
FMI and IP Protection of Models: A Survey of Use Cases and

Support in the Standard

Erik Durling* Elias Palmkvist Maria Henningsson*
*Modelon AB, Sweden, Corresponding author: erik.durling@modelon.com

Abstract
FMI is increasingly being adopted as a standard for

exchanging simulation models within and between

organizations. Such models often represent significant

investments for the model creator. There is thus a large

interest in protecting intellectual property while

collaborating and sharing simulation models in the form

of FMUs. This paper presents a collection of use cases

and issues related to IP protection of model contents,

that have been identified in interviews with industrial

representatives. The requirements in each use case are

described, along with an investigation of how well the

use cases can be managed within the current version of

the FMI standard, including a proposed extension of the

standard.

Keywords: FMI, IP protection, model exchange

1 Introduction

The promise of major benefits in model-based systems

engineering and virtual development lies in reusing

models in different contexts. To develop, parameterize,

validate, and maintain models represent a significant

investment, and to maximize the return the models need

to be utilized as much as possible.

FMI is becoming the de facto industry standard for

exchanging models between different tools. Two main

directions in the FMI domain is currently integration and

democratization. Integration means software, processes,

and standards for co-simulation of multiple models from

different tools or different organization.

Democratization means effort to spread the usage of

advanced simulation models for experts using expert

tools to much larger groups of engineers to use for

design space exploration, boundary conditions for other

systems, or software development and testing.

Both these directions involve exposing models that

often represent significant investments and contain

sensitive data to a larger user base within and outside of

the original organization. The question about protecting

IP (Intellectual Property) is often raised in discussions

about exchanging models between partners with

commercial interests.

Although there exist solutions and best practices for

sharing models with existing technologies, FMI is still a

new standard, and there is a general need for knowledge

about applying similar solutions with FMI (Köhler et al.

2016). One of the arguments for using FMI is that it

allows protecting the internal contents of models. But it

is important for the part sharing a model to understand

what is exposed, and what measures that can be taken to

protect what should not be shared.

The purpose of this study has been to make an

inventory of use cases and concerns related to IP

protection of FMUs, and to evaluate to what extent this

is supported by the current standard. This overview can

be of interest for users who need to understand the risks

and mechanisms for exposing and protecting the content

of their models.

The study also intends to raise the need for a

standardized way of managing IP protection

mechanisms of FMUs, or at least to provide information

to the model importer about embedded mechanisms to

restrict execution of the model.

The paper starts by outlining how the listed use cases

were elicited. The list of use cases is presented in

Section 3. An evaluation of how well the use cases are

supported by the current (2.0) FMI standard is found in

Section 4.

2 Methodology

The study was carried out in two phases. During the first

phase, information was gathered about the needs that

exist for protecting IP when sharing models within the

general area of model based systems engineering.

Interviews were carried out with 16 engineers at

Modelon and Volvo Car Group, with experience of

sharing models within automotive, energy and

aerospace industries. The interviews were typically with

a single person at a time, and lasted in the range of 30 to

60 minutes. To obtain unbiased information, open

questions were asked to let the stakeholder present their

own view of the issues they found important. The

questions concerned exchanging models in general, and

not specific to the FMI standard.

In addition to the interviews, an anonymous online

survey was sent out to additional external stakeholders.

The purpose of this survey was mainly to obtain an

impression of the importance and priorities among the
identified use-cases. The survey also included specific

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

329

questions to identify experience and concerns specific to

the FMI standard.

During the second phase, the FMI-standard was

evaluated in terms of each of the use cases that had been

identified. The following questions were considered

when evaluating the standard:

 Is the use case relevant to be considered within the

scope of the standard?

 Is there any support for the use case within the

standard?

 Are there any obstacles or gaps within the standard

that prevents solutions for the use case from being

implemented?

3 Use Cases: Needs for Protecting IP

When Sharing Models

This section describes the different use-cases that have

been identified in this study, following a short summary

of the roles involved.

The question of IP protection is typically considered

when models are to be shared between different

organizations with commercial interests. The purpose is

to protect valuable or sensitive knowledge or data from

being accessed by someone who is not trusted. The need

for protection generally comes from the part sharing

(exporting) the model, but there are issues related to this

that may affect the receiver (importer) of the model.

A common scenario is that a component supplier

delivers a component model to an OEM (Original

Equipment Manufactory). This component model is

integrated by the OEM as part of a system model. The

opposite also occur, where the OEM supplies a system

model, to let the supplier test their component as part of

a system environment.

There are also situations where there is a need to

protect models that are shared inside the same

organization. Reasons for this can be to maintain control

over what models are being used in the organization.

Another reason can be to prevent potential leaks by

limiting access to sensitive information. This situation

could also apply during projects with external partners,

where the information is not secret to the people in the

project, but there is a need to protect the information

from being shared outside the project.

In general, the main concerns regard export of

models. This mainly covers two main issues: hiding the

model content, and controlling who can use the model.

But protecting the models can also lead to challenges for

the receiver of the model, in terms of usability, that need

to be considered.

3.1 Use Case 1: Protect Model Contents

The basic use case is that the part who shares a model

would like to hide what is inside from the receiver. The

sharing part needs to export the model in such a way that

the contents are protected. There are a number of aspects

that may be valuable or sensitive and needed to be

protected.

3.1.1 Model Structure

There is often a need to protect the structure or design

of the model. This consists of equations and algorithms

that describe the relationship between inputs and

outputs.

The model may be implemented using unique

methods for describing the specific component.

Examples of this could be algorithms, or representations

of equations, or clever ways to select dynamic states.

This can make the model design valuable in itself.

The model could also represent unique knowledge

about the component that is modeled, and could reveal

sensitive information about the actual component design

and properties.

Some models might be created to support multiple

application. In this case, information about the other

types of application that is supported might be sensitive.

It could be that the receiver should only have access to

information that concerns their specific application.

3.1.2 Internal Variables

Internal variables (or ”signals”) may reveal sensitive

information about the inner workings of a model, and

could facilitate reverse engineering.

The names of the internal variables could also be

sensitive and reveal information about the model

structure and design, or ways to apply the model that the

receiver should not be aware of.

3.1.3 Parameters

Values of internal design parameters, boundary

conditions and start values, may reveal information that

would not be available to a user of the actual component

or system that the model represents. This data may be

the result of expensive research, and considered

valuable knowhow that a supplier is reluctant to share.

Parameter names may also reveal information about

model structure, in the same way as internal variables. It

could also be that the parameter values are only sensitive

with a specific parameter name. Generic parameter

names may not reveal any useful IP.

3.1.4 Black Box or Grey Box

The simplest approach is to hide everything inside the

model (black box), which may be sufficient in some

cases. However, in many cases it is necessary to expose

parts of the model contents (grey box), in order to make

the model usable. In this case, the exporter typically

would like to expose only the sub-set of the content that

is necessary for the receiver to have access to.

For example, exposing part of the model structure or

internal variables could aid in simulation debugging.

And some parameters may need to be tweaked in order

to use the same model for multiple scenarios.

FMI and IP protection of models: A survey of use cases and support in the standard

330 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132329

3.1.5 External Dependencies

A model could contain external dependencies, for

example parameter files or additional model libraries.

These parts could contain IP that may not be covered by

the protection applied to the main model, and may

require specific consideration.

3.1.6 Reverse Engineering

Sharing a model always comes with a risk of reverse

engineering, either of the model itself or the component

that the model represents. The only way to be

completely protected against this is to not share any

model. The required level of protection against this

depends on the value of the model contents and the risk

of the contents being revealed. A common strategy of

handling this is to make sure that the cost of reverse

engineering is higher than the value of the contents.

3.2 Use Case 2: Limit Access to Users

A common scenario is that only a set of expected users

should have access to a model, for example to maintain

control or prevent reverse engineering. A model could

contain information that should not fall into the wrong

hands, or be used for applications other than the

exporter’s intention.

3.2.1 Limit Access to Specific User(s)

There are many scenarios where a model is only meant

to be shared with a limited number of users, or different

users should have different level of accessibility to the

model. It is common that the right to use a model is

given to a single organization by a partner. In sensitive

cases, some models may even be restricted to specific

groups within an organization, to minimize the risk that

it ends up in the hands of the wrong people, for example

a competitor. There are also commercial scenarios. For

example, a model library may be sold for use on a single

computer only.

Models exported from some tools may be restricted

to users who have a license for the exporting tool. Such

limitations may represent a big obstacle for some

scenarios of model sharing. It may not be feasible for

users integrating models from many different sources to

have a license for all the tools. This could also be a

problem when an exported model need to be deployed

to a large group of end-users, since the licensing fee

would become unreasonable. Some OEMs have also

expressed concerns that licensing solutions on exported

models could lead to vendor lock-in.

3.2.2 Limit the Model Over Time

There are also scenarios where one would like to limit

the model access to a specific time frame. A reason

could be that the model could contain information or be

used for applications that is only relevant during a

limited time, and the use of the model may even be

contracted between the two partners. This could for

example be during the course of a specific project, or

during a trial period of a commercial model library.

Having a time limitation on a model could also be a

benefit when it is being developed and need to be

maintained over time, since it reduces the risk that an

old version of the model is used.

The time frame could differ depending on the use

case, from a couple of days for a sales demonstration, a

few months between model release versions, or during a

project that last for years.

3.2.3 Information About the Protection

Models with limited access pose a challenge from the

model receiver’s perspective. Without sufficient

information about what type of protection is applied,

debugging could be difficult when the user or the

importing tool should identify that the model is not

working due to this protection.

This is especially important for a user working with

aggregates of models from multiple model suppliers,

where there may be number of different types of access

limitations that need to be managed. The workflow for

these users are improved if it is possible to easily

understand how each model is restricted and what is

required for getting access to it.

3.3 Use Case 3: Provide Information to the

Model Importer

When parts of a model are hidden, or protected, there is

an increased need for information to keep the model

useful.

3.3.1 Documentation

For a model with hidden contents, the user must rely on

the documentation for information on how to use the

model and what results to expect. It can be crucial to

understand what aspects of the physical systems are

modeled and at what degree of accuracy, especially

when integrating the model as part of a larger system, or

to understand simulation results. This could dictate what

parts are needed outside the model and how to interpret

the interface. It may also be difficult to determine what

range of operating conditions the model is valid for,

since it likely is not obvious what simplifications or

assumptions have been made. In general, it is important

that both parts have agreed on the interface of the model

inputs and outputs.

3.3.2 Debugging

It can be very challenging to debug a model without

knowledge about how it is constructed, without the

ability to measure internal variables or to get usable

error messages. This can be a challenge also when using

the model as part of a larger system. The user may have

to rely on support from the model supplier for solving

the issues. This could also pose a challenge for OEMs

that need to be able to trace issues found in simulation

Session 6: Poster Session

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

331

results back to the source model, many years after the

results were produced.

3.3.3 Network Dependencies

Some protection solutions may require the model to

communicate with remote network resources, for

example to gain access to using the model or to

exchange results with a simulation server. Information

about these dependencies and adequate error messages

can be important for helping the user identify any issues

related to this.

3.4 Use Case 4: Binary Platform Support

and Source Code

There is a conflict between protecting a model from

reverse engineering while at the same time allowing the

model to be used on multiple platforms (different

operating systems or processor hardware). Exporting a

model in a compiled binary format is a common way to

protect the sensitive content. However, this will limit the

model to the specific platform that the binary is

compiled for. To support multiple platforms, the

solution is often to export the model as code (commonly

C-code) and let the receiver compile the model on the

specific platform. While binary export is often

considered sufficient protection against reverse

engineering, c-code is generally not considered

sufficient, since this is more easily interpreted by a

human. Solutions for this could place requirements both

on the exporting and importing tools.

It is important to note however, that the content of a

binary also can be interpreted, while the effort to do so

is generally much higher than doing this for higher level

source code.

3.5 Knowledge Need

A general need for knowledge about the IP-risks specific

to FMI was identified during this survey. When

exporting a protected model that contains IP, it is

important for the exporter to understand what is exposed

when the model is exported, and what risks may need to

be avoided. This will help making correct decisions

about what measures need to be taken, but is also

necessary for the exporter to feel trust in the solution

used.

It is worth noting that new technologies have a start-

up phase in general, where potential users will be

naturally skeptical before information about the

technology is widely known, and best practices have

been established.

It may also be important also for people that are only

working indirectly with models understand how the

risks are handled. For example, a lack of knowledge

about the technology could represent an obstacle in and

negotiations about sharing models between partners. A
wider acceptance may be needed among all affected

parts of an organization before it is regarded as safe.

3.6 Use Case 5: Authentication

Authentication concerns the need to ensure the integrity

of a model. This question is not mainly about hiding

content, but instead of protecting it from being changed.

Although, it is sometimes discussed in relation to IP

protection, since the challenges is somewhat related.

Some of the common needs are:

 Verifying that the model comes from the expected

source.

 Verify that the model has not been altered after it

was exported. This could be important in order to

provide reliable support as a model supplier, or

when the model is deployed in safety critical

systems.

 Verify that the model is compatible with some

external dependencies, for example that the specific

version of a model is used together with the

corresponding version of parameter data.

Authentication plays a role both as a sanity check to

avoid mistakes, but also as a means of protecting against

intentional intrusion.

4 Support for Protecting IP Within

the FMI Standard

This section describes how and to what degree the use

cases described in Section 3 are supported by the FMI-

standard. Some examples are used to demonstrate how

the standard supports certain use cases.

4.1 The Content of an FMU

An implementation following the FMI-standard is

called an FMU. This section describes what parts of a

model is exposed when being packaged as an FMU. An

FMU is a zip-file, with a certain file structure, that

contains the following parts:

 The model description XML-file:

Contains meta information about the model that will

be exposed to the simulation tool and user.

 Binaries:

This is the actual implementation of the model,

compiled for a specific (or multiple) target platform.

This binary exposes the standard FMI API

functions, for reading and writing variables and

performing simulation time steps.

 Source code:

C-source code for the model can be provided as an

alternative, or in addition, to a model binary.

 Additional data/resources:

This could be data stored in any format as a resource

in the FMU. This would typically be parameter data.

It is also possible for an FMU to access external

resources outside of the FMU itself.

FMI and IP protection of models: A survey of use cases and support in the standard

332 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132329

The FMI standard specifies the format of the model

description XML-file, the API function interface of the

binaries or source code, and the structure of the zip-file.

The FMI-standard allows two different type of

models, one that contains a solver to simulate the model

(Co-Simulation or CS-FMU) and one that requires an

external solver to simulate (Model-Exchange or ME-

FMU). The functions and exposed content differ

somewhat between the two FMU flavors.

4.1.1 Content in the Model Description XML File

The model description XML-file contains necessary

meta information to the user and simulation tool, in

order to make the model useful.

The information required to be included is the type of

FMU, name of the model, and a GUID (Global Unique

Identifier).

In addition to this, XML-file is required to contain

tags for model variables and model structure, which will

contain a set of variables that are exposed. But there is

no requirement from the standard that all model content,

in terms of variable names or values, should be exposed

in the model description XML-file.

In practice, at least the top level input and output

variables are exposed. The model description could also

contain references to all, or a subset, of the internal

model variables and parameters. But it is up to the

exporting tool whether all variables should be exposed,

or none (black box) or a sub-set (grey box), and also

what names to give the variables.

For the exporting user, it could be very helpful to get

clear information from the exporting tool about what

variables are exposed. Although this information is

available in the xml-file, it can be very impractical to

obtain the information by reading the file directly,

especially for large models.

The variables defined in the model description file is

a mapping between variable names and variable

references. The variable reference (a number) is used to

access the variable value with the FMI function calls in

the binary or source. It is possible to include variables in

the binary/source, that can be accessed by reference (a

number), without having any mapping to a variable

name in the model description file. This allows for

“secret” variables. This also allows for defining

“anonymous” variable names, that do not reveal any

sensitive information about what the variables represent.

In order to avoid algebraic loops when using the

FMU as part of a system, it could be necessary to

provide a list of outputs and the variables that the

outputs depend on to the importing tool.

Additional information can be included in the model

description file that is typically not sensitive, like the

exporting tool or experiment settings.

4.1.2 FMU Binaries

The FMU binaries typically represents a compiled

implementation of the whole model. As discussed in

Section 3.4, compiling a model as a binary is commonly

considered sufficient protection of the model

implementation. It is however up to the exporting tool

to ensure that what is stored in the binary is not exposed

in an open way.

An FMI binary is only required to expose the FMI

API functions. These will provide access to values of at

least the variables defined in the model description file.

For an ME FMU, it will also be possible to access the

values of each of the internal (continuous time) state

variables, their derivatives, and any event indicators.

But the names of such internal state variables will not be

exposed.

The FMI-standard provides support for logging, so

that the FMU can generate messages for warnings and

errors to the simulation environment. The message

generated from the FMU, using the logging interface,

could depend on hardcoded messages that might include

internal model information (like variable names and

values) that is not exposed in the model description

XML-file. The standard allows using variable

references when logging, which will avoid exposure of

hidden names, but could still expose hidden value

references and their values. It is up to the exporting tool

to ensure that such internal messages are not exposing

sensitive model content.

One way to support multiple platforms is to include

multiple binaries in the same FMU. This may be an

option if it is not possible to provide source code for the

model (as described in section 4.1.3). This requires that

the exporting tool is able to compile or package binaries

supported by all different platforms. FMUs for multiple

platforms could be supported through cross-compilation

or with tools for merging multiple binaries into the same

FMU. Note that the model description needs to match

all of the binaries (including the GUID).

In some cases, the FMU binary just represents an FMI

gateway, as an interface to an external application or

interface (like another simulation tool or network

sockets).

4.1.3 FMU Source Code

An FMU could include the source code for the model,

in addition to, or instead of, the binaries. This is a way

to allow the model to be compiled to a general target

platform, to avoid supplying a binary for each platform

where the FMU is to be used. Many suppliers are

however reluctant to provide source code for their

models, since this exposes the implementations of the

models in a more open way than compiled binaries do.

Depending on how the code has been generated, this

may expose algorithms, parameters, and model

equations that represent valuable IP.

A common way to deal with this is to apply code

obfuscation, which makes the code very difficult to read.
The effort of reverse-engineering would be similar to a

compiled binary.

Session 6: Poster Session

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

333

4.1.4 External Data in an FMU

An FMU may contain additional resources. This would

typically be parameter files. This means that even if

internal model parameters are not exposed through the

FMI interface and model description, parameter data

could still be openly readable through these resource

files. To avoid exposing sensitive data, it could be

necessary to apply encryption or some form of

obfuscation of these resources.

An FMU can contain external dependencies for example

to facilitate parameterization. The standard allows the

FMU to contain additional data such as files with data

tables. But the FMU is also allowed to access and use

external files not included in the actual FMU.

The FMI-standard only specifies the communication

interface between the model and the simulation tool.

Access to external data is not covered by the standard.

Handling of external data files needs to be considered

separately, to avoid unintentional exposure of sensitive

data.

4.2 Limit Access to the FMU

The purpose of limiting the access to the FMU is either

to restrict the usage of the model or restrict the access to

the content in the FMU. Reasons to protect the FMU is

discussed in section 3.2.

There is nothing included in the FMI standard that

either specifies or restricts how to limit the access to the

model binary or source code. This means that it is

possible to include any protection mechanism in the

source code or binaries of the FMU.

4.2.1 Examples of Access Protection

Common examples of protection that could be applied

are:

 Server Solutions: Only share access to the interface.

The model content is protected on the server. The

user can only access the FMI function calls. This

type of solution will effectively protect the model

files from unintended distribution and reverse

engineering.

 Encryption: The main reason for encryption is to

prevent the wrong user from accessing the model. In

general, the model is exposed once it has been

decrypted. There are many variations of workflows

and encryption solutions, for example licensing of

the decryption and password protected zip-file.

 Licenses: This can be applied to ensure that the

model can only be used for a certain time, or to

restrict the model to only be used by a given group

of people. This licensing protection would be

integrated into the binaries and will thus not protect

the content of the XML-file.

 Limitation over time: The binaries can be generated
to only work during a restricted timeframe. This is a

way to protect the model from being executed. But

it does not protect the content of the model

description XML-file.

4.2.2 Information About Applied Protection

In section 3.3, the importance of the available

information to the recipient is discussed. The FMI

standard does not specify a way to provide information

to the model receiver about the type of protection

applied or requirements for accessing the model. It is up

to the exporter to inform the receiver, either in or outside

the FMU. The standard also does not define any

requirements or interfaces for protecting the access to an

FMU.

The model description xml of FMI 2.0 may contain

an optional flag that describes information about the

intellectual property licensing. This provides

information about how the FMU may be used, but not

how it is protected in terms of technical licensing.

One proposal is to extend the standard with

information about the type of technical licensing that is

applied to an FMU. This could be added in the form of

new attributes in the model description XML:

"protection-type" and "protection-trigger", and an

additional function in the header file

"fmi2checkProtection". The "protection-type" attribute

should contain information about what type of

protection the FMU has, like "license-file", "time" etc.

The "protection-trigger" contains information about

how the protection is triggered, like "instantiation",

"initialization", "2017-01-01" (for protection over time).

To check if the FMU can be used at the current state, the

function fmi2checkProtection can be called to perform

a "validation check".

4.3 Authentication

Use cases concerning authentication were discussed in

section 3.6. Authentication is not covered specifically in

the current standard. However, implementation of

authentication solutions in the model (binaries/sources)

does not necessarily require any specific support from

the standard. Two examples are given to demonstrate

how the use cases can be implemented without specific

support from the standard:

 Verify the source of the FMU: To verify that the

FMU comes from the correct source, the checksum

of the FMU could be digitally signed by the

exporter, and provided in addition to the FMU. The

signed checksum could then be used by importing

tool to verify the integrity of the FMU.

 Verify that the XML has not been altered: The

modelDescription.xml is most likely part of an

FMU to be altered. It would be possible to include a

function in the model binary that calculates and

verifies the hash of the XML, and prevents the

model from running if this is different from

expected.

FMI and IP protection of models: A survey of use cases and support in the standard

334 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132329

5 Conclusions

We have presented a survey of common use cases and

concerns regarding IP protection when sharing models,

and we have discussed to what extent this can be

addressed within the current FMI standard.

The most common use cases concern export of

models, mainly in terms of having control and

information of what is exposed of the model content, as

well as limiting access to unintended users. But there are

aspects of this that also affect the importer, mainly in

terms of usability and platform support.

Furthermore, a general need for knowledge

dissemination was identified, regarding the risks and

mechanisms of protecting the model content, specific to

the FMI standard. One purpose of this article has been

to address this need.

No obstacles were identified within the standard. All

of the use cases described can be managed within the

standard. Tools that export FMUs are free to include any

conceivable solution for restricting the execution of the

binaries, and are free to exclude all sensitive information

from the model description file.

A risk for the model exporter is that sensitive

information may be exposed in unintended ways, like

through the logger, or through external dependencies

not controlled by the standard at all.

For most use cases, it is more a question of support

by the tool rather than support by the standard. The

amount of information that is exposed depends a lot on

the tool and specific export settings.

This leaves much freedom for tool vendors and model

exporters, which can translate to challenges for model

importers. The lack of standardized ways of imposing IP

protection on models can make it difficult to deal with a

multitude of different licensing or encryption

mechanisms. Without a standardized interface it is hard

to troubleshoot issues related to licensing issues. We

therefore propose for a future version of the FMI

standard to add an optional flag in the model description

XML scheme to provide information about embedded

protection that will limit execution.

Acknowledgements

This study was carried out within the research project

Second Road Phase 2, coordinated by Volvo Cars

Corporation and funded through the Swedish research

agency VINNOVA. Time and input from all

interviewees is gratefully acknowledged.

References

FMI for Model Exchange and Co-Simulation, Version 2.0:

https://www.fmi-standard.org/

Köhler J., Heinkel H.-M., Mai P., Krasser J., Deppe M.,

Nagasawa M. Modelica-Association-Project “System

Structure and Parameterization” – Early Insights. The First

Japanese Modelica Conferences, May 23-24, Tokyo, Japan,

2016. doi: 10.3384/ecp1612435

Köhler J., King J., Kübler M. Simulation of Complete Systems

at ZF using Modelica Standards, The First Japanese

Modelica Conferences, May 23-24, Tokyo, Japan, 2016.

doi: 10.3384/ecp1612424

“Smart Systems Engineering” project of the iViP Association:

http://www.prostep.org/en/projects/smart-systems-

engineering.html

Session 6: Poster Session

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

335

