
179DOI 10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

Parameter Estimation Methods for Fault Diagnosis
using Modelica and FMI

Ahmad Alsaab1 Morgan Cameron2 Colin Hough1 Purna Musunuru3
1ESI UK, UK, {ahmad.alsaab, colin.hough}@esi-group.com

2ESI Group, France, morgan.cameron@esi-group.com
3ESI US R&D, USA, purna.musunuru@esi-group.com

Abstract
We compare a number of different methods for
estimating model parameters based on external stimuli.
We examine the trade-offs between the different
methodologies with respect to the modelling effort
necessary to implement them and the granularity of the
estimation obtained. In implementing these methods, we
utilize Modelica and FMI.

As an application we show how these methods can be
combined with component fault modes to provide
effective real-time estimates of the health of a physical
asset based on thermal sensor data. In particular, we
contrast the effectiveness of the different estimators in
predicting the degree and location of fault.
Keywords: Parameter estimation, parameter tuning,
fault diagnosis, Modelica, FMI

1 Introduction
Parameter estimation methods are applicable to
scenarios that are describable by a physical or data-
driven models. Such scenarios include virtual testing,
virtual commissioning, fault identification and control
optimization. Parameter estimation is also a vital
method for tuning parameters in control systems in order
to produce robust control (Astrom, 1994).

Typically, physical products are designed to meet
predefined specifications. Prototypes of these products
are built and tested in an effort to confirm their behavior
in standardized, well-defined conditions. Today, by
building a virtual prototype, (virtual) testing can be done
sooner in the design cycle and quicker. In this way,
virtual testing supports faster iteration of the re-
engineering of the physical product.

Beyond the design cycle, it is becoming increasingly
important to leverage these methods in order to make
informed decisions about the condition of the product
in-operation. As the digital representation of the
physical asset is updated in real-time using sensor data
from instrumented components it becomes possible to
optimize the asset’s performance and identify possible
sources of failure.

Likewise, we can imagine a scenario in an
instrumented manufacturing plant where application of
these methods would allow flexible adjustment of

operating parameters to optimize production. In the
same way, faults could be detected by comparing
estimated operating parameters to expected (nominal)
values corresponding to normal operating conditions.

We can divide methods used for condition estimation
of a physical asset into two broad categories: those that
use only data, and those that utilize a physical model of
the system.

Data-driven methods are applicable when there is an
abundance of labelled historical sensor data.

Model-based methods, such as state estimators, are
particularly applicable when there is a paucity of
available labelled historical sensor data. Furthermore, as
they relate the fault to a physical component in the
model, they allow us to identify more easily the root
cause. The location of the fault in the model can be
directly associated with a component. In contrast, with
a purely data-driven approach we can detect the
presence of a fault, but not its location.

In this paper, we present a comparison of different
parameter estimation methods and exemplify how they
can be implemented using Modelica and FMI.

2 Estimation methodology
A problem that is often encountered when employing
standard parameter estimation methods is that they may
require a mathematical model. With models constructed
using Modelica, for example, the model of the physical
system is typically constructed using connected
components. In this context, using standard parameter
estimation methods, requires that the mathematical
equations of the system are modified to directly
compute parameter values. Often this is difficult,
especially if the user does not have access to such a
model or the strong domain background to construct
one. Moreover, some components may be black boxes,
in which case this kind of modification is impossible.

Using a different approach such as the particle filter
method (Liu, 1998), we can extend the scope to black
box-type models without requiring knowledge of the
mathematical details of the system. To avoid being
required to modify a Modelica model in order to
estimate its parameters, for example, we can use
standardly-available tools to convert the model to an

179

180 10.3384/ECP20169 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

FMU and then apply these methods to perform
estimations.

Other approaches each have their own disadvantages.
Kalman filters, for example, require knowledge of the
governing equations of the system. Furthermore, the
approach is limited to linear systems (Kalman, 1960).
Extended Kalman filters do not require the system to be
linear, but do require knowledge of the mathematical
model/matrix of the system (Julier, 2004; Cocho et al,
2017).

Particle filters do not have these disadvantages. They
can operate with nonlinear systems without knowledge
of the governing equations and can be used to estimate
parameters of the system without prior knowledge.

We can distinguish between the applicability of
estimators by categorizing them as either “global” or
“local”. We use the term “local estimator” for methods
that are applied inside the model and require knowledge
of the mathematical equations of the components inside
the system. Furthermore, each physical component in
the system for which you want to estimate its parameters
requires an instance of the estimator. In contrast, we can
use the term “global” estimator to refer to a method such
as a particle filter that is applied outside the model and
can estimate all required parameters of the system,
treating the model as a black box.

A number of studies have already been undertaken to
develop parameter estimation methodologies using
Modelica or FMI. An optimization library Ceres
(Agarwal, 2012) was used to develop a parameter-
estimation framework for FMUs, exemplified with the
estimation of parameters of a delta robot. By posing the
problem as a non-linear least squares problem
depending on the error between the measured output and
estimated output of a simulated FMU. An Extended
Luenberger Observer (Bortoff, 2014) was implemented
for estimating heat flows and heating load using FMUs.
In both these studies, the estimation method required
knowledge of the Jacobian of the system, unlike some
of the methods described in the present paper, which
require no a priori knowledge of the Jacobian

Similarly, FMI has been used in conjunction with the
unscented Kalman filter (UKF) as a nonlinear parameter
estimator. Unlike the non-linear least squares
optimization methods, the UKF estimator does not
require knowledge of the Jacobian of the model.
Nevertheless, the UKF approximates the Gaussian
distribution of the state by using a set of points called
sigma points, while, the particle filter algorithm can
approximate any arbitrary distribution (Bonvini, 2014).

In (Videla, 2008; Brembeck el at, 2014; Brembeck,
2019), three different variants of the Kalman filter
(extended Kalman filter, unscented Kalman filter and
ensemble Kalman filter) were implemented to estimate
the system parameters of a Modelica model. In all cases,
the estimators are “global” in nature, utilizing a stand-

alone executable version of the model was used to
represent the model.

A number of open source tools have been developed
for parameter estimation using FMI such as ModestPy
(Arendt et al, 2018), RaPId (Vanfretti et al, 2016) and
Optifmus (Bonilla et al, 2017). These tools are
configurable to allow the user to select the desired
estimation algorithm, either by using one of the
provided algorithms, or by incorporating new, user-
implemented estimation algorithms. In the present
paper, we do not focus on a particular toolkit, rather we
describe a set of methods appropriate for state
estimation. We note that the extensible nature of those
toolkits means that any of the estimation methods
described here could be incorporated into those
toolchains.

An extension to RaPId was developed (Bogodorova
et al, 2017) to implement an extended particle filter
method. That method takes a similar approach to the
“global” particle filter algorithm we present here.
However, the architecture of the RaPId toolbox, isolates
the estimation algorithm from the Modelica model
itself, thereby precluding the implementation of a
“local” variant of the algorithm such as the one we
present in this paper.

2.1 Local estimators
In the present context, we use the term “local

estimator” to refer to a method that can be implemented
directly inside an individual Modelica component,
without requiring the use of any other software tool for
implementation. In a local estimator, the estimation
takes place over the course of a single simulation.

Focusing on a single element of the whole system is
easy because of the componentized nature of Modelica
models; we can estimate parameters for a single
component without having to construct an estimator for
the whole system.

In Modelica, parameters cannot change over the
course of a simulation. It is therefore desirable to
restructure the model such that the parameters to be
estimated are replaced by (unknown) variables. In turn,
these variables can be defined to have a dependence on
(time-varying) inputs to the system. In this way, the
estimated parameters can be driven by external stimuli
(e.g. sensor data). This, in turn, though, means that to
implement the estimator it is necessary to modify the
mathematical description of the individual components
for which we would like to estimate parameters. For this
reason, this technique is more suited to individual
components rather than the whole system. Moreover,
because of the correlations between components
induced by connections in Modelica, it is difficult to
implement a single estimator for connected sets of
components.

One attraction of Modelica-based approaches is that
we can imagine developing libraries of self-tuning

179

181DOI 10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

(individual) components where parameters will adjust
automatically based on data from other physical
components.

2.2 Global estimators
Sometimes we may want to estimate multiple
parameters (in multiple components) simultaneously,
for example when estimating the degree of fault in
multiple faulty components. In this case, we use the term
“global estimator” to refer to any method which takes
into account the whole system and does not require
modifications to the governing equations. In fact, in
some “global” estimation algorithms, no knowledge of
the equations is even necessary.

A global estimator can run a simulation multiple
times, taking as input the result of a previous iteration
for initial values of state variables or parameters.

3 Tuning parameters
 When a fault occurs in a physical system it can be
interpreted as a change in the parameters of
the model. The fault can be recognized by monitoring
the difference between the output of the model and
measured data. The value or the degree of fault can
be determined by retuning the parameters of the
system so that the new parameters give the same output
response as the fault. In this work, we consider three
kinds of parameter-tuning methods, specifically:

1. Direct Calculation
2. Least Square Method
3. Particle Filter Estimator

3.1 Direct calculation
In a Modelica model, the parameters define values
which stay constant during the solution (simulation) of
the model (Modelica Association, 2012). To solve the
model, the number of equations must be equal to the
number of (time-varying) variables. As an example, let
us take a system of two springs and two masses (Figure
1).

Figure 1. Two springs and masses system.

The model of the system is described by four

parameters and six states or variables. The model
parameters are the two masses M1 and M2 and the
stiffnesses of the two springs K1, K2 respectively. The
system states are the displacements of the masses 𝑥𝑥1 and
𝑥𝑥2, velocities 𝑣𝑣1and 𝑣𝑣2, and accelerations 𝑎𝑎1and 𝑎𝑎2. The

outputs of the system are the displacement of the
masses.

If the displacement of the M2 is measured, M1 can be
calculated by declaring M1 as a time-varying state
variable instead of a parameter and changing the
declaration of 𝑥𝑥2 to an input. In this way, the number of
variables is kept equal to the number of the equations.

To test this method, a simulation was run from t=0s
to t=10s, in which the value of the mass M1 was changed
from 5kg to 2kg at t=5s (Figure 3). It can be seen from
(Figure 2) that, as the vibration signal changes, the
estimator was able to capture the change in the system
parameter.

This estimator is very easy to implement, but it is
noted that by construction, there needs to be a connected
reference signal/external stimulus (e.g. sensor data
source) per parameter to be estimated. Furthermore, it is
very sensitive to noise in these signals.

Figure 2. Displacement of M2.

Figure 3. Mass of M2 as a function of time (reference
signal).

3.2 Recursive Least Squares Estimation
 The recursive least squares method (RLS) can be

used on-line and off-line to estimate parameters of static
and dynamic linear systems (Watson, 1967) such as the
two masses and two springs system seen above. If there
is a linear system described as follows:

𝑦𝑦 = 𝑋𝑋𝑇𝑇𝐴𝐴 = 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 … … + 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 (1)

M1 M2

kg

Time (s)

179

182 10.3384/ECP20169 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

where y is the output of the system, x is the state of
the system and A is the parameters of the system.

The parameters of the system can be estimated in
RLS using the following set of equations:

𝐾𝐾𝑗𝑗 = 𝑃𝑃𝑗𝑗−1𝑋𝑋𝑗𝑗(1 + 𝑋𝑋𝑗𝑗
𝑇𝑇𝑃𝑃𝑗𝑗−1𝑋𝑋𝑗𝑗)−1 (2)

𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑗𝑗−1 − 𝐾𝐾𝑗𝑗𝑋𝑋𝑗𝑗
𝑇𝑇𝑃𝑃𝑗𝑗−1 (3)

𝐴̂𝐴𝑗𝑗 = 𝐴̂𝐴𝑗𝑗−1 − 𝐾𝐾𝑗𝑗(𝑋𝑋𝑘𝑘𝐴̂𝐴𝑗𝑗−1 − 𝑦𝑦𝑗𝑗) (4)

Where j the current sample time, 𝐾𝐾 is the estimator gain,
𝑃𝑃 is the covariance matrix, 𝐴̂𝐴 is the parameters of the
system. The subscripts j denotes the value of that
variable at that (time) iteration.

To estimate the value of the mass, when a connector
class is used, the mass has two connectors ctr1 and ctr2
to connect with the springs. The connector ctr1 has four
variables: the force F, a flow variable between
components, and the displacement x, a potential
variable, as well as the velocity v and the acceleration a.

Figure 4. Mechanical connectors of mass.

𝑎𝑎 = 𝑑𝑑(𝑣𝑣)
𝑑𝑑𝑑𝑑 (5)

𝑣𝑣 = 𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

(6)

𝑚𝑚𝑚𝑚 = (𝐹𝐹1 + 𝐹𝐹2) (7)

So, to estimate the model mass of the object M1 using
the RLS the relevant part of the model can be written in
Modelica as:
ctr2.x=ctr1.x; // Displacement of ctr1 is
equal to displacement of ctr2
x=ctr1.x; // Displacement of the mass is
equal to displacement of ctr1
F=ctr1.F+ctr2.F; // Force on the mass is
equal to sum of the forces at connectors.

when sample(0, tSample) then
 P = pre(P) - pre(P)^2*ctr1.a^2(1+
pre(P)*ctr1.a^2)^-1;
 K=pre(P)*ctr1.a*(1+ pre(P)*ctr1.a^2)^-
1;
 m=pre(m)-1*K*(pre(m)*ctr1.a-F);
end when;

Where x is the displacement, F is the force, P is the
covariance in (3), and ctr1 and ctr2 are the mechanical
connectors shown in
Figure 4 and tSample is a (Real) parameter

representing the sample rate at which to apply the
estimation.

Figure 5 shows the estimated value of the mass,
where the RLS algorithm took approximately two
seconds to compute the real value of the mass.

Figure 5. Estimated mass of M2 as computed by RLS
algorithm.

This method is easy to implement, and is robust

against sensor noise, but is only applicable to linear
systems.

3.3 Particle Filter Estimation
As well as estimating the states of a system, the

particle filter algorithm can also be used to estimate its
parameters. Unlike the recursive least squares estimator,
this algorithm is suitable for estimating the parameters
of both linear and nonlinear systems (Moral et al, 2012;
Gordon et al, 1993).

The particle filter uses the results of multiple
concurrent simulations to produce an instantaneous
estimate of the value(s) of parameters.

In this scheme, selection criteria are used that weight
the uncertainty in the model versus the uncertainty in a
reference signal. These selection criteria are used to
weight the outputs of each of the concurrent simulations.
These outputs are in turn used to run another set of
simulations, updating parameter values and initial
conditions accordingly.

The particle filter algorithm mainly consists of four
steps namely initialization, prediction, updating and
resampling. In the initialization step, the set of particles
is created, where each particle includes initiation guess
of the parameters. In the prediction step, for each
particle, the FMU is run after assigning the parameters
of the system with the particle’s parameters. The
updating step uses the residual, i.e. the error between the
outputs of the summation and the measurement, to give
an importance weight to each particle. In the last step,
the resampling step, the parameters stored in each
particle are redistributed depending on their weights.
This algorithm is represented as a flow chart in Figure
6.

M1
ctr1 ctr2

kg

Time (s)

179

183DOI 10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

These stages were implemented in Modelica for the
mass-estimation example previously described.

Figure 6. Particle filter algorithm.

To test this implementation, the particle filter

algorithm was executed using 50 particles. The results
of the estimation of the mass are shown in Figure 7. It
was observed that the particle filter took less than one
second to adapt the estimate to the correct value of the
mass.

It is noted that the particle filter algorithm is an
iterative method involving multiple simulations of the
whole model. In the case of large models, or indeed
large parameter sets, this could result in CPU-intensive
calculations that could limit the method’s applicability
in real-time applications. A detailed investigation of this
aspect is considered to be outside of the scope of this
paper.

Figure 7. Estimated mass of M2 as computed by the

particle filter algorithm

 So far, the three tuning methods considered were

implemented using Modelica by explicitly changing the
mathematical model of the component and replacing it
with the respective estimator algorithm.

While the Modelica implementation of the particle
filter algorithm was seen to work well for simple
models, we observed that the computation time
increased significantly for more complex models. There
is not a standardized framework defined in the Modelica
specification for the parallel execution of Modelica
models. This makes the parallelization of models a
proprietary solution, that is tool-dependent (Modelica
Association, 2012). For this reason, we developed an
alternative implementation in Python that utilizes the
easy conversion of a Modelica model to an FMU, to
allow execution of simulations concurrently. Our
implementation makes use of the PyFMI framework to
manage interaction with the FMUs (Andersson et al,
2016). An additional advantage of utilizing FMI, is that
we can apply the implementation to FMUs generated by
non-Modelica tools. Furthermore, with this
implementation, we realize a global estimator that can
be used to estimate parameters without changing the
mathematical structure of the system.

To demonstrate this approach, we consider the model
of a thermo-mechanical system (Figure 8). Here, the
input mechanical energy, Pin, is converted to heating
energy according to a loss rate U, while the heating
energy is converted to an (effective) temperature
through the heating capacity of the component material.
The heating energy is in turn exchanged with the cooling
system Tc subject to a thermal resistance. The model has
four parameters, namely: loss rate U, heating capacity
C, thermal resistance Rth and cooling temperature Tc. In
order to emulate the effect of a fault in the real system,
an artificial error/fault was produced by changing the
loss rate. In this example, measured mechanical power
from a real mechanical system, is connected to the
model via Pin. Readings from a temperature sensor in
the real system are used as a reference signal in order to
measure the validity of the estimated value.

To test the implementation of the global particle filter
estimator, we converted the Modelica model in (Figure
8) to an FMI 2.0 Co-Simulation FMU using
SimulationX. Table 1 show the quantities that were
exported as tunable parameters in the FMU.

Table 1. Parameters of the thermal model

Parameter Name Value
Thermal Capacitor (C) 0.5 𝐽𝐽/𝐾𝐾

Loss Rate (𝑈𝑈) 0.73

Thermal Resistance
(𝑅𝑅𝑡𝑡ℎ)

28.011 𝐾𝐾/ 𝑊𝑊

Cooling Temerature (𝑇𝑇𝑐𝑐) 360

Initialization
Set an initial guess of the

parameters

Prediction
Simulate the FMI model for each

particle

Updating
Assign importance weights

depending on the error between
the simulation and measurement

Resampling
Assign the parameters of the

particles based on the particles’
weight

M
ass (kg)

Time (s)

179

184 10.3384/ECP20169 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

Subsequently, the particle filter was applied to tune
the parameters, thus quantifying the degree of fault in
the system.

Figure 9 shows that without tuning of the loss rate
parameter U, there is a significant difference between
measured data and the output of the model.

Figure 8. Thermal System. Pin is the input power, U,
loss rate, C, Rth and Tc are the heating capacity, heating
resistance and cooling temperature respectively.

Figure 9. Estimated temperature of thermal model
without tuning via particle filter (blue) compared to
reference thermal signal (red)

When applying parameter tuning, the particle filter was
seen to correct the estimated temperature to the
measured temperature (Figure 10) by changing the value
of the loss rate from 0.70% to 0.93% (Figure 11).

Figure 10. Estimated temperature of thermal model with
tuning via particle filter (blue) compared to reference
thermal signal (red)

Figure 11. Tuned thermal loss factor, representing
degree of fault in thermal system

4 Conclusions
In this paper we considered a number of different
parameter estimation algorithms and how they could be
implemented using Modelica and FMI. We examined
the applicability of two different types of estimation
methodology (local and global). In each case, we
detailed the level of knowledge of the system necessary
to implement the estimation method. We investigated
the tradeoffs between the modelling effort and
granularity of the estimation obtained.

We demonstrate how these methods can be applied to
use external stimuli, in this case thermal sensor data, to
obtain an estimate of the health of a real system.

Acknowledgements
Funding for this work, through the Innovate UK
WindTwin project, is gratefully acknowledged by the
authors.

References
S. Agarwal, K. Mierle, et al. Ceres solver. http:// ceres-

solver.org, 2012.

C. Andersson, J. Åkesson, C. Führer. PyFMI: A Python

Package for Simulation of Coupled Dynamic Models with
the Functional Mock-up Interface, volume LUTFNA-5008-
2016 of Technical Report in Mathematical Sciences. Centre
for Mathematical Sciences, Lund University, 2016.

K. Arendt , M. Jradi, M. Wetter, C. Veje. ModestPy: An Open-

Source Python Tool for Parameter Estimation in Functional
Mock-up Units. In Proceedings of the American Modelica
Conference, 2018.

f(x) f(x)
U

Rth Tc Heating C

f(x) f(x)
Pin

179

185DOI 10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

K.J. Astrom, B. Wittenmark. Adaptive Control (2nd. ed.).
Addison-Wesley Longman Publishing Co., Inc., USA.
1994.

T. Bogodorova, L. Vanfretti, V. S. Perić and K. Turitsyn,

"Identifying Uncertainty Distributions and Confidence
Regions of Power Plant Parameters," in IEEE Access, vol.
5, pp. 19213-19224, 2017.

J. Bonilla, J. A. Carballo, L. Roca, M. Berengue. Development

of an open source multi-platform software tool for
parameter estimation studies in FMI models. Proceedings of
the 12th International Modelica Conference, Prague, Czech
Republic, 2017.

M. Bonvini, M. Wetter, M.D. Sohn. An FMI-based

framework for state and parameter estimation. In:
Proceedings of the 10th International Modelica Conference,
Lund, Sweden, pp. 647–656. 2014.

S. A. Bortoff, C. R. Laughman. An Extended Luenberger

Observer for HVAC Application using FMI. Proceedings of
the 13th International Modelica Conference, Regensburg,
Germany, March 4–6, 2019.

J. Brembeck, A. Pfeiffer, M. Fleps-Dezasse, M. Otter, K.

Wernersson, H. Elmqvist. Nonlinear State Estimation with
an Extended FMI 2.0 Co-Simulation Interface. In
Proceedings of the 10th International Modelica Conference.
Lund, Sweden, pages 53–62, 2014.

J. Brembeck. A Physical Model-Based Observer Framework

for Nonlinear Constrained State Estimation Applied to
Battery State Estimation. Sensors (Basel). 2019.

M. G. Cocho, O. Salgado, J. Croes, B. Pluymers, W. Desmet.

Model-based virtual sensors by means of Modelica and
FMI, Proceedings of the 12th International Modelica
Conference, Prague, Czech Republic, pp 337-344, May 15-
17, 2017.

N. J. Gordon, D. J. Salmond and A. F. M. Smith, Novel

approach to nonlinear/non-Gaussian Bayesian state
estimation, IEE Proceedings F - Radar and Signal
Processing, vol. 140, no. 2, pp. 107-113, April 1993.doi:
10.1049/ip-f-2.1993.0015

S.J. Julier, J.K. Uhlmann. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE. 92 (3): 401–422,
2004. doi:10.1109/jproc.2003.823141.

R. E. Kalman. A New Approach to Linear Filtering and

Prediction Problems. Transactions of the ASME—Journal
of Basic Engineering. 82(D): pp 35-45, 1960.

J.S. Liu, R. Chen.  Sequential Monte Carlo methods for

dynamic systems. Journal of the American Statistical
Association. 93 (443): pp1032–1044, 1998.

P. D. Moral, A. Doucet, A. Jasra. On Adaptive Resampling
Procedures for Sequential Monte Carlo Methods.
 Bernoulli. 18 (1): 252–278, 2012. doi:10.3150/10-bej335.

Modelica Association. Modelica – A Unified Object-Oriented
Language for Physical Systems Modeling, Language
Specification, Version 3.3. Modelica Association, May
2012. URL:
https://www.modelica.org/documents/ModelicaSpec33.pdf

L. Vanfretti, M. Baudette, A. Amazouz, T. Bogodorova, T.

Rabuzin, J. Lavenius, and F. J. Goméz-López. RaPId: A
modular and extensible toolbox for parameter estimation of
Modelica and FMI compliant models. SoftwareX, Volume
5, Pages 144-149, 2016.

J. I. Videla, B. Lie. “Using Modelica/Matlab for parameter

estimation in a bioethanol fermentation model”. In:
Proceedings of the 6th International Modelica Conference.
Bielefeld, Germany, Mar. 3–4, pp. 287–299, 2008.

G. S. Watson. Linear Least Squares Regression. Ann. Math.

Statist. 38 no. 6, pp 1679—1699, 1967.

179

