Generic FMI-compliant Simulation Tool Coupling

Edmund Widl!

Wolfgang Miiller?

ICenter for Energy, AIT Austrian Institute of Technology, Austria, edmund.widl@ait.ac.at
Institute of Analysis and Scientific Computing, TU Wien, Austria, wolfgang.mueller@student.tuwien.ac.at

Abstract

The Functional Mock-up Interface (FMI) specification pro-
vides a simple yet effective definition for co-simulation
APIs. Even though the number of simulation tools sup-
porting the export of Functional Mock-up Units (FMU) is
growing steadily, there is a considerable number of well-
established tools that do not. This paper addresses this
issue by introducing a generic and adaptable way of cou-
pling established simulation tools in an FMI-compliant
manner. The proposed concept has been implemented as
part of the FMI++ library, which is used as basis for FMI-
compliant wrappers for the TRNSY'S simulation tool and
the MATLAB environment. These examples demonstrate
the potential of the proposed approach to include well-
established simulation tools with minimal effort. This not
only enables researchers and engineers to include a diverse
range of tools more easily into their work flow, but is also
an incentive for tool developers to provide FMI-compliant
wrappers.

Keywords: FMI for Co-Simulation, tool coupling, front-
end/back-end concept, TRNSYS, MATLAB

1 Introduction

The list of simulation tools offering FMI (Blochwitz et al.,
2011) support is rapidly growing', demonstrating the fea-
sibility of the approach and underlining the importance of
such a specification for Co-Simulation (CS) and Model
Exchange (ME). However, many established simulation
tools do not yet offer APIs for co-simulation, let alone one
that follows the FMI specifications. This paper explores
a generic approach that facilitates the integration of FMU
CS export functionalities for such tools.

The proposed approach uses a front-end that is exposed
to the master algorithm as FMI component, and an appropri-
ately linked back-end that is used by the slave application.
Due to its design this approach can not only be used by
tool developers who have access to the (possibly closed)
source code of the core application but also by users who
have only limited access to or knowledge of the underlying
application layers. The only requirement is the possibility
for users to provide custom objects based on C/C++ code
(or languages with adequate bindings to C/C++) that can
be embedded within and exchange data with the simulation
environment.

'See https://fmi-standard.org/tools/.

2 The FMI-compliant front-end/back-
end concept

The basic concept comprises two components: The front-
end component to be used by the simulation master and the
back-end component to be used by the slave application.
Between these two components a proper data management
has to be established that is responsible for the communi-
cation and data exchange between both ends. The corre-
sponding interfaces are tailored to suit the requirements of
the FMI specification. They implement the necessary func-
tionality required for a master-slave concept, i.e., synchro-
nization mechanisms and exchange of data. See Figure 1
for a schematic view of this concept.

2.1 Front-end component

The front-end component is the actual gateway for a master
algorithm to communicate and exchange data with an ex-
ternal simulation application. Its interface (see Figure 2) is
designed such that it can be easily used as an FMI compo-
nent (FMI model type fmiComponent), implementing
functionalities close to the requirements of the FMI speci-
fication, for instance functions initializeSlave(...),
doStep(...) or setReal(...). The front-end is responsi-
ble for the following tasks:

2.1.1 Information retrieval

The front-end component parses the FMI model descrip-
tion and stores the relevant information. This includes
general simulator attributes (e.g., executable name, event
handling capabilities) as well as specific model informa-
tion (e.g., simulator-specific input files, variable names and
types, input/output relations).

2.1.2 Variable initialization

Once the model description information is retrieved, the
memory for the variables has to be allocated. This is done
with the help of the dedicated data management (see Sec-
tion 2.3 below).

2.1.3 Variable handling

The front-end has to manage the mapping between the
model specific variable names and the associated value
references according to the FMI specification. The latter
are used to refer to and access the variables through the FMI
API. In addition, the front-end has to ensure during runtime
that variables are accessed properly, e.g., prohibiting write
requests for output variables.

DOI
10.3384/ecp17132321

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

321

Generic FMI-compliant Simulation Tool Coupling

FMU

|FMU| |FMU|

data
manager

=

FMI adapter

external simulation tool

back-end

l.>==

Figure 1. Schematics of the FMU CS export using the front-end/back-end concept: A simulation tool couples via an internal
component to the back-end. The co-simulation master algorithm uses an instance of the front-end as FMI component. Synchronization
and data exchange between the two ends is handled via a dedicated data manager.

FMIComponentFrontEnd FMIComponentBackEnd

+ initializeSlave () : fmiStatus + startlnitialization () : fmiStatus

+ endInitialization () : fmiStatus

+ getReal (...) : fmiStatus
+ getlnteger (...) : fmiStatus + initializeReallnputs (...) : fmiStatus
+ initializeRealOutputs (...) : fmiStatus
+ setReal (...) : fmiStatus + getReallnputs (...) : fmiStatus
+ setinteger (...) : fmiStatus + setRealOutputs (...) : fmiStatus
+doStep (...) : fmiStatus + waitForMaster () : void
+ signalToMaster () : void
- startApplication (...) : void

+ getMasterTime () : fmiReal
+ getNextStepSize () : fmiReal
+ enforceTimeStep (...) : void
+ rejectStep () : void

¢ ¥

- killApplication () : void

- initializeVariables (...) : void
- initializeScalar (...) : void

SHMMaster l | SHMSlave
1 1
1 1
<<interface>> <<interface>>
IPCMaster IPCSlave

+ reinitialize () : void
+ isOperational () : bool

+ reinitialize () : void
+ isOperational () : bool

+ createScalars (...) : void
+ createVariable (...) : void

+ retrieveScalars (...) : void
+ retrieveVariable (...) : void

+ waitForSlave () : void
+ signalToSlave () : void

+ waitForMaster () : void
+ signalToMaster () : void

Figure 2. UML diagram of the most important features of the
front-end and back-end components and the classes responsible
for their data management (via shared memory in this specific
case). The function arguments are not shown due to space con-
straints.

2.1.4 Application handling

The front-end is responsible for starting the external simu-
lation application. It also has to establish a synchronized
communication and data exchange, which is again done
with the help of the dedicated data management (see Sec-
tion 2.3 below)

2.2 Back-end component and FMI adapter

The back-end component functions as counterpart to the
front-end component and is intended to be incorporated
within the slave application as part of a dedicated simu-

lation component, referred to as the FMI adapter (see
Figure 1). The back-end interface is designed to make the
connection with the front-end as simple as possible, focus-
ing on synchronization and data exchange (see Figure 2).
The adapter has to carry out the following tasks with the
help of the back-end:

2.2.1 Information retrieval

The adapter has to be a part of the model that is loaded in
the external simulator. As such is has to be able to retrieve
and store information about the model it is embedded in
at run-time, most importantly the names and types of the
inputs and outputs that should be shared within the co-
simulation.

2.2.2 Establishing the data exchange

Once the names and types of all inputs and outputs are
known, the adapter has to connect to the front-end and
establish the synchronized data exchange. This is done
with the help of the back-end component, which retrieves
pointers to automatically synchronized variables via the
dedicated data management (see Section 2.3 below).

2.2.3 Data exchange during simulation

The adapter has to be designed such that it knows at which
points of the simulation is has to send/receive data to/from
the front-end. Using the previously retrieved pointers it can
read/write data with the help of the back-end component.

2.3 Data management

The data manager is the crucial link between the front-
end and the back-end and handles all issues regarding
Inter-Process Communication (IPC). It is split in two in-
stances (see Figure 2), implementing the purely abstract
interface definitions provided by IPCMaster and IPC—
Slave, which are intended to be used by the front-end
and the back-end, respectively.

2.3.1 Data handling

Both interfaces are primarily designed for handling FMI
scalar variables (XML type fmiScalarVariable),

322

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132321

Session 6: Poster Session

Listing 1. Implementation of function fmiDoStep(...) according to the FMI 1.0 specification.

fmiStatus fmiDoStep(fmiComponent c,
fmiReal

{
FMIComponentFrontEnd* fe =

~N N AW =

}

fmiReal currentCommunicationPoint,
communicationStepSize,

static_cast <FMIComponentFrontEnd*>(¢);

return fe—>doStep(currentCommunicationPoint,

fmiBoolean newStep)

communicationStepSize, newStep);

i.e., variables that are associated not only to a value rep-
resented by a basic data type (e.g., fmiReal) but also
to model-related attributes (e.g., name, value reference or
causality). The corresponding functionality is provided via
createScalars(...) and retrieveScalars(...).

In addition, the data manager allows to handle and
access data with functions createvVariable(...) and
retrieveVariable(...) for internal communication
between both ends (e.g., size of next time step, boolean
flag for rejecting the next step).

2.3.2 Synchronization

Since the data exchange between both ends has to be syn-
chronized, the data manager is not only responsible for
allocating memory. It also has to have a way to control
the access to the data, in order to prevent non-deterministic
behavior.

This is realized via the functions waitForSlave()
and signalToSlave() for the front-end and the func-
tions waitForMaster() and signalToMaster()
for the back-end. In both cases, variables that were in-
stantiated via the data manager should not be read or writ-
ten unless the blocking functions waitForSlave() or
waitForMaster/() return. Likewise, once a component
is done reading or writing data, it is required to signal
this via signalToSlave() or signalToMaster(),
respectively, and wait again.

2.3.3 Flexibility

The abstract interfaces IPCMaster and IPCSlave have
been designed such that the actual data transfer and syn-
chronization can be achieved in various ways. For instance,
shared memory access or communication via local or net-
work sockets is feasible. In principle, this mechanism could
even be used to build web applications.

3 Implementation

The above concept has been implemented for the FMI CS
specification version 1.0 and version 2.0 as part of the
FMI++ library?. The FMI++ library is an open-source
software toolbox written in C++ that provides high-level
functionality for handling FMUs. As such it intends to
bridge the gap between the basic FMI specification and
typical requirements of simulation tools. While some of

2 Available at http://fmipp.sourceforge.net/.

the functionality offered by the FMI++ library for import-
ing FMUs is comparable to what it is available in other
software libraries (such as the FMU SDK? or the FMI Li-
brary®), the implementation of the concept for generic tool
coupling as explained above is unique.

A data manager has been implemented that uses shared
memory access to share data, including semaphores for the
synchronization of both ends, relying on features provided
by the Boost® library collection. In this case, both ends
of the data management can physically access the same
data. If the co-simulation master and the external appli-
cation were executed on different machines (distributed
simulation environment) both ends would have to allocate
their own memory and keep their contents synchronized,
e.g., by means of the Message Passing Interface (MPI Fo-
rum, 2009).

The implementation of the front-end, the back-end and
the data management are generic, i.e., it is independent of
the external application. FMI adapter implementations ob-
viously depend strongly on the designated application, even
though reasonably sophisticated simulation environments
should offer the possibility to design it model-independent.
Bindings for the generic back-end implementation to FMI
adapters in other languages than C/C++ can be automatedly
created with the help of the SWIG tool (Beazley, 2003).

In addition, a thin layer implementing all functions ac-
cording to the FMI specification is needed, which calls the
corresponding front-end component functions, see lines 4
and 5 of the code snippet in Listing 1 for an example. Since
version 1.0 of the FMI specification defines the model name
(FMI model description attribute modelIdentifier)
as a prefix to all functions in the final shared library, this
thin layer has to be recompiled for each individual exported
model. However, this does not require any changes in the
source code, as the actual functionality remains unaltered.

4 Examples

The concept explained above is very flexible and can be
used within a broad context of applications. For developing
an FMI adapter, only three requirements need to be satisfied
by any tool:

3 Available at http: //www.qtronic.de/en/fmusdk.html.
4Available at http://www. fmi-library.org/.
3 Available at http: //www.boost .org/.

DOI
10.3384/ecp17132321

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

323

Generic FMI-compliant Simulation Tool Coupling

e Modularity: The targeted tool has to offer a mecha-
nism for including user-defined code (including the
possibility to access memory), in order to define an
FMI adapter.

o Execution control: User-defined code has to be able to
impact the tool’s execution. This can be achieved ei-
ther actively (e.g., by accessing methods that directly
control the execution) or passively (e.g., by halting
the execution through a blocking function).

e Language compatibility: The language of the user-
defined code has to be compatible or have bindings to
an existing front-end/back-end implementation.

In the following, this is demonstrated for two distinct tools.
4.1 TRNSYS FMI adapter

4.1.1 Implementation

TRNSYS (Klein et al., 1976) is a popular and well estab-
lished thermal building and system simulation environment
that comes with a validated components library. It uses
instances of so-called types to model the individual com-
ponents of a building or a system. Unfortunately, it does
not provide an API that allows to use it as a slave appli-
cation within a co-simulation. However, TRNSYS fulfills
all the prerequisites to use the above discussed concept to
implement an FMI adapter that overcomes this limitation:

o Modularity: In addition to providing a rich library
of validated types, TRNSYS also offers the possibil-
ity to include user-defined types. Since TRNSYS is
based on Fortran, these types are not object-oriented
components in a strict sense but follow a sufficiently
similar design pattern based on specialized function
calls.

e Execution control: The overall simulation execution
is steered by the TRNSYS core, which calls the indi-
vidual instances of the types included within a model.
During these calls the instances are told at which stage
the simulation currently is, especially whether it is the
initialization phase, a standard call during a time step
or the last call of a time step. This information can be
used by TRNSYS types to take actions accordingly.

e Language compatibility: Due to the TRNSYS simu-
lation core being implemented in Fortran, user-
defined types can be implemented using C/C++. Even
though the ability of Fortran programs to call com-
piled C/C++ functions is limited, for the task at hand
all conditions are met to establish sufficient interoper-
ability.

6 Basically, every TRNSYS type is implemented as a function. Indi-
vidual simulation components based on the same type are handled via the
same function call, using a unique ID and appropriate memory storage
utilities that allow to differentiate between the instances.

[first call of simulation] E [last call of time step]
1 [call during 1
s time step] get type inputs,
get FMI inputs,
set as type outputs
wait for response signal to front end,
O

Figure 3. Schematic view of the functionality of the TRNSYS
FMI adapter type in dependence on the simulation step.

i

N
—=!
Plotter

]
@o.-g - -2
INPUT = L OOTPOT

Type6139a Input Integrator Output Type6139b

Figure 4. Example of a simple TRNSYS model containing
blocks of Type6139 for FMU export.

Therefore the implementation of the front-end and back-
end concept discussed in Section 3 can be used to de-
velop a TRNSYS type that acts as FMI adapter. Fig-
ure 3 depicts the internal use of the back-end component
within this type and its interaction with the simulation mas-
ter. Please note that inputs to the TRNSYS FMI adapter
type are the FMU’s outputs and vice versa. Due to the
strict fixed step size simulation paradigm of TRNSYS the
adapter enforces time steps accordingly using the back-
end component’s enforceTimeStep(...) function. The
front-end handles this information accordingly and rejects
calls of doStep(...) in case they do not conform. The
model description flag canHandleVariableCommu-
nicationStepSize is set accordingly.

This FMI adapter has been implemented on top of the
FMI++ library and is available online’. The provided FMI
adapter — referred to as Type6139 — can be included within
a TRNSYS model like any other type, with ordinary inputs
and outputs coming from and going to other types. In
addition, the names of the input and output variables have
to be provided (as part of the Special Cards in the type’s
Proforma) according to the definition that is also used in
the model description. Apart from the additional input and
output block of this type, TRNSYS models are constructed
in the usual way. Given such a model, an FMU can be
generated with the help of a dedicated Python script.

4.1.2 Example application

The example uses a simple thermal model from TRNSYS
(see Figure 4) that implements the following first order

7Available at http://trnsys-fmu.sourceforge.net/.

324

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132321

Session 6: Poster Session

add
-1

1 B
_const I@i—’HH = R

k=21.0

hysteresis booleanToReal

FMI 1.0 CS Import
t_fru

tRNSYS_Room Plant |

Figure 5. Dymola model.

21.6+

21.4+

21.2

21.04

20.8

room temperature in °C

20.6-

20.4+

20.2 - - : i : i : i T T

simulation ime in h

Figure 6. Example TRNSYS FMU output.

ODE:

if heater is off,
ey

if heater is on.

P _Qloss
Toom =
oom {Qheater - Qloss
Troom 1S the room air temperature, Qjoss the difference be-
tween losses to the environment and inner loads, and Qheater
is the power of the heating unit. Both Qjoss and Qpeaeer are
normalized w.r.t. the thermal capacity of the room air. The
model was exported as an FMU with one input variable
(associated to the on/off signal of the heater, called con—
trol_signal) and one output variable (associated to
the room temperature, called room_temperature).

To test its functionality, the FMU was used as a
plant model in a simple closed-loop control system im-
plemented in Dymola, see Figure 5. Depending on
the room temperature provided by FMU output variable
room_temperature, the controller turns the room’s
heating on or off by setting the FMU input variable con—
trol_signal toeither 0 or 1. More precisely, the model
implements a hysteresis controller that turns the heater on
as soon as the room temperature falls below 20.5°C and
turns it off when it exceeds 21.5°C.

Figure 6 shows the results of the simulated Dymola
model. Depicted is the room temperature as computed by
TRNSYS, which is kept within 21.0°C + 0.5°C by the
Dymola controller. Due to the fixed simulation step size
of 15 minutes, the switching of the controller state does

not happen at the exact edges of the controller’s dead-band
(i.e., at 20.5°C and 21.5°C). Please be aware that this is
not a shortcoming of the FMU itself, but due to TRNSYS’s
restriction to fixed simulation time steps. Such simulation
artifacts are unavoidable in fixed-step co-simulation and
have to be taken into account by the modeler (e.g., by
choosing an adequate simulation step size).

4.2 MATLAB FMI adapter

4.2.1 Implementation

Despite the popularity and widespread use of the numerical
computing environment MATLAB, there is so far only com-
parably little support within the context of FMI. The Mode-
lon FMI Toolbox® and the FMI Kit for Simulink® offer the
export of Simulink models as FMUs for Model Exchange,
but so far there is no tool available that allows to provide
MATLAB?’s full functionality via an FMI-compliant co-
simulation interface. In the following, a description is
given of how the proposed front-end/back-end concept can
be utilized to solve this issue.

e Modularity: Since MATLAB is a multi-purpose,
multi-paradigm computing and programming envi-
ronment, there are potentially many possible ways
to implement an FMI adapter. Within the context of
this work, an object-oriented approach has been cho-
sen that relies on a base class called FMIAdapter,
which provides the full functionality of the FMI
adapter. In order to utilize its functionality, the ab-
stract methods init(...) and doStep(...) have to
be implemented by a derived class.

e Execution control: In contrast to Simulink, MATLAB
defines itself no general notion of time. With the pro-
posed concept, calls to the FMU’s doStep(...) func-
tion are associated to a call to method doStep(...)
of class FMIAdapter (or rather the class derived
from it). For such a function call, the current com-
munication point and communication step size are
provided as input arguments.

e Language compatibility: MATLAB provides many
ways for interfacing. Within the context of this work,
the SWIG tool has been used to create S-Function
bindings to a generic back-end implementation in
C++ that can be called from within MATLAB. Even
though these bindings can be used directly from MAT-
LAB scripts, it is recommended to utilize their func-
tionality through class FMIAdapter.

The MATLAB FMI adapter has been implemented on
top of the FMI++ library (for Windows with 32-bit MAT-
LAB) and is available online!®. As mentioned above, it
requires to implement the abstract methods init (...) and

8 Available at http: //www.modelon.com/.
9 Available at http: //www. 3ds.com/.
10 Available at http: //matlab-fmu.sourceforge.net/.

DOI
10.3384/ecp17132321

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

325

Generic FMI-compliant Simulation Tool Coupling

Listing 2. MATLAB implementation of the FMI adapter for a simple on/off controller.

1 classdef SimpleController < fmipputils. FMIAdapter

2

3 methods

4

5 function init(obj, currentCommunicationPoint)

6 obj.defineReallnputs({ "T" });

7 obj.defineRealOutputs({ *Pheat” });

8 end

9

10 function doStep(obj, currentCommunicationPoint, communicationStepSize)

11 reallnputValues = obj.getReallnputValues ()

12 T = reallnputValues (1)

13 if (T >= 90)

14 obj.setRealOutputValues(0);

15 elseif (T <= 80)

16 obj.setRealOutputValues(1e3);

17 end

18 end

19

20 end

21

22 end
90—

—< i
88—
FMI 1.0 CS Import

testController_fmu

fixedHeatFlow

J&——

prescribedHeatFlow

—»—3F

heatCapacitor

Figure 7. Example Modelica thermal system model.

doStep(...) of class FMIAdapter with the help of an
inherited class, see for instance the example code in List-
ing 2.

Method init(...) is intended to initialize input and
output variables needed for co-simulation. For instance,
input and output variables of type fmiReal can be initial-
ized with the help of methods defineRealInputs(...)
and defineRealOutputs(...), whose input arguments
are cell arrays containing the associated variable names.
Method doStep(...) is called at every simulation step
(as requested by the master algorithm). During such a
call, methods getRealInputValues() and setRe—
alOutputValues(...) can be used to get input and set
output values for instance.

Since the init(...) and doStep(...) methods may
contain any MATLAB-compliant code, virtually any MAT-

86—

84—

82—

thermal mass temperature in °C
,

80—

T T T T T T T T T T T
0 2 4 6 8 10 12

simulation time in h

Figure 8. Example Dymola output.

LAB functionality can be made available with the help of
this concept. In order to create an FMU from such an imple-
mentation, the dedicated script createFMU . m has to be
called from within MATLAB. Its inputs arguments are only
the intended FMI model identifier of the FMU and the path
to the class file implementing the FMI adapter. Additional
MATLAB files may also be specified, e.g., containing data
or further function definitions.

It is also noteworthy that an FMI adapter’s functional-
ity can be tested and debugged directly from within MAT-
LAB. Unless explicitly activated, instances of FMI adapters
do not try to connect to a back-end component. In this
state, the input (output) variables defined by calling the
init(...) method can be set before (read after) a call to
the doStep(...) method from within MATLAB with a set
of dedicated methods.

326

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132321

Session 6: Poster Session

4.2.2 Example application

This example uses a simple on/off controller implemented
in MATLAB, to control a thermal system implemented
in Modelica. The Modelica model consists of a thermal
mass that is connected to a constant negative heat flow
(heat sink) and a heater, see Figure 7. The underlying equa-
tions of this model are analogous to the previous example,
cf. Equation 1. The temperature of the thermal mass is sent
as input to the controller, which can set the heater’s power
output. The MATLAB implementation of the controller
is shown in Listing 2. Method init (...) defines in line 6
an input variable called T, associated to the temperature of
the thermal mass, and in line 7 an output variable called
Pheat, which controls the heater’s power output. Method
doStep(...) retrieves the value of previously defined in-
put variable (lines 11 and 12) and sets the values of the
previously defined output variables according to its simple
internal logic (lines 14 and 16, respectively).

To test its functionality, the MATLAB controller was
exported as FMU and imported into the Modelica model.
Figure 8 shows the simulation results. Shown is the temper-
ature of the thermal mass as computed by Dymola, which
is kept within the range specified by the controller imple-
mentation.

5 Conclusion and Outlook

This work presented a generic approach for FMI-compliant
tool coupling for a broad spectrum of tools. The approach
is based on the concept of a generic front-end and back-
end, with the front-end being directly accessed by a master
algorithm as an FMI component. The back-end, which
is synchronized to the front-end via a data manager, is
associated to the coupled tool. The tool itself interacts with
the back-end via a dedicated FMI adapter.

The proposed concept has been implemented as part
of the FMI++ library according to the Functional Mock-
up Interface version 1.0 specification and adapted to two

distinct tools, TRNSYS and MATLAB. In both examples
the same front-end, data manager and back-end have been
used, with customized FMI adapters to meet the require-
ments of the specific tools. With the help of two simple
co-simulation setups the functionality of both approaches
has been shown.

Future work will comprise the extension of the FMI++
implementation to support optional functionality, e.g., han-
dling of input derivatives.

Acknowledgments

Part of this work emerged from the Annex 60 project, an
international project conducted under the umbrella of the
International Energy Agency (IEA) within the Energy in
Buildings and Communities (EBC) Programme. Annex 60
develops and demonstrates a new generation of computa-
tional tools for building and community energy systems
based on Modelica and the Functional Mock-up Interface
standard.

References

D.M. Beazley. Automated scientific software scripting with
SWIG. Future Generation Computer Systems, 19(5):599 —
609, 2003.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clau8,
H. Elmgqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf. The
Functional Mockup Interface for Tool independent Exchange
of Simulation Models. In Proceedings of the 8th International
Modelica Conference, 2011.

S. A. Klein, J. A. Duffie, and W. A. Beckman. TRNSYS: A
transient simulation program. ASHRAE Transactions, 82:623
—633, 1976.

The MPI Forum. MPI: A Message-Passing Interface Standard.
Technical Report Version 2.2, Sept. 2009. URL http://
www.mpiforum.org/.

DOI
10.3384/ecp17132321

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

327

