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Abstract

Energy-efficient thermal management systems for E-
mobility help to decrease energy consumption and in-
crease range. Due to transient external conditions and the
increasing system complexity, optimization-based control
approaches are required in order to harness the full po-
tential of such systems. In (Fischer et al., 11th Int. Mod-
elica Conf, 2015), we have presented a model-based de-
velopment cycle for a thermal management system in E-
mobility to this end. In this article, we build upon this
work to describe the use of this model within a nonlin-
ear model predictive control (NMPC) approach. The main
benefits of using an advanced optimization-based con-
trol system in this application are a) the ability to con-
trol the battery temperature and the cabin temperature si-
multaneously, b) the increased energy efficiency achieved
by exploiting the predictive character of the optimization-
based control approach, c¢) the possibility to include oper-
ational limits as constraints in the optimization problems
and d) the fast reaction to disturbances or model parameter
changes. We evaluate the merit of the proposed advanced
control system by way of a comparison to conventional
PID controller.

Keywords: thermal management system, nonlinear model
predictive control, Functional Mock-up Interface

1 Introduction

E-mobility is widely considered to be a key concept to
achieve ambitious goals set forth in contemporary climate
and environmental protection plans. Due to higher costs
and lower ranges compared to combustion engine driven
vehicles, a breakthrough in the mass market has yet to take
place. In this article we propose an optimization-based
control for energy-efficient operation of a thermal man-
agement system. In (Fischer et al., 2015) we observed a
decrease of the energy consumption of up to 30%, depend-
ing on ambient conditions. To improve the system further,
a nonlinear model predictive control (NMPC) approach is
proposed with the aim to harness the full potential of the
multiple-input multiple-output system (MIMO).

This article constitutes a follow-up of (Fischer et al.,

2015), where the concept of the thermal management sys-
tem is presented, including simulation results. The re-
mainder of this article is structured as follows: §1 intro-
duces the subject and describes the related state-of-the-art.
§2 recalls the process model of the thermal management
system. A short discussion of the NMPC approach re-
sides in §3 covering the formulation as a mathematical op-
timization problem, the multiple-shooting discretization,
a real-time solution algorithm and the employed software
interface. In §4 process model modifications are described
which were necessary in order to employ derivative-based
optimization techniques. §5 contains an “offline” case
study to compare different approaches of jacobian matrix
generation on the basis of the Karush-Kuhn-Tucker (KKT)
violation and an ”online” case study to compare NMPC to
conventional PI control. Finally, we provide conclusions
and an outlook on future topics in §6.

1.1 State of the Art

NMPC is widely used in, e.g., process control and chemi-
cal engineering, often with rather slow sampling rates. In
the past years, the automotive industry has also shown an
increased interest in model predictive control. Applica-
tions like adaptive cruise control (Kirches, 2011; Kirches
etal., 2013), lateral dynamic stabilization, etc., can be typ-
ically controlled by a MPC-controller. Further examples
may be found in, e.g., (del Re et al., 2010). In the area
of heating, ventilation, and air conditioning (HVAC), con-
ventional control methods like PID-controllers and bang-
bang-controllers are still state-of-the-art, mostly due to
simplicity of design and implementation. There are, as
well, investigations on advanced control systems. For ex-
ample, (Esen et al., 2014) and (Karnik et al., 2016) use
MPC-controllers in the application field of thermal man-
agement systems, and (Afram and Janabi-Sharifi, 2014)
gives an general overview for HVAC systems. To reduce
the computational effort, these approaches however of-
ten do not rely on first-principles models, but rather on
data models or linearized state-space representations. The
first publication of an NMPC-controller based on first-
principle models using Modelica is (Franke, 2002). In
(Gréber et al., 2012), a functional mock-up unit (FMU)
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of a first-principle Modelica model was used for the first
time within an fully nonlinear MPC setting. This exam-
ple is closely related to the present article, as it treats a
compression-vapor cycle.

2 Thermal Management System

In this section, we review the layout of a thermal man-
agement system as introduced in (Fischer et al., 2015).
The thermal management system of a vehicle has multiple
tasks. Primarily, for passenger comfort heating or cool-
ing of the passenger cabin is required. Moreover, there
are a number of legal requirements to be met including
windshield defrosting and defogging. Finally, powertrain
components have to be kept within their thermal opera-
tional range. In the particular case of an electrified vehicle,
increasing demands due to thermally even more sensitive
components and significant less amount of waste heat lead
to a development of new thermal management systems.

2.1 Concept and Model

The main feature of the system, depicted in Fig. 1, is a re-
versible heat pump, called thermal module (1), which pro-
vides heating and cooling power to keep the components
within a thermal operating range. Waste heat emitted by
electric components (2) is used to increase the temperature
level of the heat source, thereby contributing to a higher
efficiency of the system. By way of a flexible intercon-
nection, independent thermal conditioning of the cabin (3)
and the battery (4) may be achieved. By using waste heat
from an optional energy converter like a fuel cell or an in-
ternal combustion engine (5) in a hybrid electric vehicle,
the thermal module can be switched off.
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Figure 1. Scheme of the thermal management system

The heat exchangers in the refrigerant cycle are mod-
eled in distinct ways. The condenser is modeled using
a moving boundary approach while the evaporator is real-
ized using a finite volume method. Details can be found in
§4.2. The heat exchangers modeling the heat flow between

coolant and air are also realized using a finite volume
method. The refrigerant accumulator, the coolant reser-
voirs, and the passenger cabin are modeled using lumped
volumes. The fluid data is taken from the TILMedia li-
brary, which provides bi-cubic spline interpolants for the
used refrigerant. The coolant is modeled as pure water and
the ambient air as dry air.

2.2 Controlled Variables

The controlled variables in the system shown in Fig. 1
are the cabin temperature T¢,pin, the superheating temper-
ature of the heat pump 7}, and also the battery temperature
Tvattery- The desired cabin temperature T¢qpip is assumed to
be at 22°C according to passenger preference. To ensure
a safe and efficient operating mode, the superheating tem-
perature of the heat pump Ty, is desirable to be at 5 K.
The admissible thermal operating interval of the battery is
from 20°C to 40°C. A temperature above this range can
lead to increased aging effects and eventually to degrada-
tion and a thermal runaway. The operating temperatures
of the electric motor and the power electronics are usually
observed but not tracked to a preset value.

2.3 Manipulated Variables

One manipulated variable in the system is the rate of
change wucompr of the compressor frequency of the heat
pump, which in a PID framework would be controlled
according to the cabin temperature setpoint. The second
input is the rate of change uy,ye of the expansion valve
which in a PID logic would be assigned to the superheat-
ing temperature setpoint. As the system contains two ther-
mally conditioned components, the output heat rate is split
up by a 3/2-way-valve ((6) in Fig. 1) in the coolant by di-
viding the mass flow. The valve is a linear control valve
and accepts continuous values between 0 (path to battery
closed) and 1 (path to battery open).

2.4 Control Approach

In (Fischer et al., 2015), we have described a first control
approach, namely a decoupling of the MIMO-system into
multiple SISO-systems, which can then be controlled in-
dividually and by separate PID controllers. This approach
turned out to be problematic, as the battery temperature
and thus the cabin comfort was affected by a starting ther-
mal conditioning of the battery. The influences of the PID
controllers on each other also led to inefficient overshoot-
ing behavior and oscillations. As the main control goal is
energy-efficiency in order to allow for maximum electric
range of the vehicle, we propose an NMPC approach to
control the system.

In a first step, a reduced model of the thermal manage-
ment system without battery and attached vehicle model
is used to compare the control schemes in the computa-
tional studies in §5. This is appropriate since it is still con-
venient to control this reduced system by PI-controllers
which serves as good reference for the NMPC-controller.

256

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecpl17132255



Session 5D: Control Systems 1T

3 Nonlinear Model Predictive Control

In this section, we briefly review Nonlinear Model Predic-
tive Control (NMPC) as an optimization-based scheme for
advanced closed-loop feedback control of dynamic pro-
cesses.

3.1 NMPC Problem Formulation

A suitable mathematical model description, capable to
predict the future behavior of the dynamic process under
consideration, must be available for the realization of any
NMPC controller. For the system at hand, a nonlinear
differential-algebraic system of equations (DAE) is suit-
able. The objective function to be minimized is typically
assumed to be of “tracking type”, i.e. set-points are pro-
vided for the controlled variables. In addition, NMPC
permits to include nonlinear constraints on process quan-
tities. The optimization problem to be solved in order to
find optimal controls may then be formulated as a DAE-
constrained optimal control problem and reads

T 2
min | [ (@)@ ®)p)d| el ) B
st X(0) = f(x(2),2(7),u(t),p) TE[0,T] (la)
0=g(x(7),z(7),u(t),p) t€I[0,T] (1b)
x(0) = 2o(1) t€(0,7] (lc)
0 <c(x(1),z(7),u(t),p) T€I[0,T] (1d)
0 = ri(x(7),2(%), p) {n} C0,T] (le)

Herein, an objective function of least-squares type on the
prediction horizon [0, 7] is composed of an integral term ¢
with weight matrix Q and an end-point term e with weight
matrix W, and tracks set-points provided for certain con-
trolled variables. The problem is constrained by the DAE
model equations (1a, 1b), by inequality path constraints on
dynamic states and controls (1d), and by point constraints
ona grid {7;} C [0, T] that may cover, for example, bound-
ary or periodicity conditions.

By way of constraint (1c), the current process state £ (¢)
at physical time ¢ is embedded into the dynamic opti-
mization problem, and must hence be available as a mea-
surement or be provided by an observer. If the process
model is sufficiently accurate and the formulation of the
optimization problem is suitable, its solution yields opti-
mal process inputs u*(7) on 7 € [0,T] where T = 0 coin-
cides with the physical time ¢ at which the observation was
taken.

In practice, however, model predictions must be as-
sumed inaccurate because of inevitable measurement or
actuation errors as well as due to systematic model errors.
Naturally, this effect becomes more apparent over longer
time horizons 7. For this reason, u*, computed from the
initial state £y(z), is applied to the process for a ”short”
time only. The natural choice for the length of this “short”
time interval is the system’s sampling time.

The optimization procedure is continuously repeated,
each time a new measurement is available. This makes

NMPC a true closed-loop control scheme. Fig. 2 visual-
izes this control concept.

future

gek control to be optimized
future controls to be optimized

Figure 2. The Nonlinear Model Predictive Control paradigm
for a piecewise constant control subject to optimization on the
prediction horizon.

3.2 Direct Multiple Shooting

In order to computationally solve problem (1) efficiently,
a parameterization of the control u and a discretization
of the states x and z in time is necessary in a direct ap-
proach to optimal control. With the direct multiple shoot-
ing method (Bock and Plitt, 1984), we employ a simul-
tanous approach.

To this end, the control u is parameterized by piecewise
constant control parameters g on a discretization grid 0 =
H<<..<tyo<tw=T,

u(t):=¢q; €

On each control interval [, T;11], a separate DAE initial-
value problem (IVP)

R™, 7e (Ti,fi+1>, 0<i<N-1.

X(1) = f(x(7),2(7),4i, p), T € [T, Tir1] (2a)
0=g( (7),2(7),qi,p) — 0i(7)8(si,zi,qi,p)  (2b)
x(%) =si, 2(T) =z (2¢)

is solved, given the initial value s; € R"*.

The DAE condition is relaxed using a function 6;(7)
that is monotonically strictly decreasing on [7;, 7;41] and
that satisfies 6(7;) = 1 and 6(7;y;) = 0. This relieves us
of having to find consistent initial values z; € R"* for solv-
ing the IVP. Consistency in the optimal solution will be
ensured by requiring

0= g(si,zi,qi,p), 0 <i<N.

Continuity of the IVP solutions thusly obtained is en-
forced by additional matching conditions,

0=x(Tit13 T,8i,2i,9i,p) — Si+1, 0 ST <N —1,
wherein x(711; 7;,5i,2i,9i,p) denotes the solution of the
i-th IVP on [1;, T;4 1] and for initial values s; and z;. Finally,
path and point constraints (1d,1e) are enforced in the time

grid points 7; only. The integral least-squares objective
function is evaluated along the solution of (2).
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The nonlinear programming problem (NLP) resulting
from this discretization and parameterization reads

N—1

min ®:= Y ||Li(si,2i90) 5.0+ |le(sn,an) | ow (32)

i=0

s.t. 0 = x(Tig15 T, 80,20, 9i) — Sit1, 0 <i<N—1  (3b)
0= g(si,zi,qi) 0<i<N (30)
0=ysp —)?0(2‘) 3d)
0 < ri(si,2i,qi) 0<i<N. (3e)

Herein, L; is an appropriate quadrature rule for ¢
on [T, Ti+1], r; summarizes the path and point con-
straints (1d,1e) in 7;, gn := gnv—1, and the dependencies
on p have been omitted. For future reference, we denote
by c¢(+) the set of equality constraints (3b, 3c, 3d) and d(-)
refers to (3e).

This highly structured nonlinear programming prob-
lem is solved by a tailored sequential quadratic program-
ming (SQP) method as described in (Bock and Plitt, 1984;
Leineweber et al., 2003). For NMPC, a single iteration k
of this method may be divided into three distinct phases
according to the real-time iteration scheme first proposed
in (Diehl, 2001), as follows:

1. Prepare: In the k-th SQP iterate w®) =
(s®),z0) 4k)), compute the gradient H*) of the
objective and the Jacobian J ®) of the least-squares
objective residuals of (3), evaluate the (in-)equality
constraint residuals c(k), d (k), and compute lineariza-

tions C®), D) of the (in-)equality constraints.

2. Feedback: Obtain a state measurement or estimate
Xo(t). Solve the quadratic programming problem

rrAlin %AWT (J<k)TJ(k) )Aw + p®T Ay
s.t.0=CHAW 4K
0 < DWAW+q®

(QP)

to find Aw = (As,Az,Aq) and return u(()k) + Au(()k) as
the new feedback control.

3. Transition: Determine a step length a®) € (0, 1] by
way of a globalization approach, and let wlktl)
w® + o ®Aw, k  k+1.

For online optimal control (NMPC), the three phases are
continuously repeated as fast as CPU resources permit
and state estimates become available. For offline opti-
mal control, the three phases constitute one iteration of an
SQP method for nonlinear programming, cf. (Nocedal and
Wright, 2006). These are carried out until the termination
criterion

IV2wh)]] +Z/1flcz‘(w("))| +Zuj[dj(w("))]’,
i J

referred to as the KKT violation, falls below a preset
threshold. Herein, .Z denotes the Lagrangian of (3) and

A, u denote the most recent Lagrange multipliers of the
equality and inequality constraints of (QP), respectively.
In the offline case, the embedding of £(¢) is replaced by
a fixed initial value.

3.3 Software Interfaces

A state of the art software package that implements the nu-
merical algorithm just presented is MUSCOD, see (Bock
and Plitt, 1984; Leineweber et al., 2003). The DAE ini-
tial value problems (2) are solved by DAESOL, cf. (Bauer
et al., 1999; Albersmeyer, 2010).

The developed Modelica model has to be interfaced
with the DAE solver of MUSCOD. To this end, the Func-
tional Mockup Interface (FMI) (Blochwitz et al., 2011)
is one convenient way to do this. Advantages are easy
handling, simulation speed (as the model is provided as
a dynamic link library), and the small effort required to
export existing Modelica models as Functional Mockup
Units (FMU). The interfacing between MUSCOD and the
FMU is carried out in C++, which has already been de-
scribed in detail in (Griber et al., 2012).

Due to limitations in the current version 2.0 of the FMI
standard, only an ODE interface can be exposed to MUS-
COD. Hence, in place of the DAE IVPs (2), the ODE IVPs

£(7) = f(x(1),8 ' (x(),4i,p), 4, ), T € [T, Tis1],
X(Ti) =

are solved and the local inversion of the algebraic con-
straint g for the unknown z(7) is internally taken care of
by the FMU by way of an iterative nonlinear root-finding
method. This situation is unfortunate from the point of
view of an all-at-once method for dynamic optimization,
as these inner iterations could be carried out much cheaper
as part of the solution procedure for the nonlinear pro-
gramming problem (3). Moreover, the possibility of dif-
ferent outcomes of adaptive choices during finite differ-
ence approximation of Jacobians of f may introduce un-
necessary approximation errors here. Nonetheless, we
have not observed numerical instabilities that could be
traced back to this issue.

Offline Optimization. “Offline” optimization is a dy-
namic optimization for a given initial point, time hori-
zon and number of intervals which does not incorporate
any feedback from the real-world plant. The output data
comprises the state vector and the optimal control vector
at each interval, which can be provided in the simulation
within a time table in a further step. A stable and robust of-
fline optimization is essential for the online optimization.
Fig. 3 shows the scheme of the offline optimization.

For the “online” optimization an integration of the real-
world plant model is needed. The optimized manipulated
variables, provided by MUSCOD, have to be applied on-
line to the real-world plant model. This requires that an
up-to-date measurement of the real-world plant state is
available, since it serves as the initial state for predictions
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Optimal Manipulated Variables

I |

System model System Model
(FMU)

Simulation
(Dymola) Optimizer

Figure 3. Scheme of the offline optimization

in the control model. Fig. 4 shows the scheme of the on-
line optimization. Basically, there are two paths we follow
to interface the model:

Online Optimization with Simulation in Dymola. A
Python script is the central control script, which starts the
simulation in Dymola, sets the optimal manipulated vari-
able and gets the updated measurement data via the Direct
Data Exchange (DDE) Interface. It is challenging though
to filter the needed variables, as there is no function in Dy-
mola to get the state vector of a model. The DDE Server
of Dymola has to be executed before and the simulation
speed must be reduced to real-time.

Online Optimization with Simulation in MUSCOD.
In this approach no simulation environment is needed any-
more. A Python script starts the optimization, and starts a
sequential simulation after each optimization interval. At
the end of each simulation part, the states can be extracted
out of the FMU and passed to MUSCOD as new initial
point. This leads to a very fast result since the simulation
is a lot faster than real time. Furthermore, an ideal NMPC
can be simulated, where no time is needed to calculate the
optimal manipulated variables.

Optimal Manipulated Variables

l |

System model System Model
(FMU)

Simulation
(Dymola) Optimizer

System model
(FMU)

(3|geinseaw
JLISETNEITS
(pa1ewnsa)

1013/ 33R1S

Observer

Figure 4. Scheme of the online optimization.

4 Model Adaptations for Optimiza-
tion

In this section, we report on lessons learned while devel-

oping and carrying out adaptation procedures necessary in

order to make the existing thermodynamical model fit for
optimization based control using gradient-based methods.

4.1 Continuous Differentiable Model

This choice of numerical optimization algorithm and ini-
tial value problem solver implies certain smoothness and

regularity assumptions for (1). In particular, ¢, e, f, g, c,
and 7; in (1) need to be twice continuously differentiable
w.r.t. all arguments. Furthermore, the algebraic constraint
function g needs to be invertible w.r.t. the algebraic state
z(1), i.e., the Jacobian dg(x,z,q,p)/dz € R"™*" has full
rank for all applicable values of its arguments.

A first requirement hence is to adapt the existing model
to a model that conforms to the requirements set forth.
The model must not contain any discontinuities; condi-
tional statements, min(), max(), abs()-functions and lim-
iters have to be avoided; the use of the actualStream()-
operator is no longer possible. Occurrences must be re-
placed by continuous and twice differentiable statements.
Fig. 5 shows a discontinous function, typically used in hy-
brid simulations, which in this case is replaced by the lo-
gistic function with k = 10 and xg = 3,

Fx) = (1K),

o -

1 2 3 4 5

Figure 5. Discontinuous transitions have to be replaced by nu-
merical smooth functions.

4.2 Phase Change in Condenser

The rise of the density when crossing the boiling point
curve of the refrigerant in the condenser is discontinuous
and leads to problems in the optimizing process. As stated
in section 2.1, the heat exchangers are modeled by a finite-
volume-method. This means, that the flow path is dis-
cretized into N cells. Each cell consists of mass flow and
energy conservation. Depending on the operating point or
in transient conditions, the crossing of the boiling point
curve can occur in different cells, and also within a cell.
The discontinuous rise of the density affects the state vari-
able enthalpy, which eventually leads to problems for the
optimizer finding a proper gradient.

To solve this problem, the modeling approach of
a moving boundary heat exchanger, cf. (Jensen and
Tummescheit, 2002) is used. In this case, the flow path
is not discretized into N cells, but always into three cells
according to the fluid phases: subcooled, two-phase and
superheated. Thus, the rise of the density within a cell can
be avoided, as one cell is always considered as a homoge-
neous phase.

However, using a moving boundary heat exchanger
leads to another major problem. The model is only valid, if
the condenser still contains the three zones superheating,
two-phase and subcooled. It is therefore essential to keep
the heat pump in an operating state, where all three zones
exist. This is achieved by introducing soft constraints pun-
ishing operating points of the heat pump which should be
avoided. The limits are defined as follows: the length of
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the subcooled condenser cell /. should be greater than 5%
of the total length, and the superheating temperature Ty,
should be greater than 4 K. In case of violating these soft
constraints, a high weighted penalty is added to the objec-
tive variable, indicating the optimizer to avoid this state.
There are some approaches to model a switching mov-
ing boundary model, cf. (Bonilla et al., 2015). Since the
switching algorithm always relies on boolean logic, it can-
not be used with a gradient-based SQP algorithm.

4.3 FMU Status Report

The status of the FMU is returned by each function after
calling to indicate the success of the function call. In the
case of fmi2SetContinuousStates the status can
be fmi2Discard, indicating that it is recommended to
discard the last solution and to evaluate the model equa-
tions again with a smaller time step. This information has
to be directed to the ODE solver. Ignoring this informa-
tion can obviously lead to much higher computation time
or even to non-convergence.

5 Computational Results

In this section, we report on computational findings for the
adapted thermodynamical model both for offline optimal
control and in the NMPC context. The results presented
in this section focus on the thermal management system
without battery and attached vehicle model.

5.1 Problem Setup

The manipulated variables ucompr and uy,1ye of the reduced
model are the rates of change of the compressor frequency
and the area of the expansion valve. The controlled vari-
ables are the cabin temperature T¢,pi, and the superheating
value of the heat pump Tg,. All results are generated with
the same basic system model, counting a total number of
43 differential states, and with a time horizon of 7 = 20s
discretized by N = 20 shooting intervals.

The sole difference between the model used in the offline
and the NMPC study is the incorporation of the ambient
temperature as an additional pseudo—dynamic state in the
NMPC controller’s model (T, = 0) while in the offline
controller’s model the temperature is merely a constant.
An incorporation of this easily measureable quantity ob-
viously is the more suited choice since it yields better pre-
dictions. However, since required derivative functions for
the ambient temperature were not available this was omit-
ted in the offline study for sake of comparability (see also
§5.2).

The objective function, defined in Eq. (4), penalizes the
differences between controlled variables and their set-
points, as well as input changes. Moreover, a soft con-
straint formulation is chosen to avoid that the superheating
temperature Ty, drops below the lower operational bound
of Tgh 18 = 4 and that ;. drops below Iy 15 = 0.05:

max(0, T8 — Tsn) = 0.5 (Ton,B — Tsn + | Ton, — Tsnl)
max(O, lsc,LB - lsc) =05- (lsc,LB - lsc + |lsc,LB - lsc|)

The final objective function including the two soft con-
straints reads as follows:

1 -
0x(0),2(0),u(r), p) = (w; 2@u(&i(1) ~ &) 0

i=1,...6

: T
wherem. 5 = (TcabimTshyucomprauvalvey —Tn, _lsc) and
with weights

P (M0 10107 T0E a0t iofyr
T \292° 5772574510777 8 0.1

chosen such that denominators normalize quantities to 1
and numerators indicate relative weights. The set-point is

ET =(295.15, 5,0, 0, —4, —0.05)T.

The functions @; are ®;(x) = Id (identity) fori = 1,...,4
and ©;(x) = x- H(x) (Heaviside integral) for i = 5,6. To
guarantee smoothness assumptions, the Heaviside integral
function x - H(x) is exponentially smoothed in computa-
tional practice. The end-point term is

1 -
e(x(T),2(T),p) = (w; 2(&(1)—&))

i=1,..2

for &7 = (Toain, Tsn) , identical set point, and weights

V= (3 %)"

5.2 Performance Comparison of Different Ja-
cobian Methods

The performance of the online optimizing controller criti-
cally depends on the choice of the method to generate Ja-
cobians. Fundamentally, derivatives can be computed by
automatic differentiation (AD) or numerically by a finite
difference scheme (ND). The FMUs generated by Dymola
use numerical Jacobians by default. By setting the flag Ad-
vanced.GenerateAnalyticJacobian, Dymola can be con-
figured to generate analytic Jacobians and include them
in the FMU. For this to be effective, it is necessary that
every function used in the Modelica model also declares
a corresponding derivative function. For the given sys-
tem, this required the use of a tailored version of the fluid
database TILMedia supplying derivative functions for a
wide range of material-dependent functions. MUSCOD
can be configured to use Jacobians, which are provided
from “outside”, e.g. the FMU (numerical or analytical), or
to approximate Jacobian matrices numerically by its built-
in finite difference scheme.

This section’s numerical study compares these three gen-
eration methods for Jacobians on the basis of respective
offline optimization runs. In the scenario, an instantaneous
step change of the ambient temperature of 5 K is applied to
a stationary system state (compare also the ~online” study
at t = 600 s). To investigate effects on precision the inte-
gration tolerance was set to 107°.
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Figure 6.
Jacobians.

After 25 SQP iterations, the remaining KKT violation during offline optimization is smallest (best) when using AD
ND Jacobians provided by MUSCOD are runner-up. ND Jacobians provided by the Modelica FMU perform worst.
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Figure 7. A self-convergence plot of objective function values and infeasibility measures reveals convergence after 10 SQP itera-

tions regardless of the choice of method for generating Jacobians.
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Figure 8. AD Jacobians from the Modelica FMU are computationally more expensive than MUSCOD ND Jacobians. Measured

time refers to an integration tolerance of 1072,

Fig. 6 assesses the impact of the Jacobian generation
method on the convergence behavior of MUSCOD in
terms of the remaining KKT violation. As expected, AD
yields a solution with the highest precision. Fig. 7 shows
a self-convergence plot for the objective function value
and the infeasibility measure, i.e., we show for iterations
k=0,...,N — 1 the fractions

|Xf£z _Xm |/(Xm _Xm ))
of objective function (m = 0) and infeasibility (m = 1):

(k) _

% =26,
) _

X1 *Z[ ).q +Z

As can be seen, after six SQP iterations convergence has
essentially been achieved regardless of the chosen method.
As Fig. 8 reveals the MUSCOD internal finite difference
scheme is, to our surprise, faster than both of the FMU
Jacobian generation methods. Thus, all following numer-
ical results on NMPC were obtained using this Jacobian
generation scheme.

(k) )]~

5.3 Comparison of PI Control and NMPC

In this section two tuned PI-controllers are compared to
the developed NMPC controller. The parameters for the
PI-controller were determined using a step response of the
system and were manually tuned to a normal and more ag-
gressive behavior. The scenario used for this purpose con-
sists of a transient heat-up, starting from a steady state, at
an ambient temperature of 5°C and of a following abrupt
ambient temperature change of +5°C, which is applied at
t = 600 s after reaching steady state again, see Fig. 9.

The resulting controlled variables are shown in Fig. 10
(cabin temperature) and in Fig. 12 (superheating value).
The corresponding manipulated variables are plotted in
Fig. 11 (compressor frequency) and in Fig. 13 (expansion
valve area). In contrast to §5.2 the integration tolerance is
now set to 107>, Based on experience this is a sufficient
value for this application.

Transient Heat-Up of Passenger Cabin We observe,
that the NMPC curve rises and settles significantly faster
than both Pl-controllers and without any temperature
overshoot indicating a very efficient control system (cf.
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Figure 9. Ambient temperature step of +5K.
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Figure 10. Passenger cabin temperature during scenario (transient heat-up and temperature step) with different controllers.
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Figure 11. Frequency of the compressor during scenario (transient heat-up and temperature step) with different controllers.
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Figure 12. Superheating value during scenario (transient heat-up and temperature step) with different controllers.
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Figure 13. Expansion valve area during scenario (transient heat-up and temperature step) with different controllers.

Fig. 10). The compressor frequency and expansion valve
reach their upper bounds faster and, subsequently, stabi-
lize the system to a steady-state far more rapidly with
NMPC (cf. Fig. 11 and Fig. 13). The predictive character
of NMPC taking into account the system’s thermal inertia
can be identified on the basis of the compressor frequency
already being decreased at a temperature well below 20°C.
Fig. 12 depicts the effect of the rather weak “tracking”
weighting for the superheating temperature in the NMPC

objective function and the corresponding soft-constraint to
ensure a lower operational bound of 4 K (cf. §5.1). Super-
heating value fluctuations are acceptable unlike violations
of the operational limits, which are prevented here by the
NMPC approach. On the basis of Tab. 1, showing criteria
for controller performance as overshoot, settling time and
rising time, we can eventually state, that NMPC combines
the fastest and most efficient way to heat up the cabin tem-
perature to its set value.
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NMPC PI (norm.) PI (aggr.)
Rising time [s] 78.2 162.7 80.4
Settling time [s] 95 194.6 173.1
Overshoot [%] 0.4 1.25 10.50

Table 1. The NMPC controller’s characteristics during transient
heat-up significantly outperform PI control.

Reaction to Disturbances At ¢ = 600s the controllers
can be compared when dealing with a disturbance, here,
an ambient temperature step of +5°C. On the basis of
Fig. 10, we conclude that the NMPC shows the best be-
havior, with a very small amplitude and a very short time
interval before the steady state is reached again. This is
not due to the predictive character of NMPC, as the tem-
perature change is not known in advance. The NMPC
controller gets the information about a temperature change
along with the measured state vector at ¢t = 600s. Again,
the weak weighting of the superheating value can be ob-
served in Fig. 12, as the superheating value is affected by
the disturbance in the case of the NMPC-controller.

CPU Time The computations were performed on a
workstation using a single core of an Intel Xeon CPU
at 3.5 GHz. To guarantee real-time feasibility for future
application in a vehicle, it is necessary that the duration
of feedback and prepare phase is shorter than the chosen
sampling time (1s here). If this can be ensured, the
feedback phase duration is the time delay between the
measurement of the system state and the availability of
new values for the manipulated variables. Naturally,
a short duration is essential to make sure the applied
feedback relies on up-to-date system state information.

Fig. 14 shows a graph of the CPU time consumed by
both phases. The real-time feasibility limit is indicated by
a dotted red line and mostly not exceeded in the scenario.
However, three CPU time peaks within the transient heat-
up phase and the abrupt temperature change phase still vi-
olate the limit. The peak at the beginning is due to a cold
start of the NMPC controller. Since we start stationarily
this peak could be avoided by the execution of sufficiently
many SQP iterations before a respective warm-start of the
NMPC controller. An investigation of the remaining peak-
ing behavior must yet be carried out, i.e. whether it orig-
inates from the particular model implementation or is a
general property of the system. In future work, the latter
could be adressed algorithmically by introducing adaptive
relinearization into the NMPC schemes using, e.g., multi-
level schemes (Bock et al., 2005; Kirches et al., 2012) or
mixed-level schemes (Frasch et al., 2012). Fig. 15 shows
a graph of the CPU time consumed by the feedback phase
only. It is in the order of 0.5 — 2 milliseconds, which is a
near instantaneous response on the measured system state
relative to the system dynamics time scale. The feedback
phase CPU time rises only very mildly during transient
phases, and remains satisfyingly low throughout.

N w »
T T
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time step in [s]
[
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200 800

400 600
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Figure 14. CPU time in seconds per NMPC iteration, consumed
by all three phases and including FMU evaluation calls during
the preparation phase. Measured time refers to an integration

tolerance of 1073,
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Figure 15. CPU Time in milliseconds per NMPC iteration con-
sumed by the feedback phase only.

6 Conclusion & Outlook

The article discusses the development of an NMPC setup
for a thermal management system of electrified vehicles.
Compared to conventional PI control, several advantages
concerning the transient heat-up and in reaction to dis-
turbances were noted. The NMPC reaches the set-point
value and settles considerably faster, nearly without any
overshoot. This indicates an overall high degree of energy
efficiency. Also, NMPC reacted faster on external distur-
bances that were not known in advance. A further benefit
is the safe operating mode, as each state variable of the
system can be constrained and constraints remained satis-
fied throughout all experiments. In the context of the heat
pump application, the superheating value could be kept
at a safe distance from the dew line in every operating
point. The only observed drawback was the comparably
high development effort that was necessary for developing
the model and deploying NMPC for the system at hand.
The Functional Mockup Interface turned out be a con-
venient way to export a previously developed Modelica
model and to use it within the optimizer. To use the
developed Modelica simulation model also for optimal
control, though, several adaptations concerning smooth-
ness assumptions were necessary. Although the opti-
mizer could not be given access to the whole differential-
algebraic equation (DAE) system due to intrinsic limits of
the current version 2.0 of the FMI standard, the derivative-
based optimization was found to work satisfactorily for
the model at hand. A direct implementation of the DAE
system in MUSCOD still promises a significant future in-
crease in performance and numerical stability. Finally, we
expected a higher impact of using analytic Jacobians pro-
vided to the optimizer by the FMU. Without insight into
the auto-generated source code from which the FMU was
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compiled, we could not rigorously answer the question of
why the analytic Jacobian provided by the FMU is about
twice as slow as the comparably simple one-sided finite
difference approximation method we used in conjunction
with MUSCOD.

Outlook. This article focused on controlling the cabin
temperature through the use of NMPC. In a further step,
the temperatures of cabin and battery will be tracked in
parallel and the temperature of the electric components
of the powertrain will be restricted to a realistic thermal
range. The evaluation of the complete system can then be
carried out on the basis of driving cycles.

Right now the NMPC controller still receives the entire
measured state vector from the simulation. This is not re-
alistic after deploying the controller to the final hardware
application, as only a subset of the system state can be
measured in reality. Thus, an observer will be employed
to estimate the states that are not physically measurable.

In a second step, the hardware application will be tar-
geted, where the whole developed thermal management
system in an electric vehicle is controlled by the NMPC.
The optimization must prove real-time feasibility to guar-
antee a solution within the defined time interval under all
circumstances. The direct implementation of the DAE
system in MUSCOD might prove to be essential to this
end.
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