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LangAware

Stop interrupting me except for 
private messages.

User Utterance

Big Sale!!! Get your limited 
coupons before 12:00…

Context Detectors

OK. In the future:
IF you receive non-private notifications, while you are 
running in the playground and listening to music through 
headphones, THEN silent these notifications.

☑ Non-private notifications

☑ Running in the playground

☑ Listening to music through headphones

☐ In the morning

Contextual Rule

content_related_to(new_message.content, 
[“private messages”])

activity == “running” 
and gps_location == “playground”

audio_playing == True and audio_device in 
[“bluetooth”, “usb_headset”, 
“wired_headphones”, “wired_headset”]

time.hour >= 5 and time.hour <= 8

Conditions

Actions

changeNotification(remove=False, 
popup=False, ring=False, vibrate=False)

Reply

Shared 
Contextual 
Concepts

(SCC)

User-Centered Machine-Centered

Figure 1: A user is interrupted by notifcations while running and listening to music on a playground. He talks in natural 
language with LangAware (left), which considers extra contexts and replies with an interactive interface displaying a natural 
language explanation (lower-middle) and several selectable phrases (upper-middle), each linked to a boolean expression (right). 
These pairs form human-machine Shared Contextual Concepts (SCCs). The user continues conversing until personalized 
contextual rules are established. 

ABSTRACT 
This paper presents LangAware, a collaborative approach for con-
structing personalized context for context-aware applications. The 
need for personalization arises due to signifcant variations in con-
text between individuals based on scenarios, devices, and prefer-
ences. However, there is often a notable gap between humans and 
machines in the understanding of how contexts are constructed, 
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as observed in trigger-action programming studies such as IFTTT. 
LangAware enables end-users to participate in establishing con-
textual rules in-situ using natural language. The system leverages 
large language models (LLMs) to semantically connect low-level 
sensor detectors to high-level contexts and provide understandable 
natural language feedback for efective user involvement. We con-
ducted a user study with 16 participants in real-life settings, which 
revealed an average success rate of 87.50% for defning contextual 
rules in a variety of 12 campus scenarios, typically accomplished 
within just two modifcations. Furthermore, users reported a better 
understanding of the machine’s capabilities by interacting with 
LangAware. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; Ubiquitous and mobile computing systems and tools. 
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1 INTRODUCTION 
With the development of AI and IoT technologies, intelligent sys-
tems have increasingly powerful context-aware capabilities. For 
example, smartphones can provide automated services by sensing 
users’ physical contexts such as locations and activities, and social 
contexts such as contacts and messages. Context-aware applications 
face diferent user scenarios, devices, and preferences, and develop-
ers cannot anticipate every possible user context and make targeted 
adaptations [38]. Simultaneously, data-driven machine learning al-
gorithms struggle to learn user preferences in the face of sparse 
personalized contexts [25, 28, 36, 45, 46]. These approaches do not 
efectively involve end-users in leveraging their personalization 
knowledge for context-aware applications. 

Trigger Action Programming (TAP) is a popular paradigm that 
allows users to customize their own IF-THEN rules for personal-
ized systems. However, end-users often struggle to construct per-
sonalized contexts without knowledge of the device’s perceptual 
capabilities [12, 39, 40]. There is a signifcant gap between human 
and machine understanding of context construction [5]. 

To bridge this human-machine context gap, we investigate a 
collaborative approach in which the machine assistant and the user 
continuously align their understanding of context through natural 
language within the context. This in-context approach difers from 
out-of-context methods, as users are more likely to express their 
needs and adapt their expressions within the context. We identify 
several challenges in realizing this collaborative process through a 
formative study, such as ambiguity in context expressions, omis-
sion of context information in user input language, and providing 
comprehensible interfaces. 

We propose LangAware, a system that addresses these challenges 
and enables end-users to establish in-situ contextual rules using nat-
ural language. LangAware leverages large language models (LLMs) 
to semantically bridge high-level contextual concepts expressed by 
users with the underlying sensing capabilities that machines can 
perceive and implement. We propose Shared Contextual Concepts 
(SCCs) as the medium for contextual understanding alignment be-
tween humans and machines. An SCC is a pair of a natural language 
phrase and its corresponding machine boolean expression. 

In an example usage scenario of LangAware, as shown in Figure 1, 
a user is running in the playground, wearing headphones to listen to 
music, but becomes annoyed by frequent message alerts. The user 
tells the assistant, “Stop interrupting me except for private messages.” 
The assistant combines contextual information from the phone 
to understand the user’s linguistic input and generates candidate 

SCCs. These include both “non-private notifcations” derived from 
the user’s utterance and “running in the playground” obtained from 
contextual information. The user selects the appropriate SCC in an 
interactive interface or further modifes it through dialogues until 
a satisfactory contextual rule is generated. 

To evaluate LangAware, we conducted a user study with 16 par-
ticipants using Android smartphones in real-life settings, covering 
12 campus contextual tasks. We compared LangAware with a base-
line system that only uses language without incorporating in-situ 
context information. Results show that users generated high-quality 
SCCs (average expert sufciency score 4.50/5 and necessity score 
4.50/5) with an average success rate of 87.50% using LangAware, 
refecting a 18.75% improvement over the baseline. LangAware also 
signifcantly outperformed the baseline in several subjective scoring 
metrics such as user satisfaction, perceived machine understand-
ing, mental efort, and physical demand. The SCCs generated by 
LangAware during the experiment also exhibited personalization 
characteristics. 

In conclusion, our contribution is LangAware, a novel collabora-
tive approach that empowers end-users to construct personalized 
contexts in situ using natural language. This approach addresses 
the human-machine context gap by using LLMs to connect diferent 
levels of semantics and SCCs to align human-machine contextual 
understanding. This work contributes to improving the intuitive-
ness and adaptability of human-machine interactions, facilitating 
the development of more personalized context-aware applications 
in IoT scenarios. 

2 BACKGROUND AND RELATED WORK 
Most existing devices provide limited personalization settings that 
are predefned and simplistic, which is hard to accommodate the 
diverse needs of users. Solutions like IFTTT or iOS’s Shortcuts and 
Focus mode, while supporting automated services based on contex-
tual profles, necessitate user interaction through a graphical user 
interface (GUI) and involves complex operations that may be less 
user-friendly. This paper explores ways for end users to better de-
fne personalized contexts by employing natural language dialogue 
and in-situ context information. In this section, we revisit related 
work on context-aware systems and end-user context construction 
and conclude by presenting how LLMs are promising in bridging 
contextual semantics. 

2.1 Context-Aware Systems 
Context-aware systems provide customized services based on the 
user’s context [16]. With advancements in IoT and AI technologies, 
smart devices can better utilize physical sensing information such 
as time, location, activity, app usage, nearby Wi-Fi and Bluetooth 
devices, and social information embedded in contacts and message 
content to identify and describe the user’s context. Rich contextual 
information allows context-aware systems to ofer various auto-
mated services, such as recommendation systems [42], message or 
caller management [20, 23, 25, 28, 32], app recommendations [10], 
power management [24, 33], and confguration management for 
volume or brightness [1, 2]. 

Many context-aware systems use data-driven machine learning 
approaches to learn users’ contextual preferences [4, 34]. However, 
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these approaches face several issues when geared toward personal-
ized contexts. Firstly, they require a substantial amount of user data 
gathered over an extended period ranging from several weeks to 
months [25, 28, 36, 45, 46], which may be inefcient for obtaining 
personalized knowledge when personalized contextual and behav-
ioral data are sparse. Secondly, many context-aware systems act as 
black-box AI for users, making it difcult for them to understand 
the system’s behavior and participate in controlling it [3, 6, 17, 44]. 
Therefore, it is essential to involve users efectively in the contex-
tual preference learning process, which enables them to provide 
personalized knowledge and have more understanding and control 
over the system. 

2.2 End User Context Construction 
Much work has been done on involving end-users and supporting 
them to customize context-aware systems tailored to their needs 
[26]. There is a need to lower the programming threshold given that 
most end-users lack programming skills. Trigger-action program-
ming (TAP), i.e., “IF an event happens, WHILE conditions are true, 
THEN take actions”, is one important paradigm. Studies show that 
end-users primarily use IF-THEN rules to express their contextual 
needs [18], and TAP rules can express users’ needs in smart homes 
[39]. TAP is also adopted by many commercial platforms, such as 
IFTTT [21]. 

However, TAP programming still presents a threshold for end-
users. One issue is that TAP rules involve more underlying machine 
details, making it difcult for end-users to compose context condi-
tions [12, 39, 40]. To address this, some works propose higher-level 
abstractions for machine context awareness to support end-users 
in constructing personalized contexts. Examples include provid-
ing better visual programming environments [15, 19]. However, 
these approaches still require users to navigate through the GUI 
at a higher learning cost after understanding the context-aware 
capabilities supported by the system. Another work [27] proposes 
a block-based programming environment specifcally for design-
ers (instead of end-users) to develop location-based context-aware 
applications that translate human concepts into machine feature 
expressions. Some works [13, 14] allow users to input natural lan-
guage instructions and recommend a collection of TAP rules that 
match the abstract concepts therein; however, these approaches 
use expert-defned semantic ontologies for a specifc platform (i.e. 
IFTTT) to convert users’ abstract concepts into concrete machine 
semantics, which limits their scalability. The aforementioned works 
primarily focus on constructing contexts out of real-world situa-
tions and do not address users’ creation of contexts in situ. 

In contrast, our work targets end-users without specialized 
knowledge and supports constructing personalized contexts in 
situ. We consider both natural language input and contextual in-
formation to make user interaction more natural and less costly. 
Simultaneously, we leverage the NLU capabilities of LLMs and 
the embedded generic knowledge to complete the semantic con-
nection, providing greater scalability and fexibility compared to 
expert-defned platform-specifc semantic networks. 

2.3 Large Language Models 
Language models are used to model the probability of text se-
quences, while generative language models predict likely output 
sequences based on given inputs. With the signifcant increase in 
model size and amount of text data used to train transformer-based 
[41] language models in recent years, large language models (LLMs) 
such as GPT-3 [8], LaMDA [37], PaLM [11], and ChatGPT [30] have 
emerged with the ability to generalize across new tasks without re-
quiring re-training. To use LLMs efectively, users need to carefully 
write natural language instructions, or prompts, to enable LLMs to 
perform the required tasks on demand. The excellent performance 
of LLMs for many new tasks shows that it embeds rich semantic 
knowledge into the model while learning a huge amount of cor-
pus, and the process of prompting is the process of extracting the 
knowledge from LLMs. 

LLMs ofer new opportunities for human-computer interaction 
[7]. They are capable of handling the diverse and rich natural lan-
guage expressions of end-users and understanding their intentions 
more accurately, enabling users to build their applications more 
easily without specialized knowledge. LLMs embedded with rich 
knowledge can also serve as a glue for data from multiple modali-
ties and use it to enhance contextual understanding and better task 
execution [29]. 

In this paper, we leverage LLMs to translate users’ natural lan-
guage into machine expressions and abstract user-understandable 
concepts from machine expressions. By feeding contextual data 
into LLMs, we can enable them to more efectively understand 
the user’s context, comprehend their utterances, and assist in the 
collaboration of contextual rules. 

3 THE HUMAN-MACHINE CONTEXT GAP 

Human Perception and Cognition

Context = (var1, var2, var3, …) ∈ Vn

Structured Context Representation

Services

Human-Machine

Context Gap

Context

Sensor data

Humans Context-Aware Systems

My working area

Lab brainstorm

Snooze

Arrear notifications

Vacation

User-centered Context Concepts

How to 
Bridge?

Contextual Rules

Expert Developed Models

Needs

  

 

Figure 2: The human-machine context gap. 

There is a gap between human understanding and that of context-
aware systems on how contexts are constructed [5], as illustrated 
in Figure 2. Firstly, humans and machines have diferent perceptual 
channels, resulting in diferences in the input information they 
collect. Secondly, humans tend to comprehend situations through 
concepts that can be abstract (e.g., “at work”) or concrete (e.g., “at the 
ofce”), which are not strictly independent of each other. In contrast, 
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Table 1: Challenges in natural language-based human-machine context bridging. 

Challenges Examples 

Understanding User Language 
Ambiguity in Context Expressions “At work” could refer to being engaged in work-related activities, being physically present at the 

workplace, or using work-related apps. 
Omission of Context Information Users might say “in such situations” without specifying what the situation is, or mention a service, 

such as simply stating “mute”, without indicating the relevant contextual conditions. 

Providing Comprehensible Interfaces 
Explanatory Afordance Users want to understand the meaning of nearby phone number > 0 through natural language 

(potential human presence); users expect feedback when the system cannot detect conditions like 
“an unattended item”. 

Concept-level Controls Users want to remove “morning” from “running in the morning” or add a condition like “listening 
to music”, even if these concepts may not directly correspond to preset detectors. 

machines construct contextual rules using structured contextual 
variables and service interfaces that are semantically explicit and 
can be combined into complex contextual expressions and service 
chains. This discrepancy leads to usability issues for end-users, such 
as an insufcient understanding of machine capabilities, difculty 
in accurately anticipating results from machine rules, and a lack 
of expertise in transforming unstructured needs into structured 
machine rules when expressing their needs. Additionally, machines 
often struggle to efectively summarize high-level semantics in 
context-aware services, presenting users with relatively low-level 
specifc rules instead. This human-machine context gap limits users’ 
ability to transfer personalized knowledge to machines. 

To bridge this gap, we aim to fnd an efective way for users 
to interact with machines. As humans predominantly use natu-
ral language to communicate with human assistants, we explore 
how human and machine assistants can generate contextual rules 
through natural language in specifc situations. We conducted a 
formative study on smartphone automation tasks to understand 
how end-users express their contextual preferences to machine 
assistants and collaborate in generating rules in daily life situations. 
This study provides insights into the challenges of addressing the 
human-machine context gap and serves as a guide for subsequent 
system design. 

3.1 Study Design 
We adopted a Wizard of Oz design, where participants imagined 
themselves in various daily life situations and interacted with a 
smartphone assistant controlled by a human wizard behind the 
scenes. The wizard had expertise in developing context-aware sys-
tems. 

Six participants (5 males and a female, aged between 22 to 25) 
completed the study, which took each participant 40 minutes to 1 
hour. We compensated participants for their time. Before the study, 
we asked about their experiences with automated services based 
on contextual profles. One participant had no relevant experience; 
two participants had set up services to send messages or activate 
Do Not Disturb mode at specifc times; another two participants 
had further confgured location-based services such as turning on 
a QR code; and the fnal participant had used the Smart Activation 

feature in iOS’s Focus mode, but found that it sometimes did not ft 
with their daily routines. 

During the study, we introduced participants to a smartphone 
assistant with advanced context-awareness and human-like com-
prehension. Each participant completed 4-6 tasks, where they were 
asked to imagine themselves in a specifc context and express their 
preferences for confguring automation rules. Participants were 
presented with preset tasks in a random order that included story 
narratives and illustrative background photos, and they were al-
lowed to adjust the tasks according to their own experiences. Com-
munication with the assistant took place through a chat interface 
where a wizard simulated the assistant’s response. Feedback was 
gathered at the end of each task, and a concluding interview was 
conducted to gather additional insights from the participants. 

The preset tasks provided to participants were divided into four 
categories: lab work, library study, playground sports, and dor-
mitory break. Each task might concern services such as message 
management, schedule management, volume control, and network 
switching. The wizard generated contextual IF-THEN rules that 
could be implemented on the smartphone by considering both the 
natural language expressed by the user and the contextual infor-
mation that could be perceived on the phone. The wizard then 
communicated the rules back to the user in natural language that 
was understandable to the end-user. 

3.2 Findings 
The study involved a total of 30 tasks. Of these tasks, only 7 were 
confrmed by the user after the assistant’s frst response, while 21 
tasks involved collaboration with the wizard to modify the context 
conditions (19) or services (2). Additionally, 7 tasks required clarif-
cation of the context conditions. Our fndings suggest that users are 
typically able to describe their required services accurately. How-
ever, there are signifcant challenges in communicating context 
conditions between the user and the assistant, as we have out-
lined and presented in Table 1. These challenges include difculties 
with understanding user language and providing comprehensible 
interfaces. 

At the input level, there are two primary challenges regarding 
the language used by end-users within the context. 
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Ambiguity in Context Expressions: Users may employ vague 
or ambiguous terms that are difcult to convert into machine-
readable expressions. In the study, the wizard relied on their own 
comprehension to identify potentially relevant machine boolean 
expressions from the user’s ambiguous expressions. This under-
scored the need for machine assistants to possess strong language 
comprehension abilities and to be able to link high-level natural 
language with low-level context detectors. Moreover, since machine 
expressions corresponding to user language are not always unique, 
the machine must allow for modifcations of the generated results 
by the user. 

Omission of Context Information: Users may inadvertently 
leave out critical contextual information, making it challenging for 
the machine to comprehend their language. As users are aware 
of the wizard assistant’s context-awareness, they may sometimes 
omit some or all of the contextual descriptions, such as simply stat-
ing the service instructions or using contextual descriptions with 
referents (e.g., “in this case”). Users also commented that this ap-
proach reduces the cost of verbal expression and feels more natural. 
This highlights the importance of machine assistants incorporating 
contextual data to understand the user’s language. 

Providing comprehensible interfaces to users in the feedback 
and subsequent interaction stages also poses two challenges. 

Explanatory Afordance: Users require natural language ex-
planations of machine expressions and possible failures. During 
the study, participants expressed a desire to understand how a spe-
cifc context was recognized by the machine, and the wizard was 
required to use their expert knowledge to provide user-friendly 
explanations. This highlights the need for machine assistants to 
possess the ability to interpret low-level machine rules, especially 
boolean expressions composed of multiple detectors, into high-level 
language that is meaningful to the user. Additionally, users require 
feedback when the system fails to construct machine expressions 
for certain contexts, necessitating that the machine assistant has 
a clear understanding of the limits of the system’s context-aware 
capabilities and can determine when the context referred to by a 
particular user language input is beyond the system’s perceptual 
abilities. 

Concept-level Controls: In addition to modifying boolean ex-
pressions, users need the ability to make modifcations at the con-
cept level. When modifying context conditions, users generally do 
not use instructions that are consistent with the machine’s prede-
fned detectors (nor are they necessarily aware of the machine’s 
capabilities), but instead, use high-level concepts as units to mod-
ify. In rare cases, they may be interested in the machine’s boolean 
expressions corresponding to the concept. Therefore, the machine 
needs to provide the user with a more fexible modifcation inter-
face to accommodate the use of high-level concepts for modifying 
context conditions. 

4 LANGAWARE 
Inspired by the formative study, we present LangAware, a context-
aware natural language dialogue approach that allows end-users 
to actively construct personalized context rules within a context 
through natural language and simple interactions on the GUI. With 
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Figure 3: Building personalized context-aware systems in-
volves diferent layers of context abstraction and knowledge 
from both experts and end users. 

the help of LLM’s natural language understanding capabilities, end-
users can efectively interact with the machine using comprehensi-
ble natural language concepts, bridging the human-machine context 
gap. In this way, end-users can continuously teach the machine to 
build their personalized context-aware applications. For additional 
LangAware use cases, please refer to Appendix A. 

LangAware is designed to be adaptable to various context-aware 
systems, allowing for seamless integration once the detectors and 
services are predefned. Our approach can efectively shield users 
from machine details while better catering to their personalized 
needs. As shown in Figure 3, we decompose the context-aware 
system into several layers: sensor data, atomic detectors based on 
the processed sensor data, Shared Contextual Concepts (which 
we propose and will discuss further below), and the services they 
ultimately connect to. 

Expert knowledge is used to build connections from sensor data 
to atomic context detectors, encoding the system’s basic explainable 
context-aware capabilities (with semantic labels) as building blocks 
for subsequent context-aware applications. End-user knowledge is 
used to construct mappings from context detectors to Shared Con-
textual Concepts (context conditions in the context rules, i.e., the IF 
part), as well as connections from Shared Contextual Concepts to 
the required services (service actions in the context rules, i.e., the 
THEN part). 

As observed in the formative study, the main gap between hu-
mans and machines lies in context construction. In terms of services, 
since users usually communicate with machine assistants based on 
known system-provided services, it is relatively easy to match ser-
vices that meet user utterances from a predetermined list through 
semantics. For more complex service recommendation scenarios 
where users may not be aware of all services, the difculties in 
human-machine language communication are similar to the dif-
culties in human-machine context understanding. Therefore, we 
focus on the context construction process from context detectors 
to Shared Contextual Concepts. 
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We consider giving machine assistants the ability to perceive 
context beyond language, allowing human users and machine assis-
tants to communicate through natural language within the context. 
To address the challenges raised in the formative study, we further 
explore important design features in LangAware. 

4.1 Shared Contextual Concepts 
One of the major challenges in human-machine communication 
is that the context-aware semantics are diferent based on vary-
ing context-aware capabilities. Human concepts and machine ex-
pressions, which are combinations of detector variables, do not 
necessarily equate. However, the end-users’ utterances of context 
must be grounded in the context-aware capabilities supported by 
the system. To address the Explanatory Afordance Challenge men-
tioned in the formative study, we introduce human-machine Shared 
Contextual Concepts (SCCs). 

Specifcally, we defne an SCC as a pair of a natural language 
phrase and a machine Boolean expression, where the phrase serves 
as an interpretation of the expression, and the expression provides a 
concrete description of the phrase condition based on the machine’s 
capabilities (see the middle and right sections of Figure 1). In the 
context rules generated by LangAware, the IF situational condition 
part will be composed of several such SCCs connected by and. 

SCCs facilitate human-machine understanding of context and 
serve as an intermediary between human concepts and machine 
expressions. They are derived from both users’ utterances as well as 
the machine’s perception and comprehension capabilities, while still 
maintaining a high level of human understandability. For phrases 
in user utterances that cannot be perceived by the system, they 
do not have corresponding expressions and therefore cannot form 
SCCs. This will be refected during the SCC generation process (see 
Section 4.3) and be fed back to the user. 

When explaining contextual rules to users, the natural language 
phrases in SCCs can shield the details of machine expressions, al-
lowing users to focus on high-level semantics, which is particularly 
helpful when multiple concepts are involved in the rules. At the 
same time, this design is scalable. The natural language phrases in 
SCCs can be abstract or specifc, which is an inherent fexibility 
of natural language. As the capabilities of context-aware systems 
change in the future (e.g., by adding new detectors), the correspond-
ing machine expressions for the same natural language semantics 
will also be expanded. 

4.2 Conversational Interface 
As we can see from the formative study, even human-simulated 
assistants cannot generate results that fully meet users’ intentions 
in a single round of interaction. Users need to modify and check the 
machine-generated results through multiple rounds of interaction, 
continuously aligning their understanding of the context with the 
machine. At the same time, the formative study also mentioned the 
need to provide users with Concept-level Controls. Therefore, Lan-
gAware builds a natural language dialogue interface based on the 
proposed SCCs, allowing end-users to create and modify contexts 
in multiple rounds of interaction, ultimately generating contextual 
rules. 

Figure 4: Interaction workfow with LangAware. The “Col-
laborate” step consists of three options. 

As shown in Figure 4, users actively initiate a conversation with 
LangAware within the context. LangAware will respond with an 
interactive interface based on the current context and the user’s 
language input. This includes a natural language interpretation of 
the generated contextual rule and the SCCs involved in the inter-
pretation. Each SCC is displayed as a selectable checkbox, and users 
can also view the corresponding machine boolean expressions if 
they wish. If there are phrases in the user’s language input that 
cannot be perceived, the interface will indicate this information. 
Users can directly continue the conversation to modify or supple-
ment SCCs, or the services used. LangAware will adjust based on 
the generated results and then resend a modifed result. Users can 
also ask about the meanings of various parts of the contextual rule 
using natural language, and LangAware will reply with a natural 
language explanation. Finally, when the user is satisfed with the 
collaboratively generated contextual rule, they can click “confrm” 
or “cancel” if not. 

Based on this design, we hope that users can efectively generate 
and edit contextual rules through natural language as much as 
possible, without being constrained by a lack of professional knowl-
edge. At the same time, this collaborative process not only brings 
the machine closer to the context concepts intended by the user but 
also allows users to continuously understand the machine’s capabil-
ities in perceiving context, gradually closing the human-machine 
context gap. 
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4.3 Context Construction by Integrating 
Language and Contextual Data 

LangAware generates SCCs that meet users’ needs based on their 
natural language input and real-time context data. In response to 
the challenge of Ambiguity in Context Expressions discovered in 
the formative study, we leverage the powerful NLP capabilities of 
LLM to extract structured information, converting the semantics 
expressed by users into detector expressions supported by context-
aware systems. To address the challenge of Omission of Context 
Information, we need to supplement it with context data and utilize 
the semantic connection capabilities inherent in the LLM to abstract 
into more general user concepts. 

In more detail, we have designed the generation process as shown 
in Figure 5. When a user initiates a request to build a contextual 
rule in a specifc context, LangAware frst obtains the contextual 
state values (such as current time, location, foreground app on the 
phone, user’s physical activities, etc.) and recent detector events 
(e.g., receiving a new message, location change, noise change, etc.) 
from the detector models in the context-aware system. 

These models are expert-built computational models that can 
recognize semantically meaningful text labels from sensor data (not 
only hardware sensors but also graphical interfaces, messages, so-
cial media, and other forms of software sensors). These models may 
be deep (e.g., using neural networks to compute user motion states 
from IMU time series data) or white-box (e.g., determining user 
location information based on GPS coordinates). There has already 
been extensive research on these types of problems [9, 22, 31, 35]. 
Then, we convert the contextual state values into “variable_name 
= value” text and express detectable events on the phone within a 
short period (e.g., 5 minutes) as a list of text, including event name, 
event change content, and timestamp. Timestamps are described 
relative to the current time (e.g., “2 min 35 sec ago”). We concatenate 
the above text, calling it context detector results. 

An essential step in our generation process is context reconstruc-
tion. Context detector results provide a low-level description of the 
user’s context, but to more accurately capture user-intended SCCs, 
we need a high-level, integrated context description. Thus, we use 
the LLM to combine context detector results and user utterance to 

generate a short natural language text, inferring the user’s situation. 
This step is efective due to both the general knowledge possessed 
by the LLM and the interpretable naming of detector variables by 
experts. 

Next, we process the user utterance and context reconstruction 
description separately. From the high-level natural language text, 
we extract key phrases as context conditions, frst fnding the cor-
responding detector variables for each phrase through detector 
selection, and then expanding a boolean expression that matches 
the phrase’s semantics based on the chosen variables. It is worth 
noting that if a phrase cannot be detected, the output of the de-
tector selection will be empty, which will serve as the basis for 
our subsequent feedback to the user. Additionally, the expression 
expansion step utilizes the LLM’s general knowledge to recommend 
as many possible values for each detector (e.g., motion includes 
running, cycling, jumping, etc.). The results generated from both 
the language and context data streams will eventually merge into 
SCCs and fll in the user interface. 

After the frst round of results is generated, LangAware takes 
into account the generated rules when the user subsequently modi-
fes the contextual rule (whether it’s an SCC or a service). Based on 
this design, we utilize the LLM to connect user natural language 
semantics with contextual data semantics from sensors, enabling a 
better understanding and fulfllment of user intentions, and allow-
ing the contextual assistant to continuously engage with users in a 
more comprehensive context. 

5 EVALUATION 
We conducted a real-world user study to evaluate the usability of 
our system. To test the efectiveness of in-situ context information 
in enhancing the generation of contextual rules, we implemented 
LangAware on Android smartphones and compared it with a base-
line version that only uses language input without considering 
context information. We used a within-subject design, asking all 
participants to use both the LangAware and baseline versions of 
the assistant. 
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5.1 Implementation 
Both LangAware and the baseline version use Feishu Bot1 to build 
the front-end conversation interface, allowing users to input text 
through either typing or voice. Feishu Bot is controlled by our re-
mote server, which is also connected to the context library running 
in the background on our smartphones. 

Context rule generation is implemented on the remote server, 
including two parts: context condition generation and service map-
ping. The context condition part consists of a series of SCCs, 
where the boolean expressions are in Python syntax, and the 
context detector variables used are shown in Appendix Table 2. 
Specifcally, we introduce a new detector for natural language 
text: content_related_to(content, keywords), which deter-
mines whether the content is related to the keywords in the 
keywords list. For example, for “advertisement message”, it can 
be expressed as content_related_to(new_message.content, 
[’advertisement’]). 

The service action component can either be chosen from our pre-
defned service APIs (including volume adjustment, modifcation of 
notifcation modes for new messages, call mode alteration, network 
switching, etc.) or be generated by the LLM itself, adhering to the 
Python function call syntax. 

We use the gpt-3.5-turbo-0301 model from the ChatGPT API2 

as our driving LLM, due to its strong capabilities in following in-
structions. Our prompts are designed using an instruction-examples 
structure that is well-suited for LLMs without relying on version-
specifc features. This design allows our system for easy adaptation 
to newer versions of the LLM, such as GPT-4. 

Compared to LangAware, the baseline version does not accept 
the context data when users input language, i.e., the context data 
path represented by the yellow arrow at the bottom of Figure 5 is 
removed. Both versions share the pre-defned detector variables 
and service APIs. 

Further implementation details are provided in Appendix B. 

5.2 Participants 
We recruited 16 participants (diferent from those in the formative 
study) to evaluate these two systems in real-world scenarios. The 
participants consisted of 8 males and 8 females, aged between 18 
and 27 years old. Each session took 40 minutes to 1 hour, and all 
participants received compensation for their time. 

Before the study, we inquired about participants’ experience 
with IF-THEN rule programming (e.g., IFTTT). Only 2 participants 
reported having used such tools, while 4 participants indicated 
familiarity with them but no prior usage. The main reasons cited 
by participants for not using these tools included high usage costs 
and perceived limited practical benefts. 

5.3 Procedure 
Our study comprised two stages. 

In the frst stage, we engaged end-users with the assistants in real-
world scenarios. To avoid engineering problems caused by device 
diferences, we asked participants to use the Android phones we 
provided uniformly. Initially, we introduced the functions and usage 

1Feishu Open Platform: https://open.feishu.cn/ 
2ChatGPT API: https://openai.com/blog/introducing-chatgpt-and-whisper-apis 

of the assistants to the participants. To aid participants in efectively 
expressing their needs based on the assistant’s capabilities, we 
outlined the functional diferences between the LangAware and the 
baseline version. From 12 preset university campus scenario tasks, 
We randomly assigned 4 tasks to each participant, with every two 
tasks conducted at the same location. In each task, both LangAware 
and the baseline version were used (the order was counterbalanced 
across participants), resulting in 8 trials for each participant and 
128 trials in total. 

We employed a customized NASA-TLX based evaluation for 
each trial. After each trial, participants rated the following aspects 
(excluding the evaluation of waiting time for assistant response) on 
a 7-point Likert scale, with 1 being the most negative experience 
and 7 the most positive: 
• How mentally demanding was it to use this assistant? 
• How physically demanding was it to use this assistant? 
• How hurried or rushed was the pace of the interaction with this 
assistant? 

• How well do you think this assistant understands your inten-
tions? 

• How satisfactory do you think the fnal result generated by this 
assistant is? 

Once all 8 trials were completed, participants evaluated their overall 
experience with each version of the assistant on the same 7-point 
Likert scale: 
• To what extent did this assistant increase your understanding of 
its context-aware capabilities? 

• How easy was it to learn how to use this assistant? 
• How easy was it to generate context rules using this assistant? 
• How likely are you to use this assistant again in the future? 

Concluding interviews were conducted to acquire a deeper un-
derstanding of participants’ thought processes and verbal chal-
lenges; to assess their comprehension of SCC descriptions and 
identify any potential discrepancies in assistant’s comprehension; 
and to ascertain whether they paid attention to, understood, and 
expressed a desire to edit the boolean expressions. 

In the second stage, we invited three experts with experience 
in designing and developing context-aware systems to evaluate 
the contextual rules generated by LangAware. Referring to the pre-
defned detector variable list and user utterances, experts assessed 
the sufciency (how well a machine expression implies a phrase) 
and necessity (how well a phrase implies a machine expression) 
of the generated SCCs on a 5-point Likert scale. Additionally, they 
consulted the service API list to evaluate the accuracy of function 
selection and parameter generation in the action part of the rules. 

5.4 Tasks 
We have preset 12 campus scenario tasks divided into four cate-
gories: 
• Quiet library/study room with nearby students: prevent sudden 
audio output from the phone while watching videos casually; 
automatically play light music when using a focus app with 
headphones on; don’t output audio when the Bluetooth headset 
suddenly disconnects; block advertisement notifcations to avoid 
disturbing studies. 

https://open.feishu.cn/
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
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Figure 6: Histogram of the quantity of trials based on the 
number of modifcations made using (a) the baseline and (b) 
LangAware. 

• Noisy sports feld: avoid being disturbed by non-private chat 
messages while running and listening to music with headphones 
on; automatically start sports check-in records when entering 
the sports feld and start running, and automatically end records 
when stopping exercise. 

• Dormitory with/without roommates present: set ringtone re-
minders for messages from teachers; loudly remind about food 
delivery-related messages; ensure the alarm clock is turned on 
when there are morning classes; do not output audio from videos 
when others are present in the dormitory. 

• Noisy cafeteria: ring and vibrate when receiving messages; in-
crease the volume when listening to music or making phone 
calls. 

In addition, if users do not have real-life experiences related to the 
preset task, we allow them to adjust it according to their personal 
circumstances or propose a new task that genuinely addresses their 
needs. 

5.5 Results 
5.5.1 Success rate. Participants were allowed to discontinue rule 
generation according to their actual needs and when the perceived 
cost of generation exceeded their tolerance. Out of 64 trials per-
formed by 16 participants using the baseline system, 44 trials were 
successfully completed. In contrast, the number of successful trials 
using LangAware increased to 56 out of 64 trials. The diference in 
success rates between the baseline (� = 68.75%, �� = 21.41%) and 
LangAware (� = 87.50%, �� = 15.81%) was confrmed to be statis-
tically signifcant (�15 = −3.22, � < .01) through a paired-samples 
t-test. This enhanced success rate highlights the practical value of 
LangAware in efectively incorporating context information. 

5.5.2 Collaboration. The average interaction time for successful 
trials (excluding waiting time for the assistant’s response) was 
43.04s (�� = 27.72) for the baseline and 78.50s (�� = 50.11) for 
LangAware. 

During the successful trials using LangAware, there were 82 mod-
ifcations, with 67 (81.71%) being click modifcations (each change 
in the selected state of an SCC upon submission is counted as a click 
modifcation), and 15 (18.29%) being natural language modifcations 
(each text message sent, excluding the frst input, is counted as a 

language modifcation). This shows that most modifcations were 
done via clicks, indicating that LangAware efectively reduced the 
user interaction cost. As shown in Figure 6(b), the average num-
ber of modifcations made in successful trials using LangAware 
was 1.46, and 46 successful trials (82.14%) were completed with 
two or fewer modifcations. This demonstrates the efciency of the 
collaboration process. However, one participant, P7, strayed from 
the experimental instructions during initial use and explored the 
interface freely, resulting in 9 modifcations. This behavior was not 
repeated in his subsequent trials. 

Comparatively, the baseline version had a lower average mod-
ifcation number of 0.43 (19/44) in successful trials, as shown in 
Figure 6(a). However, only 2 (10.53%) of these modifcations were 
clicks on the GUI, with the majority completed through natural 
language. This might mean a higher cost of supplementing neces-
sary information compared to LangAware. Considering that the 
success rate of the baseline is lower than LangAware, this suggests 
that the baseline version, which generates SCCs based solely on 
user utterances, may struggle to help users complete their intended 
goals. 

5.5.3 Subjective ratings. Figure 7 presents the subjective rating re-
sults for both the baseline and LangAware. We utilized the Wilcoxon 
signed-rank test to measure the impact of context augmentation 
on various metrics. The results show that users’ ratings of low 
mental efort (� = 106.00, � < .05) and low physical demand 
(� = 90.00, � < .05) signifcantly improved with the adoption of 
the context-augmented LangAware system. Ratings of the perceived 
machine understanding (� = 122.50, � < .05) and users’ satisfac-
tion with the fnal generated rules (� = 130.50, � < .05) were 
also signifcantly improved. After completing all trials, LangAware 
outperformed the baseline version in terms of users’ enhanced un-
derstanding of machine capabilities (� = 107.50, � < .05) and their 
willingness to reuse the system (� = 125.00, � < .05). 

These improvements indicate that reconstructing user contexts 
based on sensor data efectively supplements important information 
potentially absent from user utterances, enabling users to generate 
more comprehensive and thorough SCCs with lower costs. As a 
result, LangAware allows users to construct their personalized 
contexts more quickly, accurately, and naturally. 

5.5.4 Generated rules. Expert evaluations of the successfully gen-
erated rules from LangAware indicate high accuracy in mapping 
high-level user concepts to low-level machine expressions. The 
SCCs achieved an average sufciency score (how well a machine 
expression implies a phrase) of 4.50/5 (�� = 0.77) and an average 
necessity score (how well a phrase implies a machine expression) 
of 4.50/5 (�� = 0.71); the actions had an average accuracy score of 
4.71/5 (�� = 0.54). These scores demonstrate the system’s ability 
to efectively detect corresponding user concepts in real environ-
ments, bridging the user’s high-level semantics and the machine’s 
low-level semantics. 

Additionally, out of the 325 SCCs generated by LangAware, 195 
(60.00%) involved either combinations of multiple detector variables 
(abstraction) or multiple value conditions for the same variable, 
which cannot be directly obtained from the current context. Despite 
their complexity, these SCCs received an average sufciency score 
of 4.41/5 (�� = 0.82) and an average necessity score of 4.37/5 (�� = 
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0.76) from experts, further demonstrating the system’s efective 
abstraction and generalization capabilities without compromising 
the quality of generated rules. 

5.6 Discussion 
In general, participants were satisfed with LangAware. During 
interviews, 11 out of 16 participants reported that expressing their 
intentions to the assistant was not difcult and that they could 
communicate in a conversational manner. The majority of partic-
ipants (excluding P1, P6, and P8) appreciated the context-aware 
assistant, which could provide them with SCCs that they had not 
considered but actually needed. The assistant sometimes exceeded 
their expectations. Participants found it easier to select and edit 
natural language phrases than to create a phrase from scratch. 

LangAware demonstrates strong support for personalization in 
many aspects. Each task scenario in the study was completed by 
5 or 6 participants. Interestingly, diferent participants exhibited a 
wide range of personalized characteristics within the same context 
and task. It is not surprising that users have diferent utterances 
for the same concept, such as “having a meal”, “in the canteen”, or 
“in the restaurant”, which all correspond to the boolean expression 
gps_position == ’canteen A’. What is worth noting is that 
diferent participants reasoned diferent context conditions for the 
same task. For example, in the task of avoiding disturbing others, 
P6 used “in a quiet public place”, generating the SCC using location 
and noise detectors, while P15 used “when there are people around”, 
generating the SCC using nearby phone number detectors. Simi-
larly, for the task of not being disturbed by messages while wearing 
headphones to run on the playground, P7 used “when I’m running 
and listening to music”, P2 used “when running on the playground”, 
and P1 used “when running with headphones on”. These diferences 
refect diferent users’ reasoning for solving the problem, resulting 
in the selection of diferent detector variables. Finally, it is worth 
emphasizing that the introduction of the content_related_to de-
tector, which specifcally handles text semantics, provides sufcient 

personalization, as the keywords it handles are inherently personal-
ized. For instance, diferent participants proposed judging whether 
the sender was a superior, colleague, or mentor to flter important 
messages, each with their understanding of importance. 

During the study, it was observed that non-professional users 
did not pay much attention to the machine expressions component 
of SCCs during system usage. Among the 8 participants with tech-
nical backgrounds, P2 and P13 expressed a desire to directly modify 
the expressions, while P7, P8, and P9 preferred to adjust numerical 
values in the expressions. On the other hand, P3 and P15 found that 
they were unwilling to modify machine expressions directly in a 
text editor and preferred to complete SCC modifcations through 
further communication with the assistant. Despite the availability 
of a natural language interface to inquire about the SCC’s imple-
mentation, few participants used this function during the study, 
even though they had received sufcient instruction. This indicates 
that the SCC-based interaction design of the system efectively 
hides machine details while ensuring efcient communication with 
users. However, it also highlights the importance of having accurate 
SCC machine expressions to ensure maximum usability, especially 
in cases where users do not inspect the expressions. 

The user interviews revealed potential issues with the system in 
real-world applications. P5, P6, and P7 mentioned that expressing 
their intentions and checking rules might be inconvenient in some 
cases, especially when they were busy. This implies that not all 
contexts are suitable for expressing preferences within the context 
and that alternative input methods may be needed. Moreover, the 
limitation of LLM computation speed causes our assistant to re-
spond slowly, which can negatively impact the user experience. The 
randomness of LLM also afects system performance, as seen in P8 
and P13 expressing that the assistant’s responses were not always 
stable in certain situations. Finally, P4 expressed concerns about 
the system’s actual execution efectiveness, stating that she would 
not use automation systems if their performance were not reliable 
enough. These observations suggest that the system needs to strike 
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a balance between usability and reliability to ensure optimal user 
satisfaction in real-world applications. 

6 LIMITATIONS AND FUTURE WORK 
The current work is an initial exploration of helping end-users build 
personalized contextual rules. LangAware considers the user’s ex-
pressed intentions through language, but it does not address the 
user’s underlying goals, which may not be explicitly stated or even 
recognized by the user. For instance, a user may request a reminder 
to wake up at 6 am every workday, but their underlying goal is to 
arrive at work on time. This rule may fail during holidays, resulting 
in the user being unnecessarily woken up. To address this issue, we 
plan to analyze and cluster SCC semantics after users have accumu-
lated a set of SCCs using LangAware. This will enable the creation of 
an interpretable SCC network and the provision of SCC recommen-
dations to users. Furthermore, we plan to investigate data-driven 
user behavior pattern mining methods for long-term operation, 
which will complement the proactive user-teaching approach of 
LangAware. Overall, these future directions aim to improve the 
system’s ability to capture users’ underlying goals and provide 
personalized solutions to users’ real-world problems. 

Despite its promising results, the practical application of LLMs 
still faces limitations. Their relatively slow computation speed can 
signifcantly afect the assistant’s response time, thereby compro-
mising the user experience. Additionally, LLMs’ token limit can re-
strict the number of examples in prompts and consequently impede 
their ability to efectively handle complex tasks. These challenges 
could be alleviated by using fne-tuned models in future work. Fur-
thermore, the randomness in LLM’s outputs can lead to instability, 
even though our pipeline design has mitigated this issue to some 
extent. To address these limitations, we will continue to monitor 
the latest developments in LLM research and strive to use more 
efcient, accurate, and practical LLMs in our system. 

7 CONCLUSION 
In this paper, we presented LangAware, a novel collaborative ap-
proach enabling end-users to construct personalized contexts in situ 
through natural language. Addressing the human-machine context 
gap, LangAware leverages large language models (LLMs) to seman-
tically connect low-level sensor detectors with high-level natural 
language. We introduced Shared Contextual Concepts (SCCs) as 
a medium for human-machine dialogue, fostering mutual under-
standing and consensus. 

Through a user study conducted in real-life settings with 16 
participants across 12 campus scenarios, we demonstrated Lan-
gAware’s efectiveness with an average success rate of 87.50% in 
defning contextual rules. LangAware outperforms the baseline in 
terms of success rate, user satisfaction, and other aspects, highlight-
ing the efectiveness of incorporating in-situ contextual data for 
context collaboration. Additionally, users reported that the collabo-
ration process with LangAware enhanced their understanding of 
the machine’s capabilities. 

Our work contributes to the development of personalized 
context-aware applications in IoT scenarios, paving the way for 
future research on collaborative human-machine approaches. 
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A EXAMPLE USE CASES OF LANGAWARE 

A.1 Accidental Headphone Disconnection 
Suppose a user is watching a video with headphones in a study room. 
An accidental disconnection of the Bluetooth headphones (e.g., due 
to low battery) can result in the video audio suddenly playing from 
the device’s speakers, thereby disturbing other students in the study 
room. 

To avoid this embarrassing situation, users can instruct Lan-
gAware: “Mute if earphones disconnected”. 

LangAware integrates the user’s utterance with contextual in-
formation from the detector and presents four context condition 
phrases in the form of checkboxes: “Earphones disconnected” (de-
rived from user utterance), “In a classroom”, “Quiet environment 
sound”, and “In the afternoon” (the latter three are generated based 
on detector data). Each phrase corresponds to an executable detec-
tor expression. 

At this point, if the user feels there are additional conditions that 
can be added and they have the time, they can send LangAware 
an additional message: “When others are around”. LangAware then 
supplements the “Others around” condition and generates the cor-
responding machine-executable expression. 

After confrming that the conditions meet their requirements, the 
user validates the generated rule: “IF the earphones get disconnected 
and you are in a classroom with other people around and the environ-
ment sound is quiet, THEN set media volume to 0.” When the future 
situation satisfes these conditions, this rule will be automatically 
executed. 

A.2 Never Miss a Courier Call 
To avoid interruptions from advertisements or sales calls during 
important work or meetings, users sometimes adjust their phone’s 
volume settings. However, some calls are very important: for ex-
ample, if a delivery driver cannot contact you for a long time, they 

will move on to the next delivery location, which means you might 
go hungry for a long time. Users might want their phones to pay 
special attention to incoming messages and calls related to food 
delivery, even when the phone volume is set low. 

To achieve this, a user can instruct LangAware: “Remind me when 
I receive messages related to food delivery.” 

LangAware generates the condition “Related to food 
delivery” and binds it to the content_related_to and 
new_message.source_app detectors, generating keywords 
like ’food delivery’, ’delivery man’ and a list of food delivery 
service apps such as ’Doordash’, ’Uber Eats’, ’Grubhub’, 
’Ricepo’ as parameters for the two detectors. This condition 
ofers a reasonable abstraction of the detectors and provides a 
generalizable solution. Additionally, it adds the condition “User is 
at home” based on the user’s context information perceived by the 
current detector, making the rule more precise and meeting the 
user’s real needs. 

After the rule generation is complete, in the future when 
the user’s context meets the conditions “Related to food deliv-
ery” and “User is at home”, the system will execute the operation 
adjustVolumeTo(volumeType=0, target=15) to set the phone 
message alert volume to 15. 

A.3 Proper Temperature Control 
Smart home systems, integrated with LangAware, can automati-
cally control home devices, such as heaters or air conditioners, by 
recognizing environmental conditions and user behavior patterns. 

For example, a user might prefer their room to be warm on cold 
mornings, which can make getting out of bed easier. They can 
instruct LangAware: “Please turn on the heater in advance on cold 
mornings.” LangAware generates the conditions “Cold weather” and 
“Early morning” and binds them to the corresponding weather and 
time detectors available in the system. Also, since the user may not 
want to turn on the heater when they’re not at home, LangAware 
generates a third condition “User is at home” based on the detector 
data and common sense. 

The fnal generated rule is: “IF it is a cold morning and the user is 
at home, THEN turn on the heater.” Once these conditions are met, 
the heater automatically turns on. 

B IMPLEMENTATION DETAILS 
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Figure 8: System architecture diagram. 

LangAware and the baseline system were both implemented us-
ing Android smartphones and a remote server, as shown in Figure 8. 
For the baseline version which does not need context information, 
the context library module is disabled. 
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Table 2: Context detector variables used in the implemented systems. 

Context Detectors Description Values 

Date & time Current date and time. e.g., “2023-03-24 16:26:58 Friday” 
GPS position Mapped building names on campus based on GPS e.g., “No. 6 canteen” 

coordinates. 
Activity Activity recognized by custom developed deep “still”, “walking”, “running”, “cycling” or “others” 

model using IMU data. 
Noise Continuous noise level in db detected using micro- >0 

phones every 2 seconds. 
Audio device Current using audio device type. “speaker”, “wired_headphones”, “wired_headset”, “bluetooth”, 

“usb_headset” or “unknown” 
Audio playing Whether the phone is playing audio, detected using True or False 

Android AudioPlaybackCapture API. 
Audio stream Audio stream type. “media”, “voice_call” or “ring” 
Volume Volumes of media, voice call, notifcation, ring and e.g., media_volume = 2, voice_call_volume = 5 

alarm. 
APP Current foreground APP, detected using Android e.g., “Zoom”, “YouTube” 

AccessibilityEvent. 
Network Network status. “no internet connection”, “connected to Wi-Fi” or “using mobile 

data” 
Network delay Network delay in ms. >= 0 
Wif name Connected Wif AP SSID. e.g., “Starbucks-5G” 
Wif BSSID Connected Wif AP BSSID. e.g., “a8:58:40:d7:13:b2” 
Screen orientation Screen orientation. “vertical” or “horizontal” 
Nearby PC Nearby PC number detected by Bluetooth scanning. >= 0 
Nearby phone Nearby phone number detected by Bluetooth scan- >= 0 

ning. 
Latest message Latest received notifcation within 5 minutes. e.g., 

new_message.title = “Daddy: how to make...”; 
new_messaage.content = “how to make my phone ring when 
i’m out of the house?”; 
new_message.source_app = “WhatsApp”; 
new_message.sender = “Daddy: How to make...”; 
new_message.type = “APP messages” 

The front-end dialogue interface was built using the Feishu Bot3. 
The Feishu app facilitates bidirectional HTTP communication with 
our server through the Feishu server, supporting user interactions 
with our customized Feishu Bot. Users can send messages either 
through typing or the speech-to-text function available in the Feishu 
app, which then forwards them to our server. Our bot responds to 
the users via message cards that contain explanatory text, checkbox 
controls for SCC selection, and button controls for confrmation 
or cancellation. Interactions with the message card lead to corre-
sponding updates on the card content, while new messages from 
the users are met with fresh message cards in response. 

The context library persistently runs in the background on the 
smartphone while maintaining a Socket.IO connection with the 
remote server. This library implements a variety of detectors that 
process raw sensor data into semantically meaningful results, such 
as time, location, activity, messages, and more. Refer to Table 2 for 
a comprehensive list of detectors. 

3Feishu Open Platform: https://open.feishu.cn/ 

The context rule generation module is executed on the remote 
server and consists of four components: condition generation, ser-
vice mapping, rule modifcation, and rule explanation. The con-
dition generation component corresponds to the generation of 
SCCs proposed in Section 4.3. Each boolean expression of an SCC 
conforms to Python syntax and is composed of pre-defned con-
text detector variables (see Table 2) and the newly introduced text 
detector content_related_to. The service mapping component 
transforms natural language into service API calls in Python syntax, 
which can be selected from a heuristically pre-defned list (includ-
ing volume adjustment, modifcation of notifcation modes for new 
messages, call mode alteration, network switching, etc.), or gen-
erated by the LLM itself. The rule modifcation component alters 
the generated rule based on the user’s instructions, while the rule 
explanation component provides a natural language explanation in 
response to the user’s queries. 

In both our LangAware and baseline implementations, we uti-
lized the gpt-3.5-turbo-0301 model via the ChatGPT API4, with 

4ChatGPT API: https://openai.com/blog/introducing-chatgpt-and-whisper-apis 

https://open.feishu.cn/
https://openai.com/blog/introducing-chatgpt-and-whisper-apis
https://Socket.IO
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a temperature setting of 0.2 to generate a relatively deterministic efectively. For instance, during the logical analysis stage of user ut-
terances, we frst prompt the LLM to mark keywords, then proceed 
to semantic analysis. Our fndings indicate that this keyword anno-
tation practice enhances the LLM’s comprehension of inputs and 
the quality of outputs. Please refer to the supplementary materials 
for the prompts used in the paper. 

output. Our prompts follow a dialog format, where the “system” 
section presents the core requirements of each task, and the “user” 
section provides detailed instructions. Once the instructions are 
set, we supplement user-assistant dialogues with illustrative exam-
ples, promoting a clearer understanding of the expected outcomes 
and task requirements. Additionally, we incorporate a Chain-of-
Thought [43] strategy in some prompts to aid the LLM in reasoning 
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