 

Proceedings of the 10
th
 International Modelica Conference 

2014, Lund, Sweden 

Blochwitz, T., Otter M., Arnold, M., Bausch, C., Clauß, C., 

Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., 

Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.-V, 

Wolf, S., The Functional Mockup Interface for Tool 

independent Exchange of Simulation Models, In: 

Proceedings of the 8
th
 International Modelica Conference 

2011, Dresden, Germany 

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauß, C., 

Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., 

Neumerkel, D., Olsson, H., Viel, A., The Functional 

Mockup Interface 2.0: The Standard for Tool independent 

Exchange of Simulation Models, In: Proceedings of the 9
th
 

Modelica Conference 2012, Munich, Germany 

Brembeck, J., Pfeiffer, A., Fleps-Dezasse, M., Otter, M., 

Wernersson, K., Elmqvist, H., Nonlinear State Estimation 

with an Extended FMI 2.0 Co-Simulation Interface, In: 

Proceedings of the 10
th
 International Modelica Conference 

2014, Lund, Sweden 

Chombard, P., Multidisciplinary modeling and simulation 

speeds development of automotive systems and software, 

ITEA2 innovation report, 2012, published online: 

https://itea3.org/project/modelisar.html 

Ding, S. X., Model-Based Fault Diagnosis Techniques, 

Springer, 2nd edition, London 2013 

Elmqvist, H., Otter M., Cellier, F.E.: Inline Integration: A 

new mixed symbolic/numeric approach for solving 

differential-algebraic equation systems, In:  Proceedings 

of ESM’95, European Simulation Multiconference, 1995 

Franke, R., Mathematical optimization of dynamic systems 

with OpenModelica, Annual OpenModelica Workshop 

2015, published online: 

https://openmodelica.org/images/docs/openmodelica2015/

OpenModelica2015-talk02-Franke_Optimization.pdf  

Leupers, R., Martin, G., Plyaskin, R.,  Herkersdorf, A., 

Schirrmeister, F., Kogel, T., Vaupel, M., Virtual 

Platforms: Breaking New Grounds, IEEE DATE 

Conference, Dresden 2012 

Mitrohin, C., FMI in LABCAR HiL; From MiL to SiL 

towards HiL, FMI-Tutorial, 10
th
 International Modelica 

Conference 2014, Lund, Sweden 

MISRA Consortium, MISRA C: 2012 Guidelines for the use 

of the C language in critical systems, 2013, available from 

http://www.misra.org.uk 

Rüger, J.-J., Wernet, A., Kececi, H.-F., Thiel, T., MDG1: 

The New, Scalable, and Powerful ECU Platform from 

Bosch, Proceedings of the FISITA 2012 World 

Automotive Congress - Volume 6: Vehicle Electronics, 

Springer, 2014 

Seuling, S., Hamedovic, H., Fischer, W., and Schuerg, F., 

Model Based Engine Speed Evaluation for Single-

Cylinder Engine Control, SAE Technical Paper 2012-32-

0044, 2012 

Thiele, B.; Henriksson, D., Using the Functional Mockup 

Interface as an Intermediate Format in AUTOSAR 

Software Component Development, In: Proceedings of the 

8
th
 International Modelica Conference 2011, Dresden, 

Germany 

Wagner, A., Bleile, T, Lux, S., Fleck, C., Method for real 

time capability simulation of an air system model of an 

internal combustion engine, US Patent US 8321172 B2, 

2008 

FMI for Physical Models on Automotive Embedded Targets

50 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511843


