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Abstract

Image colorization is a classic and important topic in computer graphics, where the
aim is to add color to a monochromatic input image to produce a colorful result. In
this survey, we present the history of colorization research in chronological order and
summarize popular algorithms in this field. Early works on colorization mostly focused
on developing techniques to improve the colorization quality. In the last few years,
researchers have considered more possibilities such as combining colorization with
NLP (natural language processing) and focused more on industrial applications. To
better control the color, various types of color control are designed, such as providing
reference images or color-scribbles. We have created a taxonomy of the colorization
methods according to the input type, divided into grayscale, sketch-based and hybrid.
The pros and cons are discussed for each algorithm, and they are compared according
to their main characteristics. Finally, we discuss how deep learning, and in particular
Generative Adversarial Networks (GANs), has changed this field.
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1. Introduction

Color plays a very important role in the process of human cognition of the world,
and rich colors can not only express more information, but also enhance the human
visual experience. Image colorization has been a very active research topic in the field
of digital image processing, and is an inter-disciplinary area involving disciplines such
as Computer Vision, Computer Graphics, Pattern Recognition and Human Computer
Interaction. Colorization has been widely used in many fields, such as grayscale photo
colorization, old film color restoration, cartoon automatic colorization, etc.

Based on different types of input to be colorized, colorization methods can be di-
vided into two broad categories, one is colorization of grayscale images and black-
and-white videos which are ordinary photos without color, and the other is colorization
of monochrome art forms, including sketch images (or line art images), manga (or
comics) and black-and-white cartoons (or line-art video). See Figure 1 for some ex-
amples. We can see that grayscale images contain rich intensity details, while sketch
images (or other art forms) only contain relatively sparse details.

Therefore, when processing input images of different categories, researchers usu-
ally use different processing methods. For colorization of grayscale images, most
methods convert the image in YUV or Lab color space [1, 2], and restore the value
of the chrominance channels of the image to be colored based on the similarity of the
luminance channel [3]. For black-and-white videos, most models use unsupervised
or self-supervised learning from the visual tracking process to track the location of
an object in different frames, and link corresponding pixels together, to colorize them
based on a user-provided reference photo or based on data-driven deep learning tech-
nologies. The colorization of sketch images often involves segmenting it into different
regions [4], and based on a learning model a color is assigned to each segment where
the color information can come from reference images, users’ color scribbles or in-
put text hints. Although grayscale-based colorization methods can be directly used to
predict the color value of each pixel in sketch images, they usually do not have good
performance due to the lack of texture information. Therefore sketch-based coloriza-

tion methods are required to propose new solutions for line feature extraction and re-
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Figure 1: Typical categories of images suitable for colorization.

gion boundary determination, such as studying the temporal and semantic relationships
between lines [5, 6, 7].

Generally speaking, traditional colorization methods require a lot of manual in-
teraction and are often sensitive to the parameter settings of the methods. As a result,
adding manual interaction and parameter optimization will take a lot of time and effort.
Especially in grayscale videos or cartoon film colorization, even a short film usually has
thousands of images to process. To improve efficiency, using a DCNN (Deep Convo-
lutional Neural Network) [8] to build up the model or a GAN (Generative Adversarial
Network) [9] for training is the most common approach used in recent methods. Both
the image colorization effect and efficiency have been greatly improved. There exist
both opportunities and challenges, and the development of deep learning technology
has brought new directions to the work of image colorization.

Several major challenges remain. Some methods can only be used under certain re-
strictions, and moreover have some defects. For example, the colorization method can
only handle gray-scale images, or the model needs to provide suitable reference color
images. Some models need to identify different objects in the image, and then work out
appropriate colors, but in particular for sketch image colorization, it is very difficult for
the model to understand the sketch image and learn different artistic styles. The exist-
ing survey [31] mainly summarizes works performing colorization of grayscale images
and the datasets for colorization. However, the task of colorization is not restricted to

grayscale images, but also includes manga and sketches. In this paper, we will summa-
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Figure 2: The timeline of image colorization methods. Different line colors represent methods with different
types of control, as shown in the upper-right. Different line types represent the different types of input, as
indicated in the upper-left. From this timeline, it can be seen that there can be a wide variety in the type
of input data, from gray-scale image to manga to sketch, which shows the difficulty of data processing.
Compared with gray images, sketch images are sparse and the information available from just lines can be
ambiguous. Early approaches were based on reference images, then user interaction was introduced, and

finally fully automatic colorization.

rize and discuss different colorization methods from three categories, including their
advantages and drawbacks, to give an overview that should be useful for researchers

and practitioners.

2. Overview

This survey paper divides existing colorization research work into the following
three sections based on the different types of input images to be colored. In Sec-
tion 3, we mainly introduce the colorization methods for grayscale images, which
are further grouped into three subcategories: fully automatic colorization methods,
semi-automatic colorization methods based on color strokes or reference images, and
text-driven image colorization methods. In Section 4, we focus on methods related to
colorization of line-art or sketch images, which are further classified into four subcat-
egories: colorization methods based on color strokes, colorization methods based on
reference images, text-driven colorization methods, and synthesis methods from line-
art images to real images. In Section 5, we discuss the colorization work of comic or

manga images. Finally, we summarize the colorization methods and discuss a possible



area for future colorization work in Section 7. Figure 2 shows a timeline of represen-

tative methods for image colorization.

3. Grayscale Image Colorization

The color value of each pixel on a grayscale image is between black and white.
The grayscale channel can be extracted from color images, but images such as photos
taken in the past and much comic art only have grayscale information, and can benefit
from colorization. Colorization methods for grayscale images can be divided into two
groups according to whether interaction is used, namely automatic colorization meth-
ods and semi-automatic colorization methods. In the former group, researchers have
used data-driven deep learning technology to automatically colorize grayscale images
based on training data [1, 11, 32]. For instance, there is an open source automatic
model DeOldify [33] which is free to use. For the second group, colorization methods
often take some guidance information from users, e.g., by drawing color strokes [3],
providing reference color images [10] or giving an specific color theme[34]. Incorpo-
rating user guidance usually increases the efficiency and correctness of the colorization
model. It also helps resolve inherent ambiguities for the ill-posed colorization prob-
lem (such as tree leaves could be green in spring and yellow in autumn). In addition,
in some recent studies, researchers have also studied the use of semantic information
to guide image colorization, such as grayscale colorization based on text scripts [35],

which is introduced in the last subsection.

3.1. Automatic Grayscale Image Colorization

Different from colorization methods based on guidance, in automatic image col-
orization methods, researchers can design the model to provide multiple colors for the
same pixel to solve the problem of multi-modal colorization of monochrome images.
For example, colorization models will generate green or yellow leaf images. In this
subsection, we divide the automatic coloring method into two categories based on the
diversity of the generated results; one is unimodal colorization in which methods can
only generate one result, and the other is multi-modal colorization where methods can

generate multiple diverse results, and introduce them respectively.
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Figure 3: An overview of an end-to-end network for grayscale images colorization [11]. Reproduced with

permission from Ref. [11], ©Association for Computing Machinery, Inc. 2016.

3.1.1. Unimodal Colorization

To reduce user interaction, Cheng et al. [1] first propose a fully-automatic coloriza-
tion method using deep learning with the SUN dataset [36]. Instead of direct taking
the grayscale image as input, they take a combination of multi-level features to pre-
dicts the U and V channels. However the performance drops when similar reference
images are not included from the training data-set. Concurrently, Deshpande et al. [37]
improved the learning model for image colorization and learned from examples. This
learning model is built upon the LEARCH (Learning to Search) framework [38], and
is able to minimize the quadratic objective function defined on the chromaticity maps,
comparable to a Gaussian random field.

Larrson et al. [39] proposed an automatic colorization method based on a self-
supervised visual representation learning process. The network is built upon the fully
convolutional network of VGG-16 [40] with the classification layer removed and a
filter layer added. In addition, the model uses skip-layer connections to concatenate
the features of different convolutional layers, to provide input to the classification layer
which predicts the color histogram of each pixel. lizuka et al. [11] proposed to learn
the global and local features separately from an image and then combine them together
for the final colorization process. However, for objects with multiple different colors,
the result will most likely produce dominant colors which is learnt in training, like the

leaves in green.
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3.1.2. Multi-Modal Colorization

Aiming at solving the problem that colorization requires a lot of user interaction and
that the color saturation of colorized images tends to be low, Zhang et al. [2] proposed
a fully automatic colorization method that can generate rich and realistic colorization
images. This method transforms the colorization task into a self-supervised expression
learning task by learning the semantic and texture mapping between the grayscale im-
age and the color image. At the same time, the colorization problem is transformed in
a novel manner into a classification task, and a color distribution is predicted for each
pixel to solve the multi-modal colorization problem of the image, which maintains the
diversity of the colorization results. Zhang et al. [2] were inspired by the simulated
annealing method [41] and proposed the operation that works out the annealed mean
of a distribution, to estimate the color value of the ab space from the color distribution
of each pixel. The value of each pixel in the grayscale image colorization task is not
fixed, and the same object in the real world can be colored in different ways.

Unlike [2], Deshpande et al. [42] not only considers the estimation of the color
value of each pixel, but also considers the overall spatial continuity of the colorization
results. This method uses a variational autoencoder (VAE) to learn the low-dimensional
latent variable embedding of the color field, and uses a Mixed Density Network (MDN)
to learn a multi-modal model conditioned on the grayscale image. Finally, multiple
samples are taken from MDN, and combined with the VAE decoder to obtain multiple
colorization results for each sample, so as to provide a rich set of colorization results.

Although the classification model based on color distribution and the generative
model based on variational autoencoders can obtain a variety of colorization schemes,
the colorization results lack the consistency of the spatial structure and the user control-
lability of color. Sometimes in the same semantic area, spots of different colors appear
in the colorization result. In order to ensure global colorization consistency and user
controllability, Messaoud et al. [32] proposed a conditional random field based on VAE
and use a Gaussian Conditional Markov Random Field (G-CRF) to capture global im-
age statistics, modeling the output space of the VAE decoder and the encoding of user

editing information.
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When an image colorization method is directly applied to video colorization, dis-
continuity will appear. Lei et al. [43] proposed an automatic colorization model for
black-and-white video without any user interaction or reference image. This method
designs a self-regularization and diversity loss function in order to achieve the consis-
tency and diversity of the grayscale video colorization. The self-regularization loss is
mainly composed of a bilateral regularization term and a temporal regularization term,
which adds color consistency constraints in the bilateral space of adjacent pixels and
corresponding pixels of adjacent frames. Diversity Loss to constrain the multiple gen-
erated results to be consistent with real color images. Although the method achieves
the generation of multiple colorization results, there are no rich colorization results
between different results.

With the rapid development of Transformer [44] in the field of computer vision,
Kumar et al. [45] proposed a grayscale colorization network architecture (Colorization
Transformer, ColTran) based on Transformer blocks. ColTran is mainly composed of
a autoregressive Colorizer, a color upsampler and spatial upsampler. Autoregressive
Colorizer enabled color information to be matched to input grayscale images at low
resolution, and then the color upsampler and spatial upsampler sampled low resolu-
tion color images into high resolution images in a completely parallel way. Based on
transformer’s better matching ability, this method can provide a variety of colored gray
images according to different reference color images.

Compared with the unimodal colorization, multi-modal colorization methods can
generate multiple color results for a given grayscale input. Although those automatic
methods do not require user interaction, the generated results rely on pretrained net-
work models. The user cannot adjust the generated results, such as the overall coloriza-

tion style or detail colors, making it difficult to generate the results the user expects.

3.2. Color Strokes based Colorization

In order to solve the problem that automatic methods cannot control the color of the
details, some work attempt to take user color strokes and provide an intuitive approach

for user control.
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Figure 5: Comparison of stroke based colorization. (a-c) Color strokes, strokes alone, colorization result
by Levin et al. [3], (d-f) Color strokes, two pixels in each region are labeled, colorization result by Luan et
al. [14]. Reproduced with permission from Ref. [3], ©Association for Computing Machinery, Inc. 2004, and
Ref. [14], IEEE 2007.

3.2.1. Optimization Colorization

Levin et al. [3] were one of the most important pioneers in the colorization area. In
this method, the user needs to mark a grayscale image with color strokes to colorize the
image in YUV color space. Then, based on the rule that adjacent pixels have similar
intensities and their colors are similar, the method spreads the color of the strokes to
the entire image. But when different object colors are diffused and mixed together,
there are color bleeding problems in [3]. To solve it, Huang et al. [46] modified the
weighting function and proposed an adaptive edge detection algorithm to improve the
accuracy of the edges. They use Sobel filters and iterative optimization to improve
the edge detection. Further, the colorization method will be more accurate, while at
the same time reducing color bleeding issues, and making the image color effect more
realistic.

Previous colorization methods based on color strokes, such as Levin’s method [3],
usually require a lot of manual interaction for a complex scene. To reduce it, Luan et
al. [14] proposed a new interactive system that can quickly and easily color grayscale
images. This method consists of two stages, the color labeling stage and the color
mapping stage. The color labeling stage spreads the marked colors to similar areas by
constraining the intensity smoothness and texture similarity of all pixels. The color
mapping stage establishes a piece-wise linear mapping in luminance (Y") space accord-

ing to the scribble’s luminance (Y) and chroma (UV) values, and finally the chromatic-

10



215

220

225

convl conv2 conv3 convd convs convé conv7 conv8  convd convi0
Global (a trous/dilated) (a trous/dilated)

hints =——— — —— —— [

lI 316 512 512 512 512
] W [l Main colorization network layers  [i| Input layer
[0 Local Hints Network only layers —p Added to main network
Grayscale H/Z w2 Output
image 7] Global Hints Network only layers < Spatial upsampling colorization
H/4 W/4 r
H/S w/x I I Y
1 | 1 | 1 |
1 %es 125 256 512 512 512 512 256 128 128 2
H/4, W/4
Local 384 Color
hints
U, 313 z
3 64

Fig. 2. Network architecture We train two variants of the user interaction colorization network. Both variants use the blue layers for predicting a colorization.
The Local Hints Network also uses red layers to (z)incorporate user points Uy and (b) predict a color distrbution z The Global Hints Network uses the
(e

image Tl produecad mwithppermission
layer, with vertcal dimension indicating feature map spatial resolution, and harizontal dimension indicating number of channels. Changes in resolution are
froneRebug] Shs@A Mhinot ywilevoesBOHIGR.is decreased, the number of feature channels are doubled.

Shortcut connections are added to upsampling convolution layers.

such as objects (Girshick et al. 2014) and scene categories (Zhou uses sparse user points, and (i) the Global Hints Network in

ymgee O apw@ggggﬁg@gﬁgg By interfiitatibti e ot paition betwéén1Evin

Iting; 1.e. changinf architecturé
minimal user interaction. Recently, neural networks have shown

aitpalsivkdhuanet Ladannfe abeddidkloiss showpon FigaS . dcagxdesaen that [14] is faster and

enhancement (Yan et al. 2016), sketch simplification (Simo-Serma  The fnputs to our system are a grayscale image X € RHXWx1

iR O fflele tispster (Gatys et al. 2016; Selim et al. 2016), in- 41500 with an input user tensor U. The grayscale image is the L,
painting (Pathak et al. 2016), image blending (Zhu et al. 2015) and o1 jightness in the CIE Lab color space, channel. The output of the

denoising (Gharbi et al. 2016). Most of these.works byilt image filter- XWX
it p DO REOMR MOYiaS Y. Chal. [47]TSes FRIFINS]Ex sracielitwetotitrand e

2o i
of the input image with different low-level local details. However, with tlb

rerla-tﬁ@rps}'prplbet i dgéﬂt\pmmﬁamthe ]‘3@ e network architect respeuﬁedm echéb sl‘mw m

ALDYVSRAL (0 KOIOFIZG G
of the visual appearance, nor do they provide diverse outputs in a in Equation 1, across D, which represents a dataset of grayscale

user contmmshmn n thy ry,iwedrain a twonkt

nsicigeodesiv). dittaide ot aryawo poitdto
A em@ﬁl&d 1 @%ﬁﬂﬁé ?'M&J X scribes how close the network output s to the gfound truth.
global changes in the image with a few clicks. Barnes et al. (2009)

oalgulate therdmoothness botweenthétuminance chimrel pifthe twopsints.YThen for

because user intervention not only can correct exrors, but can also
‘We train jwo variants, of our network, with local u ser hints i

AT, S PR BREIHRAY LAl lates: thesshorkesh, intrinsicadliSiance o

ﬁ) by giving the network a “peek”, or projection, of the gmund truth
nds

expressive controls as well as real-time fecdback. Zhu et gl (201, gt 0 I
point toithednowmehrominaneepoinii ﬁi‘l&l’tl‘pt&feh?mﬁﬂ&ﬂ@e‘%@é’correspond—

on an image prior learned by a deep generative network. Xu et Uy = Py(Y) (z)

Phig it i OB HHec Rt Chitgitiiitance value by ble p,féeméi fferent shrominange

erat lmages from sketches, using synthetic sketches generated by works are then described below in Equation 3. Becayse we are using
tfmssproﬁasg;mvo ves a iarge amontif76; 1 aupgfnamm catedipra-

only needs to contain grayscale and color images. We use the 1.3M

EeMEIH' RS ure color quality. ImageNet dataset (Russakovsky et al. 2015).

We train a deep network to predict the or of an image, given

0 .= g F1(X, Y)

e S IS VAR S st pikekinhe grayscale' ini48e, the PESHNatiSh éontamgg
of our system (i) the Local Hints Network in Section 3.2, which 0y = argmin Ex y. p[L(F4(X. Ug: 09). Y)]

in the grayscale image is rich, and the optimization methodcan determine the propaga-

ACM Transactions on Graphics, Vol. 36, No. 4, Article 119. Publication date: July 2017.

tion range of the color according to the relationship between grayscale information or
adjacent pixels. However, the computation cost of those methods is high. Therefore,
most of them struggle to perform in real time. The emergence of deep neural networks
has effectively reduced the time required for the process, and has subsequently inspired

more colorization methods based on deep learning.
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ACM Transactions on Graphics, Vol. 27, No. 5, Article 152, Publication date: December 2008.

Neural network-based methods effectively improve the speed and quality of image
colorization. However, the network training adopts an end-to-end training strategy. As
aresult, when the input and output are given, the output result cannot be controlled, and
the result can only be optimized by editing the input. At the same time, this approach

needs to specify the color of the area for each image, which cannot achieve batch col-
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orization work. Therefore, some researchers study the colorization based on reference

images.

3.3. Reference Color Image based Colorization

Another approach that balances controllability with user effort is reference based
colorization where the user provides reference images with desired color distribution to
guide the colorization process. The reference images may be specified directly by the
user, retrieved from the Internet or obtained from a large dataset [20]. By referring to
the reference image, the colorization results can better satisfy the user’s expectations.
Although there are substantial overall differences between the images, similarities be-
tween the images can still be found in local areas. For example, areas with similar
color or texture often also have similarities in structure or lines. Therefore, we can
guide the generation of images by finding similarities between the grayscale image and

the reference image.

3.3.1. Similarity with Luminance Features

To colorize a grayscale image, these methods need to have one or more reference
images, and then use luminance channel mapping with the input image. Hertzmann et
al. [21] transferred color information into the input image from analogous regions of
the reference. In the work by Welsh et al. [16], the grayscale image only contains one
dimensional information, and for a color reference image, its luminance channel can be
used to match the grayscale input. So the algorithm converts the reference image into
la B color space, and selects a small subset of pixels as a sample. Then the pixels in the
grayscale image are scanned in raster order and the best matching part is selected using
neighborhood statistics. Welsh et al. [16] described how their model could be applied
to a single frame in a video sequence. They used the same colorized target swatch that
was used in the first frame to colorize the remainder of the video. This process can
effectively solve the problem of color inconsistency. After finding the corresponding
pixel, they use the swatch model to produce a vivid colorization effect. In the equation,
the error distance E(N,, N,) uses the L, distance metric between neighborhood N, in

the grayscale image and neighborhood N in the colorized image.
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Figure 1: Overview of our colorization method. We work at the level of superpixels to extract different types of image

features frofiighis Sefovendevand thagaloriratigasmeaihadhded it spplehilgnelsibdew vvngesathideRbpredyast vitltade feature

matching schogg Thss CHIEIINASRSRIRITS s SRR MAIHRbAT 2L 5pipy, assisnments, which s refined by an
image votmé) step to yield the final colorized result.

opgimizatioGuteiet ultifk Fbnvorplriies ST features (8 Fints Webiirwmettlod iflekan@ers not restrict
image regions 1n gray image with the same texture the reference image to contain identical object instances as
g 8 gray g g J!
featureypsdsnenthindrhe thiodithat atfowsctheotvarisfer of ¢btonimformationnfitord. acreferdnceristrape is that the
age segmentation mask. In our algorithm, the use of reference images should be semantically similar to the input
superpiusl'fngehmtﬁpbeaﬂriageSf@mlre@usie}alpm gt al. [ippase SEFTeffeatardmtecolstainothe togpatain similar
small image regions. After computing the initial color scene object types as the input image (e.g. castle). An
values fpegpondeticecbepséreithyvefererndestiage andvehdetardetuimmskofos ebtorieriigferl.Sbs shown, our
perpixels and perform the image space voting in color method comprises four key stages: (a) superpixel extraction
space tqmﬂefefént@ma%eln@edgrteﬂbelarr@h@d imagb)ifeorderctdretiain thefbdsreenalthitheynd (d) image
Our primary focus is to enforce uniform color values space voting. We describe each of these steps below.
togdl cabgocprdpowde thmagee vhtinarfof evlorivorrectign, which checks nejghbaring superpix-
age segment. It enables us fo achieve higher spatial ]g-li gupel‘PIXEf eX%gacaon
consistazley tonddentefyderiztien reortect invalid color a8&ignmentfeanuosdepitotkeeplahecicolor and target
Irony used fhe, Discrete Cosine Transform (DCT) co- gray.nnagcs at the fC§01ut10n gf supcrplxcls, a.nd Atransfcr
? COI}SIS n(iX. . . colors between superpixels to yield image colorization. An
efficients oI a 1ix block size as a texture descriptor. ad i £ usi pixel based . ion is th
While DCT, cientis are not sansitive to transla- . - fl( vantage of using a sAupelplxe ase r(?pleﬁe:ntatmn is t z?t
A Itﬁ?tﬁiﬁc (ﬁler etiods®has o ma?chlng epwebnupixels:4ib6izdtidy thetbolotikatidmportantly, it
tions and rotations, they are more sensitive to scale . o M
changes e e use a richiset of image featires. in. also affords our method with an ability to maintain stronger
chnma N0 BrSROSER BYL NI EE AT 187, {Hfes to wolon inkeger atiahighorisemanticolopels o that us
approprte matches in roference image Lo ransfor, the ing individual pixels. To compute the superpixels, we use a
B PaS S EhiE SEHSEE SP ISV EEARTHY Ironketraltfd-8hexpeet that theralgarithitbrdld]. The algo-
cofor information. 8 . 4 . H
rithm computes the compact superpixels with uniform size
and shape and preserves original image edges.

3. COLORIZATION METHOD For all experiments presented in this paper, the input time

The proposed algorithm colorizes gray input images by 14

step value and the mazimum number of iterations are taken
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Figure 9: Comparison of the results of colorizing grayscale images. The “T” and “S” of the first column
input images are the target and source images. (a) is the result of [19], (b) is the result of [17], (c) is the
result of [16], (d) is the result of [49], and (e) is the result of [20]. ©Association for Computing Machinery,
Inc. 2019.

automatically place color scribbles, and then use color optimization in [3]. Specifically,
the method is mainly divided into four stages.They first train a supervised learning
algorithm to build a low-dimensional feature space to discriminate which label the
pixel belongs to. Then, they reliably determine the reference color value of each pixel
by voting for the nearest neighbors in the feature space. Finally, the color is transferred
to neighboring pixels in other spaces and the method of Levin et al. [3] is used for
global optimization. Compared with scribbles, this method saves time, and adopts the
spatial voting scheme to strengthen the spatial consistency, and has more robust color
results than Welsh’s method [16].

Li et al. [50] proposed a new location-aware cross-scale texture matching method
to achieve grayscale colorization based on reference images. This method first uses the
multi-label graph-cut algorithm to minimize global matching errors and spatial scale
variations, and then uses the statistics of up-down relationships in the reference image
to correct unreasonable color matches, and finally applies an optimization framework

to propagate the high-confidence micro-scribbles to entire image. In the grayscale
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colorization method based on the reference image, it is very common that the provided
reference image and the target image scale are inconsistent, and this method can handle
this situation well, and performs well among methods based on texture matching.

The total variation (TV) minimizing denoising model proposed by Rudin et al. [51]
is used for image colorization. Kang et al. [52] proposed to use the total variation
minimizing colorization model to deal with the problem of image color restoration.
This method first minimizes the total variation, and then implements image colorization
through weighted harmonic maps. However, this method requires a large number of
color scribbles to process complex images. Further, Bugeau et al. [53] proposed a
minimization variational formulation modeling which could colorize using a reference
image. At the same time, a specific energy function is designed for modeling color
selection and spatial consistency constraints. However, this method will produce a
halo effect on edges with obvious texture contrast.

Fang et al. [19] proposed a grayscale colorization method based on a reference im-
age, which novelly takes the result of image superpixel segmentation as the target to
be processed. The method first uses the Vcells [54] algorithm to segment an image,
extracts the features of the segmented blocks, and then uses the method proposed by
Gupta et al. [17] to match the reference segmented feature and the target segmented fea-
ture. Different from Gupta’s method [17], Fang et al. [19] do not use the matched colors
as micro-scribbles for color propagation, but instead select a set of candidate colors for
each target superpixel. Finally, they used the TV based spatial consistency regulariza-
tion and non-local self-similarity regularization to determine the most suitable color for
each target superpixel from the color candidates. As the comparison shows in Fig. 9,
with the same reference image, Welsh et al. [16](c) and Pierre et al. [49](d) are limited
by the set of color candidates and cannot match enough correct colors. He et al. [20](e)
and Gupta et al. [17](b) obtained more reliable color assignment results, but the results
of (b) contain color inconsistency artifacts and those of (e) contain color blurring and
color bleeding that appear in tiny objects. Although (a) achieves better colorization
results than other methods, there are still incorrect color matching results, such as the
hair edges of the characters in the second row.

Instead of specifying reference images by users, these methods achieve automatic
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ACM Transactions on Graphics, Vol. 37, No. 4, Article 47. Publication date: August 2018,
a5 different images is similar. However, when the lighting of the object or the structure
changes, it is easy to get the wrong color. However, there is a correlation between
the same objects or similar details. By introducing object category analysis or image
feature analysis, etc., the color matching between the grayscale image and the reference

image can be effectively improved.
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3.3.2. Similarity with CNN Features

He et al. [20] proposed for the first time a fully automatic colorization method
based on reference images, allowing users to use different reference images to achieve
different colorization styles. Its network structure is mainly divided into a similarity
sub-network and colorization sub-network, which is shown in Fig. 10. The similarity
sub-network helps find the similarity maps between the reference image and the target
image. Then the colorization sub-network mainly aligns pixels in the luminance chan-
nel based on the similarity sub-network, and then uses the big data learning ability of
the colorization sub-network to refine misaligned pixel colors.

Inspired by He et al. [20], Zhang et al. [57] applied the method of deep exemplar-
based colorization to grayscale video colorization. Similar to [20], Zhang et al. [57]
obtained the dense correspondence between the target image feature and the reference
image feature through computing a correlation matrix, and then feed it to a colorization
sub-network. In this sub-network, the colorization result of the previous frame will
be used as the condition for the current frame colorization. To reduce accumulated
propagation errors, reference images are added. Through this recurrent framework,
they achieved temporal consistency of video colorization. They further introduced
a temporal consistency loss [58] to reduce the color change along the flow trajectory
during the video colorization process. Further, Wu et al. [5S9] propose a method that can
generate results with vivid colors by retrieving the matched features. Different from
colorization based on reference images, they designed a GAN encoder to generate the
color prior in colorization, which allows smooth interpolation between different colors
and generates more diverse results.

Vondrick et al. [60] proposed video colorization with self-supervision learning of
visual tracking. This method copies colors from a reference frame, and the model
needs to use the appropriate region in order to obtain the correct color. And it can also
be applied to track people’s movement through the video. This model uses a pointing
mechanism to solve the problem of inconsistencies in video colorization to a large
extent, and maintain the color stability of the frame. However, the pointing mechanism

is still not precise enough, and the color edges of the colorization result are sometimes
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Figure 1 An image analogy. Our problem is to compute a new “analogous” image B’ that relates to B in “the same way” as A’ relates to A. Here, A, A’, and B
are inputs to our algorithm, and B is the output. The full-size images are shown in Figures 10 and 11

Figure 11: An example of image analogy. Reproduced with permission from Ref. [21], ©Association for
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Hertzmann et al. [21] earlier proposed %&mﬁ%%ﬁ%ﬁ%‘ﬁ%@ Va@gm@tﬁéﬂ“d
mainly uses two matching processes, Best m@mﬁ@m@ﬁ”éﬁfﬁB@%F"@(‘ﬂ’féﬁ’éﬁ’é@""

Match. The Best Approximate Match process first uses a Gaussian pyramid to extract
the feature information of pixels at different scales, and then uses an approximate-
nearest-neighbor (ANN) search to search for the pixel p in the original image A that
best matches each pixel ¢ in the target image B. The Best Coherence Match guaran-
tees the spatial consistency of the matching results. This calculation method is mainly

derived from the method proposed by Ashikhmin et al. [65]. The specific calculation
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is as follows:

r* :argminHFg(s(’r‘)—i—(q—r))—Fg(q)H2 1)
reN(q)

where 7 represents a pixel that has been synthesized in the neighborhood of pixel ¢ in
B’, s(r) represents the pixel corresponding to r in A’, N(g) represents a pixel syn-
thesized in the neighborhood of pixel ¢, and Fy(-) represents a neighborhood feature
vector of pixel in layer [.

Although the algorithm proposed by Hertzmann et al. [21] can get good results, the
algorithm requires pixel-by-pixel matching, which is particularly slow. Later, Liao et
al. [22] proposed a new image analogy method using deep learning technology, which
has greatly improved the matching speed and effect. The method uses the pre-trained
image feature extraction network VGG-19 [40] to extract the 5-layer high-dimensional
features of images A and B’. Then the method uses Nearest-Neighbor Field Search
(NNFs) to find dense correspondences with bidirectional constraints in each feature
layer. Finally, the image features are gradually reconstructed from the roughly cor-
responding fifth layer to the finely corresponding first layer, and the final generated
images A’ and B are obtained. The specific pipeline of the method system is shown in
Fig. 12.

There are other researchers who use the idea of image analogy. For example,
Bénard et al. [66] realized the stylization of animation by extending the image anal-
ogy method to create a time-continuous animation sequence. Using the image analogy
method, Jamriska et al. [67] used image color, foreground object binary mask, posi-
tion of SIFT Flow (Scale-invariant feature transform Flow) [48], and foreground object
edge information as guidance information, and achieved video stylization.

Affected by the structure of the image and the color range of the image, when
the pose and appearance of objects in the image change greatly, it is impossible to
obtain good results by using the image analogy method, even if the two images to
be compared are images from the same video at different times. In addition, if the
color of a part of the new image does not appear in the original image, the algorithm

cannot automatically fill this part of the color. At the same time, when the method is
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precise appearance (as shown in Fig. 3).
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then the recurrent attentive model combines the image and language features. Finally,
get the colorized results from this feature.

Unlike Chen et al. [23] who directly combine the extracted language features and
visual features to control the colorization results, Manjunatha et al. [69] apply the
feature-wise linear modulation (FILM) [70] structure to language-based colorization
with fewer parameters. Since FILM performs feature affine transformation on the out-
put of each convolutional block, only two additional weight matrix parameters are
required for each feature map. Instead of putting a specific object into the color form,
they use semantic text input to generate the color palette to achieve color palette based
on user’s text input.

Bahng et al. [35] have a similar focus on this area, instead of putting a specific
object into the color form, they use semantic text input to generate the color palette
to achieve color palette based on user’s text input. This is based on previous related
work on color palette design and image editing such as research by Heer et al. [71].
Based on Bahng’s model, the user can use both single and multi-word descriptions
to create a color palette and colorize the grayscale image. Like Hu’s method [68], the
network is based on conditional generative adversarial networks (cGANs). Bahng used
the palette-and-text (PAT) data set to train the model for predicting color palette parts.
The data set contains 10,183 text and five-color palette pairs. The data set is refined
by harvesting user custom-made color palettes from community websites. To process
raw data from the data set, they use four annotators to vote whether the semantic word
matches the color palette.

Text2Color can be divided into two parts, a Text-to-Palette Generation Network
(TPN) and Palette-based Colorization Network (PCN). TPN generates a reasonable

color palette based on the text input. The objective for the first cGAN is expressed as:

LDU = E,UNPJ,M{, [10g Dy (67 y)}
+ ExnPyoya [10g (1= Do(C,9))] @

LGO = ]EJUNPduu [10g (1 — Dy (E’ ?Q))] 3)
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For the discriminator D wants to maximize L p, in opposition to G which wants
to minimize L¢,. Vector x and real color palette y are from the data distribution Py
Bahng found that the Hubor loss is the most effective way to increase color diversity
in the color palette. They decide to use Hubor loss to make the generated image closer
to ground truth, and they added a Kullback-Leiber divergence regulation term. In this

part, they use a conditioning augmentation technique.
9 = f (s:) where s; = g (§i—1,¢i, 5i-1) C)]

where s; is a GRU (Gated Recurrent Unit) hidden state, and 7 is a time vector, previous
generated colors are stored in ¢;—; and the content vector ¢; and the previous state
stored in s;_; are provided as input. This state is used as input to a fully-connected
layer to output the ith color into the palette, and results are the combination of five
colors to form a single palette output .

The text-based method only needs to use the text description to realize the image
colorization work, which can be used not only for the colorization of a single image, but
also for the colorization of multiple images or videos. However, the text description has
certain limitations on the specification of details and the selection of the color range,
so it is more suitable for controlling the color palette of the whole image and the color
of single object. The enhancement of detail colors can increase the control of detail
by introducing color strokes, and researchers can conduct research on multi-modal

colorization methods to integrate the advantages of different models.

4. Colorization based on Sketch Images

Sketch images consist of sparse lines, and the information in the images is sparse
compared to grayscale images. Colorization of grayscale images tends to use grayscale
information from the L channel in Lab space, and it is easier to judge the same semantic
area by pixel values, so it is difficult to directly apply to sketch images. Usually, sketch
colorization methods are mostly sample-based or need users to provide guidance in-
formation, and contain both and automatic colorization option and an interactive user

mode, since the input images do not carry texture information. In early research, color
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hints provided by the user are spread to the entire image, but these colorization meth-
ods are limited by the quality of sketch images, the richness of color information, and
values of method parameters. In the last five years, most popular models are based on
neural networks, such as CNN [8], GANs [9] and U-net architecture [72], which can
replace the manual effort of carrying out colorization and can make monochrome im-
ages more attractive. In addition, we introduce a special sketch colorization method in

the last subsection, which directly generates pictures based on the input sketch images.

4.1. Color Hints or Strokes based Colorization

In an early paper in 2009, Sykora et al. [24] described the LazyBrush colorization
model which needs users to carefully make color scribbles. They transform the coloring
problem of sketch images into an optimization problem, and design an energy function
which consists of two main terms: smoothness and data. The smoothness term mainly
ensures to hide color discontinuity, and the data term mainly considers the color prompt
information added by the user. Although the LazyBrush algorithm performs well in
interactive colorization, a long time is needed to calculate the iteration. In order to
reduce the algorithmic complexity, Sébastien et al. [73] focus on line art images and
do not process black-and-white cartoon or manga, and performs fine analysis on the
local geometry of stroke contours. Compared with LazyBrush, their CPU calculation
time is reduced by more than 70% in different sizes of test images. Although the
algorithm based on optimization is robust and has a high success rate for colorization,
methods based on deep networks have natural advantages in reducing user interaction
and colorization speed.

In the method based on deep networks, the GAN usually is used a generative model
to colorize sketch images, and U-net [72] are instead of the traditional encoder-decoder
structure as the GAN’s generator. Liu et al. [74] used conditional generative adversarial
networks (cGANSs) to train the automatic painter model to produce compatible colors
for a sketch. Moreover, their architecture allows users to control the color of gener-
ated images, which is based on [75] to add color strokes to the input sketch image.
Ci et al. [76] proposed a novel conditional adversarial synthesis architecture, which

combined with a local feature network. The main branch of the generator is developed
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based on U-net [72] and four sub-networks, each containing a convolution block to
fuse features from skip connection. And the local feature extracted from local feature
network is as conditional input of generator and discriminator, to avoid overfitting char-
acteristic of the line art, to help the generator to produce vivid colorful color outputs.

In addition to the end-to-end colorization network, Zhang et al. [26] proposed a
two-stage line art colorization network based on color hints (known as style to paint
version V3). Each stage of the network consists of a generator based on the U-Net
structure and a discriminator, where the color hints marked by the user in the two
stages are directly inputted into the network together with the line art image. It is worth
noting that the second-stage network uses Inception V1 [77] to extract the features of
the simulated color draft generated by the first-stage network and merge them into the
intermediate features of the generator. This method can get a good colorization result
by adding color hints, but each image requires a lot of user input as color hints.

Moreover, a commercial website PaintsChainer [25] also colorizes sketches based
on color hints, which is an automatic colorization model for sketch images. The model
provides three different painting styles for the user to choose from, and will produce
different results based on the same sketch image. This product is user-friendly for the
non-programmer artist and can process sketch images through their online web page
with no need to download any software.

Color hints and strokes provide a more convenient interactive tool to support the
user to specify the color of the local details of the image. For the colorization of
a single image, such methods allow the user to iteratively optimize and produce the
desired result. If used on multiple images and videos, there is still a lot of interaction.
However, when artists color comics, they often design the clothing and color matching
of the characters in advance, and color the content according to the preset image, which

has inspired some colorization work based on reference images.

4.2. Reference Color Image based Colorization

Different from color hints based colorization methods, reference based colorization
methods match segment shapes or even semantic similarity between reference images

and input images to colorize different positions. We divide reference based colorization
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methods into deep networks and graph correspondence. In the deep network based
colorization methods, the color of result only takes the reference image as conditional
information, and does not completely depend on it. However, the method based on
graph correspondence usually copies the color value of reference images, and color

value of result images completely depends on the reference image.

4.2.1. Colorization by Deep Networks

A series of research work of Style to Paint is an important work of applying deep
network to color line art images. In style to paint version V1 [78], the model can color
sketch images based on the input reference images. The main idea is to use U-net and
AC-GAN [79] in a generator for the style image. They redesigned the new network
residual U-net [72], and initialized the network with a Gaussian random number. The
network shows a stable gradient in the training process and to solve potential noise he
adds two additional losses to avoid the vanishing gradient problem. In style to paint
version V3 [26], as introduced in Section 4.1, they proposed a two-stage CNN-based
colorization framework. Instead of using the reference image, in this model users use
the color hint mark to provide colors for the sketch image. In the same year, sun et
al. [80] designed a dual conditional generative adversarial network for the colorization
problem in icon design. The model can get a good colorization result on simple strokes
such as icons, but color bleeding still appears sometimes, and it cannot handle complex
sketch images well.

In the work of colorizing line art videos, the videos are usually divided into multiple
video sequences. Researchers usually provide one or more reference color images for
each video sequence to color the remaining line art frames. Thasarathan et al. [81] pro-
posed a line art video colorization model called automatic Temporally Coherent Video
Colorization (TCVC), which extends the image-to-image translation model based on
the conditional GAN [82]. They input the line art image and the color image of the
previous frame into the generator network for providing color prior information. The
discriminator network uses the patch GAN structure proposed by Isola et al. [82], and
inputs the line art image and the corresponding color image at the same time to ensure

the temporal color consistency.
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to calculate the similarity between the two nodes. Finally, according to the reference
image and the target image represented by the graph structure, they obtained the fi-
nal matching result by solving a Quadratic Programming problem, and transferred the
color of the reference image to the target image.

The method proposed by Sato et al. [4] needs to specify the number of segmenta-
tion regions, and when the lines of the line art image are very complicated, the user
needs to manually adjust the segmentation results. In addition, the method calculates
the pairwise similarity of nodes, and does not make full use of the shape features of the
segmented regions themselves. Chen et al. [27] proposed a colorization method com-
bined with active learning [88]. The overall pipeline of the method is shown in Fig. 13.
First, the trapped-ball segmentation [85] was used to automatically segment the line art
image, and inner-distance shape context (IDSC) [89] is used to extract the features of
the segmented regions. And then, the features of the segmented regions of the refer-
ence image and the adjacency relationship between the regions are expressed as a graph
structure, and finally the mixed-integer quadratic programming method (MIQP) is used
to solve the graph matching problem. As the comparison shows in Figs. 14(d)(e), with
the same reference image, Sato et al. [4](d) failed when the number and structure of
regions changed. Chen et al. [27](e) produce better results, however, there are still
colorization errors in smaller segmented regions (such as the left side of the face).

The colorization method based on the graph correspondence needs to segment the
image into sub-regions in advance, and construct the graph structure according to the
adjacency relationship between sub-regions. Some methods introduce constraints such
as shape similarity during optimization. But such methods suffer from segmentation
mistakes and are only suitable for some simple-structured images. When the number
of image areas is too large and the structure changes, the effect is slightly worse, such

as the case where there are too many lines in the hair area.

4.3. Text Hints based Method

Text based colorization methods not only learn the correspondence between the
color and the semantic regions of images, but also the correspondence between the text

and the color needs to be determined. Kim [90] purposed using text tags to colorize
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sketch images. Users can easily color line art images based on their input color variant
tag (CVT) from which the generator produces a color result. The CVT module first
extracts the features of input text information, and then merges the features to the output
features through the SECat (Squeeze and Excitation with Concatenation) module.

For the first time, Zou et al. [28] proposed a language-based interactive colorization
system for scene sketches. Users can color the foreground objects and background se-
quentially through text scripts. They proposed a new instance matching model, which
uses the DeepLab-v2 [91] network to extract sketch features, and the interactive model
mLSTM (multimodal Long Short-Term Memory) [92] is also added to the genera-
tor network, which can achieve the joint modeling of text script and images. Zou et
al. [28] also designed a foreground colorization network and a background coloriza-
tion network to facilitate the processing of foreground objects and background areas
with different image characteristics. It is worth noting that since the current research
on semantic understanding in natural language processing is still in the preliminary
stage, the input text of text based colorization methods is more similar to a text control
instruction, and more accurate text understanding and color matching are still Need

further research.

4.4. Sketch to Image Synthesis

The synthesis of sketch to image is a kind of research related to the colorization of
line art images. Different from the line art colorization, the sketch to image synthesis
method does not strictly provide color values at different positions, but extracts the
semantic features of the lines in sketch image and compares them with the existing
images in the data set. After that, a new image is synthesized by fusing different
matching results. Therefore, the method of sketch to image usually requires an amount

of data to be matched.

4.4.1. Image synthesis by Internet Search
Chen et al. [93] proposed a system Sketch2Photo that can automatically synthesize
realistic images from sketches with text labels. Sketches will be divided into back-

ground and multiple scene items, and then match the initial set of candidate images
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on the Internet based on text labels and lines. For the background image, the candi-
date images with inconsistent content and cluttered regions are removed. Inspired by
Ben-Haim et al. [94], they used a clustering algorithm to filter the content consistency
of the image, and count the number of regions covered by the convex hull of all scene
items to determine whether the image is uncluttered or not. And then, after discarding
candidate background images with salient areas and complex backgrounds, they use
the grab-cut algorithm [95] to segment the expanded areas of the target object from
the image. According to the shape feature and the clustering algorithm, the images
with inconsistent shapes and inconsistent content are eliminated. Finally, they used the
proposed hybrid method to fuse the background and scene item candidate images.

Later, Chen et al. [96] proposed a method that can quickly build a large-scale hu-
man image database. Inspired by Sketch2Photo [93], they use a human detection algo-
rithm [97] to extract images containing humans from the Internet. Then they filter out
the algorithm-unfriendly images, and segment the foreground and background of the
image. The final human image is organized by action semantics and clothes attributes,
and the user can retrieve images of the corresponding posture through the outline. In
addition, Chen et al. [96] demonstrated the use of this data to generate multi-frame
personalized content image synthesis programs.

By extracting and assembling content from existing data, reasonable image results
can be obtained. However, since the generated results depend on the existing data
content, the image content outside the dataset cannot be generated. The emergence
of generative networks solves this problem, training on existing datasets to generate
new results in addition to existing ones. Therefore, the methods based on generative

networks for image synthesis have become more popular.

4.4.2. Image synthesis by Generative Networks

Sangkloy et al. [75] proposed a sketch-to-photo architecture, similar to an image-
to-image translation network [98]. They are the first to use a feed-forward architecture
model that can generate realistic images based on imperfect sketches. The architecture
presented colorization in three different domains: faces, bedrooms and cars. Chen et

al. [99] proposed a fully automatic model to synthesize realistic images from human-
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drawn sketches. The model takes the GAN model as the basic structure and proposes
the Mask Residual Unit (MRU). The convolutional features of the previous layer and
an additional image are fed into the MRU, then the MRU dynamically determines the
final output features of the network by calculating an internal mask. This is conducive
to generating results that are similar in content information to the input image and
generating higher quality results.

Different from the previous image synthesis methods based on sketches and col-
ors [93, 98], Xian et al. [100] proposed an image synthesis method based on sketches
and textures. This method realizes the fine-grained control of the synthesized image
based on the texture image. For this purpose, they mainly design two GAN network
structures to produce preliminary synthesis results and fine-tuned textures of synthe-
sized images respectively. In addition, a novel local texture loss £; was proposed. The
loss function first randomly samples n patches of s x s size from the generated result
G(z) and the input texture image I;, and then calculates its Local Adversarial Loss

Ladv, Local Style Loss L and Pixel Loss £,,. The specific calculation is as follows:

‘Ct = Es + 'LUp[:p + wadv‘cad’u (&)

where £, use Gram matrix-based style loss and £,, use L2 pixel loss. L4, is defined

as follows:

Logo = — Z(Dm(mc(xi)ﬁi)., h(Iy, R;)) — 1)° (6)

where Dy, is a local texture discriminator, h(z, R) represents cropping a patch from
the segmentation mask R of image x.

Inspired by [101], Chen et al. [102] proposed a local-global network for sketch-
based image synthesis. They take the facial structure into consideration and design
a manifold projection to deal with rough/in-complete sketch. For easier use by ordi-
nary users with little drawing skill, they design an interface with shadow-guided on
the drawing board like ShadowDraw [103]. They further proposed a disentanglement
framework [104] which could disentangle the geometry and the appearance features

from facial images. With this framework, it is possible to edit the appearance by
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3 TRAINING

In this section, we briefly explain how to train the network for
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and monochrome images. The original color image is used as an

ite cartoon or manga. Those images contain a clear sketch-based line art,

and also carry some black-and-white shading information. In manga, the colorization

process has an additional pattern colorization process.

Colorizing black and white

manga can make them more attractive, and using semi-automatic methods as a helper

can increase the speed of drawing.

Early work by Sykora et al. [105] carried out research on the colorization of black-

and-white cartoons.

They divided each frame into two parts: the static background

and dynamic foreground, which were colorized separately. To separate frames into two
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parts, they used the Laplacian-of-Gaussian mask to detect outlines. When realizing
continuous frame colorization, they used a probabilistic reasoning scheme to calculate
the similar region and neighborhood relationship to process more video frames. Finally,
to improve the quality they added color modulation, composition, and a technique to
remove dust spots in order to improve the appearance of the final image. In this way,
the image edges are sharp and can adapt to complicated drawing. The whole process is
semi-automatic.

For manga colorization, Qu et al. [29] proposed a manga colorization method based
on user scribbles. In this model, they use a novel texture-based level set method
for segmentation. The model provides two modes of propagation for segmentation,
pattern-continuous and intensity continuous propagation. Users can easily alter those
two methods in different steps. The model can identify the hatching and screening ef-
fects that are used in traditional paper comics. After confirming the segment region,
they use three different colorization methods for various conditions, such as color re-
placement, stroke-preserving colorization, and pattern to shading.

Hensman et al. [86] used cGAN and post-processing to colorize manga images,
reducing the degree of user interaction and producing better results. This method can
be divided into the following steps: screentone removal, segmentation, color selection,
saturation increase, color quantization, and generation of shading. Model training is
based on the corresponding grey-scale image and colorized reference image as a single
image pair. Based on the model parameters obtained from the training of a single image
pair, the model can colorize manga images similar to the reference image. However,
when the character’s clothing becomes complex, the model cannot achieve the correct
correspondences between different frames. The results will not only contain artifacts,
but also are not as colorful as the reference image, as shown in Fig. 14(c).

Hiroshiwa et al. [30] connected the common manga colorization problem and was
able to color the same character at once. The overall pipeline of the semi-automatic
manga colorization method is shown in Fig. 15. Users need to provide the reference
image and the corresponding color image together as input. A segmentation step is
based on [106], and semi-automatic colorization is based on the CNN architecture,

using an encoder-decoder network with some refinement to improve the performance.
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After the palette model, the model produces the draft colorization result, and the user
needs to carry out interactive revision of the details to ensure the correctness of the
output result. During revision users can choose either color dots or a histogram to
adjust the image.

Sketch images contain sparse lines, and grayscale images represent image informa-
tion such as shading and texture. The manga image may contain one or more styles,
such as region boundary, narrow structure, specific region representations, etc. This
leads to a conflict in the understanding of image content. Distinguishing the texture
of an object or the specific representation in the image is the key to improving the

colorization of the manga.

6. Assessment of Colorization

Researchers typically evaluate different colorization methods based on quantitative
and qualitative aspects. In quantitative evaluation, researchers assume the existence of
unique ground truth and provide unique ground truth, which facilitates simple anal-
ysis of colorization results. Then researchers typically use root mean square error
(RMSE) [37, 39], peak signal to noise ratio (PSNR) [39, 1, 32], or structural similarity
index measurement (SSIM) [32, 27, 62] image evaluation indicators, comparing the
results of different colorization methods.

However, the widely used indicators such as PSNR and SSIM do not fully match
human perception. In recent years, researchers have generally extracted the deep fea-
tures of images to compare the perception similarity between images. A common
measurement is to use the Inception Score (IS) [107] to evaluate the quality of the gen-
erated images. Given a desired image set, we could use the Frechet Inception Distance
score (FID) [108, 45] to measure the difference between the distribution of the real
images and the distribution of the generated images. Zhang et al. [109] systematically
analyzed the unreasonable effectiveness of deep features as a perceptual metric, and
proposed the Learned Perceptual Image Patch Similarity (LPIPS) metric which better
captures image perception similarity. LPIPS has been used to evaluate colorization by

Yoo et al. [13], and this has been shown to be an effective colorization evaluation mea-
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Input Category || Paper | Year Condition Paper Year Condition
[21] 2001 R [16] 2002 R
[3] 2004 S [46] 2005 RIS H
[18] 2005 R [47] 2006 S
[14] 2007 S [10] 2008 A R
[56] 2009 A R [17] 2012 R
[1] 2015 A [37] 2015 A
[11] 2016 A [39] 2016 A
Gray-scale [2] 2016 A [22] 2017 R
image [15] 2017 H [42] 2017 A
[23] 2018 H [69] 2018 H
[35] 2018 H [32] 2018 A
[60] 2018 R [20] 2018 R
[67] 2019 R [57] 2019 R
[43] 2019 A [13] 2019 A
[50] 2019 R [61] 2019 R
[19] 2020 R [12] 2020 A R
[24] 2009 S [93] 2009 R
[96] 2013 R [4] 2014 R
[25] 2017 A S [78] 2017 R
[74] 2017 A [75] 2017 S T
Sketch image [100] | 2018 R [26] 2018 S H
[76] 2018 A S [90] 2019 H T
[28] 2019 T [80] 2019 R
[81] 2019 R [62] 2020 R
[27] 2020 R [102] | 2020 A
[104] | 2021 A R [64] 2021 A R
[105] | 2005 R [29] 2006 S
Manga image
[30] 2017 R H [86] 2017 A

Table 1: Summary for different categories of image colorization method. A marks fully-automatic coloriza-
tion. 'R ,[S|, H and T marks various types of color control, which are reference images, color-scribbles,

color hints and text hints. Methods with a light blue background are neural network-based approaches.
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sure by Zeger et al. [110]. In addition, researchers will also compare the colorization
time of different methods for different resolution images [10, 11] and the computing
resources, such as network parameter size [2, 99].

In the qualitative comparison of different colorization methods, researchers usually
use user study to evaluate, and then use box plots, radar plots, or bar graphs to display
the results in the paper. Specifically, in the user study design scheme, the researcher
will design multiple questions for different colorization results for users to score and
evaluate. These questions mainly include: 1.The authenticity of the colored image [17]:
They will mix colored images with real (natural) color images, allowing users to score
the authenticity of the image; 2. Whether the colored result obeys the hint color or
reference image color [35, 50, 13]: participants will be asked to evaluate the color
consistency between the coloring result and the reference image or palette; 3. Color
segmentation [26, 90]: Whether the coloring method can accurately identify the colors
that should be used in different areas to prevent color bleeding and fusing problems;
4. Coloring time [26]: In interactive colorization methods the researcher will compare
the interactive coloring time needed for users to complete the colorization tasks; 5.
Quality of the coloring results: Whether the coloring method can produce reasonable
results [50, 90]. In addition, researchers not only display user evaluation results, but
also use analysis of variance to determine whether there are significant differences
between different evaluation indicators, and perform statistical analysis on user survey
results [80, 50, 102].

Moreover, existing indicators for quantitative evaluation of colorization results are
inaccurate, including PSNR, SSIM, LPIPS, and qualitative comparison can better eval-
uate the pros and cons of different methods. However, due to the lack of a unified
public dataset, especially in the field of line art colorization task, qualitative evaluation
cannot fairly compare the capabilities of different colorization methods. Researchers
should be committed to open datasets of different coloring tasks, and then use mul-
tiple quantitative indicators and qualitative comparisons to evaluate different methods
under the same dataset, so as to evaluate the pros and cons of different methods more

reasonably.
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7. Conclusions

In this survey, we summarize many different methods in image colorization and
related areas. Based on the user interaction, we divided grayscale colorization meth-
ods into three categories: fully-automatic colorization, semi-automatic colorization and
language based colorization. For sketch images, most methods combine the fully-
automatic colorization models with user guidance together, as simple editing can im-
prove the result and make it closer to their expectations. For each area, they are pursu-
ing different goals to meet the different demands, and with deep learning, huge progress
has been made in recent years.

Exploring the connection between colorization for grayscale images and for sketch
images, we found that there are many similarities, and the color processing techniques
are the same. The common goal of grayscale colorization is to achieve the most realistic
color which should be the same as the ground truth, so there are many methods that
focus on how to fill in the one or more right colors for each pixel in the image. Usually
some object colors are not fixed to one color in the real-world such as balloons and
the color of a dress. And for sketch image colorization, the methods require accuracy
which is achieved by image segmentation, and prevents the color bleeding issue. Most
anime and manga character colors are unknown, so using the ‘wrong’ color will not
be a big issue in sketch colorization. We summarize the models in Table 1, which list
the grayscale image and sketch image colorization methods based on the publication
year respectively. It can be seen from Table. 1 that before 2016 most research was
carried out on grayscale images, and thereafter research has increased on sketch images
Moreover, with the development of neural networks, the latest methods tend be to more
automatic and less interactive. The two main problems of the current research are how
to further improve the quality of generation while also reducing interactions, and how
to accurately control the boundaries of colorization areas in a convenient way, such as
text or sketch.

Developments in this area are closely connected with segmentation, semantic and
style transfer study. Regardless of whether it is to improve the quality of image col-

orization or interactively control image colorization, researchers need to propose more
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accurate image region segmentation and semantic matching methods to determine the
boundaries of coloring regions, so as to avoid color overflow and cross-coloring in col-
orized images. The current research trend is to use machine learning to solve problems
instead of determining everything by hand. However the parameters of the network are
hard to determine based on lack of information, and they still do not provide a good so-
lution for all cases. At the same time, the current deep learning-based methods cannot
precisely control the colorization result regardless of whether it is processing grayscale
images or line art images, and lacks an effective and precise method to control interac-
tion. This is mainly reflected in the fact that the interactive colorization methods based
on hints, sketch or text can only provide color prior information for the region, but
cannot control the region boundary or the propagation of color prior information.

In the existing methods, interactive control methods include simple color feature
fusion, intermediate network output feature normalization, and color palette control
after quantization of the reference image. These feature control methods need to be
further improved. In the future, researchers may consider using the feature fusion
method of the transformer model [44] or the CLIP (Contrastive Language-Image Pre-
training) model [111]. In addition, the information contained in the sketch is sparse
and ambiguous. The semantic analysis of the lines in the sketch can effectively reduce
the ambiguity of the lines and further improve the quality of the image. To reach it,
we need to refocus on the interpretability of the neural network structure, and have a
deeper understanding of how color is formed in the colorization process. There are
many commercial applications of colorization, and these can be further extended by

exploring new formulations and solutions.
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