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Abstract 
We compare a number of different methods for 
estimating model parameters based on external stimuli. 
We examine the trade-offs between the different 
methodologies with respect to the modelling effort 
necessary to implement them and the granularity of the 
estimation obtained. In implementing these methods, we 
utilize Modelica and FMI.  

As an application we show how these methods can be 
combined with component fault modes to provide 
effective real-time estimates of the health of a physical 
asset based on thermal sensor data. In particular, we 
contrast the effectiveness of the different estimators in 
predicting the degree and location of fault. 
Keywords:     Parameter estimation, parameter tuning, 
fault diagnosis, Modelica, FMI 

1 Introduction 
Parameter estimation methods are applicable to 
scenarios that are describable by a physical or data-
driven models. Such scenarios include virtual testing, 
virtual commissioning, fault identification and control 
optimization. Parameter estimation is also a vital 
method for tuning parameters in control systems in order 
to produce robust control (Astrom, 1994). 

Typically, physical products are designed to meet 
predefined specifications. Prototypes of these products 
are built and tested in an effort to confirm their behavior 
in standardized, well-defined conditions. Today, by 
building a virtual prototype, (virtual) testing can be done 
sooner in the design cycle and quicker. In this way, 
virtual testing supports faster iteration of the re-
engineering of the physical product. 

Beyond the design cycle, it is becoming increasingly 
important to leverage these methods in order to make 
informed decisions about the condition of the product 
in-operation. As the digital representation of the 
physical asset is updated in real-time using sensor data 
from instrumented components it becomes possible to 
optimize the asset’s performance and identify possible 
sources of failure.  

Likewise, we can imagine a scenario in an 
instrumented manufacturing plant where application of 
these methods would allow flexible adjustment of 

operating parameters to optimize production. In the 
same way, faults could be detected by comparing 
estimated operating parameters to expected (nominal) 
values corresponding to normal operating conditions. 

We can divide methods used for condition estimation 
of a physical asset into two broad categories: those that 
use only data, and those that utilize a physical model of 
the system. 

Data-driven methods are applicable when there is an 
abundance of labelled historical sensor data. 

Model-based methods, such as state estimators, are 
particularly applicable when there is a paucity of 
available labelled historical sensor data. Furthermore, as 
they relate the fault to a physical component in the 
model, they allow us to identify more easily the root 
cause. The location of the fault in the model can be 
directly associated with a component. In contrast, with 
a purely data-driven approach we can detect the 
presence of a fault, but not its location.  

In this paper, we present a comparison of different 
parameter estimation methods and exemplify how they 
can be implemented using Modelica and FMI.  

2 Estimation methodology 
A problem that is often encountered when employing 
standard parameter estimation methods is that they may 
require a mathematical model. With models constructed 
using Modelica, for example, the model of the physical 
system is typically constructed using connected 
components. In this context, using standard parameter 
estimation methods, requires that the mathematical 
equations of the system are modified to directly 
compute parameter values. Often this is difficult, 
especially if the user does not have access to such a 
model or the strong domain background to construct 
one. Moreover, some components may be black boxes, 
in which case this kind of modification is impossible.  

Using a different approach such as the particle filter 
method (Liu, 1998), we can extend the scope to black 
box-type models without requiring knowledge of the 
mathematical details of the system. To avoid being 
required to modify a Modelica model in order to 
estimate its parameters, for example, we can use 
standardly-available tools to convert the model to an 
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FMU and then apply these methods to perform 
estimations.  

Other approaches each have their own disadvantages. 
Kalman filters, for example, require knowledge of the 
governing equations of the system. Furthermore, the 
approach is limited to linear systems (Kalman, 1960). 
Extended Kalman filters do not require the system to be 
linear, but do require knowledge of the mathematical 
model/matrix of the system (Julier, 2004; Cocho et al, 
2017).  

Particle filters do not have these disadvantages. They 
can operate with nonlinear systems without knowledge 
of the governing equations and can be used to estimate 
parameters of the system without prior knowledge. 

We can distinguish between the applicability of 
estimators by categorizing them as either “global” or 
“local”. We use the term “local estimator” for methods 
that are applied inside the model and require knowledge 
of the mathematical equations of the components inside 
the system. Furthermore, each physical component in 
the system for which you want to estimate its parameters 
requires an instance of the estimator. In contrast, we can 
use the term “global” estimator to refer to a method such 
as a particle filter that is applied outside the model and 
can estimate all required parameters of the system, 
treating the model as a black box. 

A number of studies have already been undertaken to 
develop parameter estimation methodologies using 
Modelica or FMI. An optimization library Ceres 
(Agarwal, 2012) was used to develop a parameter-
estimation framework for FMUs, exemplified with the 
estimation of parameters of a delta robot.  By posing the 
problem as a non-linear least squares problem 
depending on the error between the measured output and 
estimated output of a simulated FMU. An Extended 
Luenberger Observer (Bortoff, 2014) was implemented 
for estimating heat flows and heating load using FMUs. 
In both these studies, the estimation method required 
knowledge of the Jacobian of the system, unlike some 
of the methods described in the present paper, which 
require no a priori knowledge of the Jacobian  

Similarly, FMI has been used in conjunction with the 
unscented Kalman filter (UKF) as a nonlinear parameter 
estimator.  Unlike the non-linear least squares 
optimization methods, the UKF estimator does not 
require knowledge of the Jacobian of the model. 
Nevertheless, the UKF approximates the Gaussian 
distribution of the state by using a set of points called 
sigma points, while, the particle filter algorithm can 
approximate any arbitrary distribution (Bonvini, 2014).  

In (Videla, 2008; Brembeck el at, 2014; Brembeck, 
2019), three different variants of the Kalman filter 
(extended Kalman filter, unscented Kalman filter and 
ensemble Kalman filter) were implemented to estimate 
the system parameters of a Modelica model. In all cases, 
the estimators are “global” in nature, utilizing a stand-

alone executable version of the model was used to 
represent the model. 

A number of open source tools have been developed 
for parameter estimation using FMI such as ModestPy 
(Arendt et al, 2018), RaPId (Vanfretti et al, 2016) and 
Optifmus (Bonilla et al, 2017). These tools are 
configurable to allow the user to select the desired 
estimation algorithm, either by using one of the 
provided algorithms, or by incorporating new, user-
implemented estimation algorithms. In the present 
paper, we do not focus on a particular toolkit, rather we 
describe a set of methods appropriate for state 
estimation. We note that the extensible nature of those 
toolkits means that any of the estimation methods 
described here could be incorporated into those 
toolchains.  

An extension to RaPId was developed (Bogodorova 
et al, 2017) to implement an extended particle filter 
method. That method takes a similar approach to the 
“global” particle filter algorithm we present here. 
However, the architecture of the RaPId toolbox, isolates 
the estimation algorithm from the Modelica model 
itself, thereby precluding the implementation of a 
“local” variant of the algorithm such as the one we 
present in this paper.  

2.1 Local estimators 
In the present context, we use the term “local 

estimator” to refer to a method that can be implemented 
directly inside an individual Modelica component, 
without requiring the use of any other software tool for 
implementation. In a local estimator, the estimation 
takes place over the course of a single simulation. 

Focusing on a single element of the whole system is 
easy because of the componentized nature of Modelica 
models; we can estimate parameters for a single 
component without having to construct an estimator for 
the whole system. 

In Modelica, parameters cannot change over the 
course of a simulation. It is therefore desirable to 
restructure the model such that the parameters to be 
estimated are replaced by (unknown) variables. In turn, 
these variables can be defined to have a dependence on 
(time-varying) inputs to the system. In this way, the 
estimated parameters can be driven by external stimuli 
(e.g. sensor data). This, in turn, though, means that to 
implement the estimator it is necessary to modify the 
mathematical description of the individual components 
for which we would like to estimate parameters. For this 
reason, this technique is more suited to individual 
components rather than the whole system. Moreover, 
because of the correlations between components 
induced by connections in Modelica, it is difficult to 
implement a single estimator for connected sets of 
components.  

One attraction of Modelica-based approaches is that 
we can imagine developing libraries of self-tuning 
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(individual) components where parameters will adjust 
automatically based on data from other physical 
components. 
 

2.2 Global estimators 
Sometimes we may want to estimate multiple 
parameters (in multiple components) simultaneously, 
for example when estimating the degree of fault in 
multiple faulty components. In this case, we use the term 
“global estimator” to refer to any method which takes 
into account the whole system and does not require 
modifications to the governing equations. In fact, in 
some “global” estimation algorithms, no knowledge of 
the equations is even necessary. 

A global estimator can run a simulation multiple 
times, taking as input the result of a previous iteration 
for initial values of state variables or parameters. 

3 Tuning parameters 
 When a fault occurs in a physical system it can be 
interpreted as a change in the parameters of 
the model.  The fault can be recognized by monitoring 
the difference between the output of the model and 
measured data. The value or the degree of fault can 
be determined by retuning the parameters of the 
system so that the new parameters give the same output 
response as the fault. In this work, we consider three 
kinds of parameter-tuning methods, specifically:  

1. Direct Calculation  
2. Least Square Method  
3. Particle Filter Estimator  

3.1 Direct calculation  
In a Modelica model, the parameters define values 
which stay constant during the solution (simulation) of 
the model (Modelica Association, 2012).  To solve the 
model, the number of equations must be equal to the 
number of (time-varying) variables.  As an example, let 
us take a system of two springs and two masses (Figure 
1).  

 
 

 
Figure 1. Two springs and masses system. 

 
The model of the system is described by four 

parameters and six states or variables. The model 
parameters are the two masses M1 and M2 and the 
stiffnesses of the two springs K1, K2 respectively. The 
system states are the displacements of the masses 𝑥𝑥1 and 
𝑥𝑥2, velocities 𝑣𝑣1and 𝑣𝑣2, and accelerations 𝑎𝑎1and 𝑎𝑎2. The 

outputs of the system are the displacement of the 
masses.  

If the displacement of the M2 is measured, M1 can be 
calculated by declaring M1 as a time-varying state 
variable instead of a parameter and changing the 
declaration of 𝑥𝑥2 to an input. In this way, the number of 
variables is kept equal to the number of the equations.  

To test this method, a simulation was run from t=0s 
to t=10s, in which the value of the mass M1 was changed 
from 5kg to 2kg at t=5s (Figure 3). It can be seen from 
(Figure 2) that, as the vibration signal changes, the 
estimator was able to capture the change in the system 
parameter. 

This estimator is very easy to implement, but it is 
noted that by construction, there needs to be a connected 
reference signal/external stimulus (e.g. sensor data 
source) per parameter to be estimated. Furthermore, it is 
very sensitive to noise in these signals.  

 
 

 
Figure 2. Displacement of M2. 

 

 
 

Figure 3. Mass of M2 as a function of time (reference 
signal). 

3.2 Recursive Least Squares Estimation 
 The recursive least squares method (RLS) can be 

used on-line and off-line to estimate parameters of static 
and dynamic linear systems (Watson, 1967) such as the 
two masses and two springs system seen above. If there 
is a linear system described as follows: 

 
𝑦𝑦 = 𝑋𝑋𝑇𝑇𝐴𝐴 = 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 … … + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 (1) 

 

M1 M2

kg 

Time (s) 
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where y is the output of the system, x is the state of 
the system and A is the parameters of the system.  

The parameters of the system can be estimated in 
RLS using the following set of equations: 

𝐾𝐾𝑗𝑗 =  𝑃𝑃𝑗𝑗−1𝑋𝑋𝑗𝑗(1 + 𝑋𝑋𝑗𝑗
𝑇𝑇𝑃𝑃𝑗𝑗−1𝑋𝑋𝑗𝑗)−1  (2) 

𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗−1 − 𝐾𝐾𝑗𝑗𝑋𝑋𝑗𝑗
𝑇𝑇𝑃𝑃𝑗𝑗−1  (3) 

𝐴̂𝐴𝑗𝑗 = 𝐴̂𝐴𝑗𝑗−1 − 𝐾𝐾𝑗𝑗(𝑋𝑋𝑘𝑘𝐴̂𝐴𝑗𝑗−1 − 𝑦𝑦𝑗𝑗)  (4) 
 
Where j the current sample time, 𝐾𝐾 is the estimator gain,  
𝑃𝑃 is the covariance matrix,  𝐴̂𝐴 is the parameters of the 
system. The subscripts j denotes the value of that 
variable at that (time) iteration. 

To estimate the value of the mass, when a connector 
class is used, the mass has two connectors ctr1 and ctr2 
to connect with the springs.  The connector ctr1 has four 
variables: the force F, a flow variable between 
components, and the displacement x, a potential 
variable, as well as the velocity v and the acceleration a.   

 
 

 
 
Figure 4. Mechanical connectors of mass. 

 

𝑎𝑎 = 𝑑𝑑(𝑣𝑣)
𝑑𝑑𝑑𝑑  (5) 

𝑣𝑣 = 𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑  

(6) 

 
𝑚𝑚𝑚𝑚 = (𝐹𝐹1 + 𝐹𝐹2) (7) 

 
 

So, to estimate the model mass of the object M1 using 
the RLS the relevant part of the model can be written in 
Modelica as: 
ctr2.x=ctr1.x; // Displacement of ctr1 is 
equal to displacement of ctr2 
x=ctr1.x; // Displacement of the mass is 
equal to displacement of ctr1 
F=ctr1.F+ctr2.F; // Force on the mass is 
equal to sum of the forces at connectors. 

when sample(0, tSample) then 
   P = pre(P) - pre(P)^2*ctr1.a^2(1+ 
pre(P)*ctr1.a^2)^-1; 
   K=pre(P)*ctr1.a*(1+ pre(P)*ctr1.a^2)^-
1; 
   m=pre(m)-1*K*(pre(m)*ctr1.a-F);  
end when; 
 

Where x is the displacement, F is the force, P is the 
covariance in (3), and ctr1 and ctr2 are the mechanical 
connectors shown in  
Figure 4 and tSample is a (Real) parameter 

representing the sample rate at which to apply the 
estimation.  

Figure 5 shows the estimated value of the mass, 
where the RLS algorithm took approximately two 
seconds to compute the real value of the mass. 

 

 
 

Figure 5. Estimated mass of M2 as computed by RLS 
algorithm. 

 
This method is easy to implement, and is robust 

against sensor noise, but is only applicable to linear 
systems.  

 

3.3 Particle Filter Estimation 
As well as estimating the states of a system, the 

particle filter algorithm can also be used to estimate its 
parameters. Unlike the recursive least squares estimator, 
this algorithm is suitable for estimating the parameters 
of both linear and nonlinear systems (Moral et al, 2012; 
Gordon et al, 1993).  

The particle filter uses the results of multiple 
concurrent simulations to produce an instantaneous 
estimate of the value(s) of parameters.  

In this scheme, selection criteria are used that weight 
the uncertainty in the model versus the uncertainty in a 
reference signal. These selection criteria are used to 
weight the outputs of each of the concurrent simulations. 
These outputs are in turn used to run another set of 
simulations, updating parameter values and initial 
conditions accordingly. 

The particle filter algorithm mainly consists of four 
steps namely initialization, prediction, updating and 
resampling. In the initialization step, the set of particles 
is created, where each particle includes initiation guess 
of the parameters. In the prediction step, for each 
particle, the FMU is run after assigning the parameters 
of the system with the particle’s parameters. The 
updating step uses the residual, i.e. the error between the 
outputs of the summation and the measurement, to give 
an importance weight to each particle. In the last step, 
the resampling step, the parameters stored in each 
particle are redistributed depending on their weights. 
This algorithm is represented as a flow chart in Figure 
6. 

M1
ctr1 ctr2

kg 

Time (s) 
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These stages were implemented in Modelica for the 
mass-estimation example previously described. 

   

 
Figure 6. Particle filter algorithm. 

 
To test this implementation, the particle filter 

algorithm was executed using 50 particles. The results 
of the estimation of the mass are shown in Figure 7.  It 
was observed that the particle filter took less than one 
second to adapt the estimate to the correct value of the 
mass. 

It is noted that the particle filter algorithm is an 
iterative method involving multiple simulations of the 
whole model. In the case of large models, or indeed 
large parameter sets, this could result in CPU-intensive 
calculations that could limit the method’s applicability 
in real-time applications. A detailed investigation of this 
aspect is considered to be outside of the scope of this 
paper. 

 

 
 
 
Figure 7. Estimated mass of M2 as computed by the 

particle filter algorithm 
 
 So far, the three tuning methods considered were 

implemented using Modelica by explicitly changing the 
mathematical model of the component and replacing it 
with the respective estimator algorithm. 

While the Modelica implementation of the particle 
filter algorithm was seen to work well for simple 
models, we observed that the computation time 
increased significantly for more complex models. There 
is not a standardized framework defined in the Modelica 
specification for the parallel execution of Modelica 
models. This makes the parallelization of models a 
proprietary solution, that is tool-dependent (Modelica 
Association, 2012). For this reason, we developed an 
alternative implementation in Python that utilizes the 
easy conversion of a Modelica model to an FMU, to 
allow execution of simulations concurrently. Our 
implementation makes use of the PyFMI framework to 
manage interaction with the FMUs (Andersson et al, 
2016). An additional advantage of utilizing FMI, is that 
we can apply the implementation to FMUs generated by 
non-Modelica tools. Furthermore, with this 
implementation, we realize a global estimator that can 
be used to estimate parameters without changing the 
mathematical structure of the system.    

To demonstrate this approach, we consider the model 
of a thermo-mechanical system (Figure 8). Here, the 
input mechanical energy, Pin, is converted to heating 
energy according to a loss rate U, while the heating 
energy is converted to an (effective) temperature 
through the heating capacity of the component material.  
The heating energy is in turn exchanged with the cooling 
system Tc subject to a thermal resistance. The model has 
four parameters, namely: loss rate U, heating capacity 
C, thermal resistance Rth and cooling temperature Tc. In 
order to emulate the effect of a fault in the real system, 
an artificial error/fault was produced by changing the 
loss rate. In this example, measured mechanical power 
from a real mechanical system, is connected to the 
model via Pin. Readings from a temperature sensor in 
the real system are used as a reference signal in order to 
measure the validity of the estimated value.  

To test the implementation of the global particle filter 
estimator, we converted the Modelica model in (Figure 
8) to an FMI 2.0 Co-Simulation FMU using 
SimulationX. Table 1 show the quantities that were 
exported as tunable parameters in the FMU.   

 

Table 1. Parameters of the thermal model 

Parameter Name Value 
Thermal Capacitor (C) 0.5 𝐽𝐽/𝐾𝐾 

Loss Rate (𝑈𝑈) 0.73 

Thermal Resistance 
(𝑅𝑅𝑡𝑡ℎ) 

28.011 𝐾𝐾/ 𝑊𝑊 

Cooling Temerature (𝑇𝑇𝑐𝑐) 360 

 
 

Initialization  
Set an initial guess of the 

parameters 

Prediction  
Simulate the FMI model for each 

particle 

Updating  
Assign importance weights 

depending on the error between 
the simulation and measurement 

Resampling 
Assign the parameters of the 

particles based on the particles’ 
weight 

M
ass (kg) 

Time (s) 
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Subsequently, the particle filter was applied to tune 
the parameters, thus quantifying the degree of fault in 
the system. 

Figure 9 shows that without tuning of the loss rate 
parameter U, there is a significant difference between 
measured data and the output of the model.      
 

 
 
Figure 8.  Thermal System. Pin is the input power, U, 
loss rate, C, Rth and Tc are the heating capacity, heating 
resistance and cooling temperature respectively. 

 

 
Figure 9.  Estimated temperature of thermal model 
without tuning via particle filter (blue) compared to 
reference thermal signal (red) 

When applying parameter tuning, the particle filter was 
seen to correct the estimated temperature to the 
measured temperature (Figure 10) by changing the value 
of the loss rate from 0.70% to 0.93% (Figure 11). 

 

Figure 10.  Estimated temperature of thermal model with 
tuning via particle filter (blue) compared to reference 
thermal signal (red) 

 

 
Figure 11.  Tuned thermal loss factor, representing 
degree of fault in thermal system 

4 Conclusions 
In this paper we considered a number of different 
parameter estimation algorithms and how they could be 
implemented using Modelica and FMI. We examined 
the applicability of two different types of estimation 
methodology (local and global). In each case, we 
detailed the level of knowledge of the system necessary 
to implement the estimation method. We investigated 
the tradeoffs between the modelling effort and 
granularity of the estimation obtained. 

We demonstrate how these methods can be applied to 
use external stimuli, in this case thermal sensor data, to 
obtain an estimate of the health of a real system. 
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