FS-COCO: Towards Understanding of Freehand Sketches
of Common Objects in Context.

Yulia Gryaditskaya'?3
Yi-Zhe Song!?

Aneeshan Sain'? Ayan Kumar Bhunia!

Tao Xiang!?

Pinaki Nath Chowdhury!+2

! University of Surrey, CVSSP, United Kingdom
2 iFly Tek-Surrey Joint Research Centre on Artificial Intelligence
3 Surrey Institute for People-Centred AI, UK

2203.02113v1 [cs.CV] 4 Mar 2022

arxiv

Abstract

We advance sketch research to scenes with the first
dataset of freehand scene sketches, FS-COCO. With prac-
tical applications in mind, we collect sketches that convey
well scene content but can be sketched within a few minutes
by a person with any sketching skills. Our dataset com-
prises 10, 000 freehand scene vector sketches with per point
space-time information by 100 non-expert individuals, of-
fering both object- and scene-level abstraction. Each sketch
is augmented with its text description. Using our dataset,
we study for the first time the problem of the fine-grained im-
age retrieval from freehand scene sketches and sketch cap-
tions. We draw insights on: (i) Scene salience encoded in
sketches with strokes temporal order; (ii) The retrieval per-
formance accuracy from scene sketches against image cap-
tions; (iii) Complementarity of information in sketches and
image captions, as well as the potential benefit of combining
the two modalities. In addition, we propose new solutions
enabled by our dataset: (i) We adopt meta-learning to show
how the retrieval model can be fine-tuned to a new user style
given just a small set of sketches, (ii) We extend a popular
vector sketch LSTM-based encoder to handle sketches with
larger complexity than was supported by previous work.
Namely, we propose a hierarchical sketch decoder, which
we leverage at a sketch-specific “pretext” task. Our dataset
enables for the first time research on freehand scene sketch
understanding and its practical applications.

1. Introduction

As research on sketching thrives [0, 14,20,42], the focus
shifts from an analysis of quick single-object sketches to an
analysis of scene sketches [16,29,63], and professional [ 18]
or specialised [55] sketches. In the age of data-driven com-
puting, conducting research on sketching requires represen-
tative datasets. For instance, the inception of object-level

SketchyCOCO Our Dataset 0

Image

SketchyCOCO Our Dataset

Figure 1. Existing datasets of scene sketches SketchyScene
[63] and SketchyCOCO [16] are obtained by combining to-
gether clip-arts and sketches of individual objects, respectively.
In this figure, we compare our sketches to scene sketches from
SketchyCOCO. It can be observed that our freehand scene
sketches exhibit object and scene level abstraction, and better cap-
ture the content of reference scenes. Moreover, the sketches in
our dataset contain temporal strokes order information. We visu-
alize the strokes order using the “Parula” color scheme: strokes in
“blue” are drawn first, strokes in “yellow” are drawn last.

sketch datasets [14,19,20,42,46,60] enabled and propelled
research in diverse applications [5,6, 10]. Recently, increas-
ingly more attempts are conducted towards not only col-
lecting the data but also understanding how humans sketch
[6,19,21,56,59]. We extend these efforts to scene sketches
by introducing FS-COCO, the first dataset of 10, 000 unique
freehand scene sketches, drawn by 100 non-expert partic-
ipants. We envision this dataset to permit a multitude of
novel tasks and to contribute to the fundamental understand-
ing of visual abstraction and expressivity in scene sketch-
ing. With our work, we make the first stab in this direction:
We study fine-grained image retrieval from freehand scene
sketches and the task of scene sketch captioning.

Thus far, research on scene sketches leveraged semi-
synthetic [16, 29, 63] datasets that are obtained by com-
bining together sketches and clip-arts of individual objects.
Such datasets lack the holistic scene-level abstraction that
characterises real scene sketches. Fig. 1 shows a visual
comparison between the existing semi-synthetic [16] scene
sketch dataset and ours FS-COCO. It shows interactions be-
tween scene elements in our sketches and diversity of ob-



jects depictions. Moreover, our sketches contain more ob-
ject categories than previous datasets: Our sketches contain
95 categories from the COCO-stuff [7], while sketches in
SketchyScene [63] and SketchyCOCO [16] contain 45 and
17 object categories, respectively.

Our dataset collection setup is practical applications-
driven, such as the retrieval of a video frame given a quick
sketch from memory. Therefore we collect easy to rec-
ognize but quick to create freehand scene sketches from
recollection (similar to object sketches collected previously
[14,42]). As reference images, we select photos from the
MS-COCO [28], a benchmark dataset for scene understand-
ing, that ensures diversity of scenes and is complemented
with rich annotations in a form of semantic segmentation
and image captions.

Equipped with our FS-COCO dataset, we for the first
time study the problem of a fine-grained image retrieval
from freehand scene sketches. First, we study how indica-
tive is the performance observed through training and test-
ing on semi-synthetic datasets [16, 63], that are easier to
collect, of the performance on freehand sketches. Then, in
our work we aim at understanding how scene-sketch-based
retrieval compares to text-based retrieval, and what infor-
mation sketch captures. To obtain a thorough understand-
ing, we collect for each sketch its text description. The text
description makes the subject who created the sketch, elimi-
nating the noise due to sketch interpretation. By comparing
sketch text descriptions with image text descriptions from
the MS-COCO [28] dataset, we draw conclusions on the
complementary nature of the two modalities: sketches and
image text descriptions.

Our dataset of freehand scene sketches enables analysis
towards insights into how humans sketch scenes, not pos-
sible with earlier datasets [16]. First, the diversity of user
styles and large number of sketch instances for each of par-
ticipants allows us to demonstrate the potential of personal-
ization in sketch-related tasks. In particular, we adopt meta-
learning [2, 15] to increase the accuracy of the retrieval for
a particular subject given a few sketch examples, captur-
ing abstraction specific to this subject. Second, we continue
the recent trend on understanding and leveraging strokes or-
der [6, 18, 19,56] and observe the same trends of coarse-to-
fine sketching in scene sketches. Notably, we study salience
of early versus latter strokes for the retrieval task. Finally,
we study the task of sketch-captioning as an example of a
sketch understanding task.

Collecting human sketches is costly, and despite our
dataset is relatively large-scale, it is hard to reach the scale
of the existing datasets of photos [34,44,48]. To tackle this
known problem of sketch data, recent work [5, 35] to im-
prove the performance of the encoder-decoder-based archi-
tectures on the downstream tasks proposed to pre-train the
encoder relying on some auxiliary task. They showed that

this strategy is beneficial over pre-training on photos. Last
but not least, in our work we build on [5] and consider the
auxiliary task of raster sketch to vector sketch generation.
Since our sketches are more complex than those of single
objects considered before, we propose a dedicated hierar-
chical RNN decoder. We demonstrate the efficiency of the
pre-training strategy and our proposed hierarchical decoder
on the fine-grained retrieval and sketch-captioning tasks.

In summary, our contributions are: (1) We propose the
first dataset of freehand scene sketches and their captions;
(2) We study for the first time fine-grained freehand-scene-
sketch-based image retrieval (3) and the relations between
sketches, images and their captions. (4) Contributing to
sketch understanding, we study personalization with meta-
learning, strokes salience and sketch-captioning tasks. (5)
Finally, to address the challenges of scaling sketch datasets
and complexity of scene sketches, we introduce a novel hi-
erarchical sketch decoder. We leverage this decoder at the
pre-training stage for the fine-grained retrieval and sketch
captioning tasks.

2. Related Work

Single-Object Sketch Datasets Most freehand sketch
datasets contain sketches of individual objects, annotated at
the category level [14,20] or part level [17], or have paired
photos [42, 46, 60] or 3D shapes [39]. Category-level and
part-level annotations enable tasks such as sketch recogni-
tion [43,61] and sketch generation [0, | 7]. Paired datasets
allow to study practical tasks such as sketch-based image
retrieval [60] and sketch-based image generation [54].

However, collecting fine-grained paired datasets is time-
consuming since one needs to ensure accurate, fine-grained
matching while keeping the sketching task natural for the
subjects [23]. Hence, such paired datasets typically con-
tain a few thousand sketches per category, e.g., QMUL-
Chair-V2 [60] consists of 1432 sketch-photo pairs on a sin-
gle ‘chair’ category, Sketchy [42] has an average of 600
sketches per category, albeit over 125 categories.

In contrast, our dataset contains /0,000 scene sketches,
each paired with a ‘reference’ photo and text description. It
contains scene sketches that are more challenging to collect
and excels the existing fine-grained datasets of single-object
sketches in the amount of paired instances. It will foster re-
search on scene-sketch-understanding, retrieval, and diverse
generative tasks (e.g., sketch-based image generation).

Scene Sketch Datasets Probably the first dataset of 8,694
freehand scene sketches was collected within the multi-
model dataset [3]. It contains sketches of 205 scenes, but the
examples are not paired between modalities. Scene sketch
datasets with the pairing between modalities [16, 63] have
started to appear, however they are ‘semi-synthetic’. Thus,
the SketchyScene [603] dataset contains 7, 264 sketch-image



Table 1. Comparison of scene sketch datasets: SketchyScene [
tation labels to compute the statistics on categories present in [ 16,

], SketchyCOCO [
]. For our dataset, we look for the occurrence of one of COCO-Stuff [7]

] and FS-COCO. We use the semantic segmen-

categories in sketch captions. Our dataset is well-balanced, 95 categories are uniformly distributed among sketches with the lowest standard

deviation among the datasets.

Dataset Abstraction # pho- | Vector | Cap- | Free- | #cate- # categories per sketch # sketches per category
Object  Scene tos Sketch | tions | hand | gories | Mean Std | Min Max Mean Std Min Max
SketchyScene 4 X 7,264 X X X 45 7.88 1.96 4 20 | 1087.02 1416.49 31 5723
SketchyCOCO X 4 14,081 X X X 17 3.33 0.9 2 7 | 193241 3388.72 33 9761
FS-COCO (ours) 4 v 10,000 4 v 4 95 1.37  0.57 1 5 89.72 159.9 1 853

pairs. It is obtained by providing participants with a ref-
erence image and clip-art like object sketches to drag-and-
drop for scene composition. The augmentation is performed
by replacing object sketches with other sketch instances be-
longing to the same object category. SketchyCOCO [16]
was generated automatically relying on the segmentation
maps of photos from COCO-Stuff [7] and leveraging free-
hand sketches of single objects from [14,20,42]. Unlike ex-
isting semi-synthetic datasets, our dataset of freehand scene
sketches captures abstraction on the intrinsic object level
and holistic scene level (Tab. 1).

Sketch Understanding The lack of freehand scene
sketch datasets severely limits the proliferation of research
on scene sketch understanding. Nevertheless, leveraging
the semi-synthetic datasets previous work studied scene
sketch semantic segmentation [63], scene-level fine-grained
sketch based image retrieval [29], and image generation
[16]. Uniquely, our goal is to enable the analysis of free-
hand scene sketches. Following the footstep of understand-
ing scenes in photos [31,53,58], we study sketch captioning
for the first time using the paired sketch-text instances avail-
able in our dataset.

3. Dataset Collection

Targeting practical applications, we aimed to collect
freehand scene sketches with object- and scene-levels of
abstraction. Therefore, we define the following require-
ments towards collected sketches: (1) created by non-
professionals, (2) fast to create, (3) recognizable, (4) paired
with images, and (5) supplemented with sketch-captions.

Data preparation We randomly select 10k photos from
MS-COCO [28], a standard benchmark dataset for scene
understanding [8, 9, 41]. Each photo is accompanied by
image captions [28] and semantic segmentation [7]. Our
selected subset of photos includes 72 “things” instances
(well-defined foreground objects) and 78 “stuff” instances
(background instances with potentially no specific or dis-
tinctive spatial extent or shape: e.g., “trees”, “fence”), ac-
cording to the classification introduced in [7].

Task We built a custom web application' to engage 100
participants, each annotating a distinct subset of 100 photos.
Our objective is to collect easy-to-recognize freehand scene
sketches drawn from memory, alike single-object sketches
collected previously [14,42]. To imitate real world scenario
of sketching from memory, following the practice of sin-
gle object dataset collection, we showed a reference scene
photo to a subject for a limited duration of 60 seconds. To
ensure recognizable, but not overly detailed drawings, we
also imposed time constraints on the duration of the sketch-
ing. We determined the optimal time limits through a se-
ries of pilot studies with 10 participants, which showed that
3 minutes were sufficient for participants to comfortably
sketch recognizable scene sketches. Repeated sketching tri-
als were allowed, with a subject making 1.7 trials on av-
erage. Each trial repeats the entire process of viewing and
sketching from a blank canvas. To reduce fatigue that can
compromise data quality, we encourage participants to take
frequent breaks and complete the task over multiple days.
Hence, each participant spent 12 — 13 hours to annotate 100
photos over an average period of 2 days.

Upon satisfaction with their sketch, we ask the same sub-
ject to describe their sketch in text, where instructions? to
write a sketch caption are similar to that of Lin et al. [28].

Finally, to perform sketches quality check, we hired one
dedicated person as a human judge (1) with experience in
data collection and (2) non-expert in sketching. A human
judge was tasked with the instruction: “flag scene sketches
that are too difficult to understand or recognize”. The
flagged photos were sent back to their assigned annotator.
This process guarantees the resulting scene sketches are rec-
ognizable by a human, and hence in principle, should be
understood by a machine.

Participants We recruited 100 participants, non-experts
in sketching, from the age group 22 — 44, with the mean
age of 27.03, comprising 72 males and 28 females”.

Dataset composition Our dataset consists of 10,000 (a)
unique freehand scene sketches, (b) textual descriptions of

'We will release the code for the annotation tool and backend-server
script upon acceptance.

2We provide the detailed instructions in the Supplemental.

3See supplemental for details on how consent was obtained.



Table 2. Evaluation of a domain gap between ‘semi-synthetic’ sketches [16,

] and freehand sketches FS-COCO. We show a quantitative

comparison for fine-grained scene sketch-based image retrieval using some of the most popular and latest methods, see Sec. 4.1 for the
details. Top-1/Top-10 accuracy (R@1/R@10) calculates the percentage of test sketches for which the ground-truth image is among the

first 1/10 ranked retrieval results. For SketchyCOCO [

], following Liu et al. [
each scene sketch contains at least one foreground object. For SketchyScene [

], we adopt the standard 1015/210 train/test split, where
], we use the standard train/test split of 2472 /252 sketch-

photo pairs. For our dataset FS-COCO 70% of each user sketches are used for training and the remaining 30% for testing. This results
in 7000/3000 train/test split. In each experiment the image gallery size is equal to the test size. Note how training on ‘semi-synthetic’
datasets (Sket chyScene, SketchyCOCO) generalizes poorly to freehand sketches FS-COCO, limiting its practical usage.

Trained On
SketchyScene (S-Scene) [63] SketchyCOCO (S-COCO) [16] FS-COCO (Ours)
Methods
Evaluate on Evaluate on Evaluate on
S—Scene S-coco | FS-COCO | s-Scene S-coco | FS-COCO | s-Scene s-coco | FS-COCO
R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10
Siam.-VGG16 [60] | 22.8 435 | 1.1 41 |18 6.6 |03 21 |376 806 |[<0.1 04 |58 245 |24 116 |233 526
HOLEF [47] 226 442 (12 39 |17 59 |04 23 |383 85|01 04 |60 247 |22 119 |228 53.1
CLIP zero-shot [41]| 1.26 9.70 | — - - - - 1.85 941 | - - - - - - | 1.17 6.07
CLIP* 86 248 | 1.7 66 |25 82 |13 51 |153 439 | 06 3.1 1.6 119 | 26 125 |55 265

the sketches (sketch captions), (c) reference photos from
the MS-COCO [28] dataset. Each photo in [28] contains
5 associated text descriptions (image captions) by different
subjects [28]. Fig. S9 provides some examples, while Tab. 1
provides comparison with previous dataset and statistics on
distribution of object categories in our sketches. The sup-
plemental provides additional sketch examples and detailed
statistics on object categories.

4. Towards scene sketch understanding

In this section, we aim at a deeper understanding of
freehand scene sketches. In particular, (i) first, we analy-
sis of the performance of fine-grained image retrieval from
scene freehand and ‘semi-synthetic’ sketches from [16,63].
(ii) Then, we analyze the complexity of our sketches and
strokes usage over time. (iii) Next, we drive out insights
on how well a sketch describe a reference image. (iv) We
then evaluate a sketch against a text description and ex-
plore the role of sketches and text in fine-grained image re-
trieval: Given the same amount of training data, is scene
sketch or text a better alternative as a query? (v) More-
over, we analyze the potential synergy between image cap-
tions and sketches. (vi) Importantly, for the first time, we
study the problem of sketch captioning — an important task
towards sketch-understanding. (vii) We conclude this sec-
tion by analyzing the generalization of scene Sketch-Based
Image Retrieval (SBIR) to the sketches by ‘unseen’ partic-
ipants. We show how meta-learning can be used to adapt
a generic model to a user-specific model — thus motivating
future sketch research in personalized Al.

4.1. Fine-grained retrieval

To study the domain gap between existing ‘semi-
synthetic’ and our freehand scene sketches, we evaluate the
SOTA methods FG-SBIR (Tab. 2). Siam.-VGGI16 adapts
pioneering method [60] by replacing Sketch-a-Net [01] fea-

ture extractor with VGG16 [45] trained using the triplet
loss [52,57]. HOLEF [47] extends Siam.-VGGI6 by lever-
aging spatial attention to better capture fine-scale details
and introducing a novel learnable distance function in the
context of the triplet loss.

In addition, we explore CLIP [41], a recent SOTA
method that has shown an impressive generalization abil-
ity across several photo datasets [28, 38]. CLIP (zero-shot)
uses the pre-trained photo encoder, trained on 400 million
text-photo pair. In our experiments, we use the publicly
available ViT-B/32 version* of CLIP that use visual trans-
former backbone as feature extractor. Finally, CLIP* adapts
CLIP to our freehand scene sketch dataset. Since we found
training CLIP to be very unstable, we only train the layer
normalization [4] modules and add a fully connected layer
to map sketch and photo representation to a shared 512 di-
mensional feature space. We train CLIP* using triplet loss
with batch size 256 and a low learning rate of 0.000001.

We train each model on the sketches from one of the
three datasets: SketchyCOCO [16], SketchyScene [63] and
FS-COCO (ours). Tab. 2 shows that training on ‘semi-
synthetic’ sketch datasets like SketchyCOCO [16] and
SketchyScene [63] with limited number of categories does
not generalize to freehand scene sketches from our dataset
with larger set of categories. This demonstrates the impor-
tance of our dataset. In the supplemental, we provide a com-
prehensive benchmarking by evaluating alternative sketch
and image encoders.

As the image gallery when tested on our sketches is
lager than for other datasets, the performance metrics on
our sketches in Tab. 2 are lower even when trained on our
sketches. For a more fair comparison, we create 10 addi-
tional test sets consisting of 210 sketch-image pairs (the
image gallery size of the SketchyCOCO dataset) by ran-
domly selecting them from the original set of 3000, we

4https://qithub.com/openai/CLIP
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Figure 2. Sketching strategies in our freehand scene sketches:
Sec. 4.2. (a) Humans follow a coarse-to-fine sketching strategy,
drawing longer strokes first. (b) Humans draw strokes more salient
for the retrieval task early on. We plot the Top-10 (R@10) retrieval
accuracy when certain strokes at test time are masked. Top-10
accuracy calculates the percentage of test sketches for which the
ground-truth image is among the first 10 ranked retrieval results.

achieve the highest retrieval accuracy training and testing
on our data. For Siam-VGG16, the average retrieval accu-
racy and its standard deviation over ten splits are: Top-1
is 50.39% = 2.15% and Top-10 is 89.38% = 2.0%. For
C LIP~, the average retrieval accuracy and its standard de-
viation over ten splits are: Top-1 is 42.53% + 3.16% and
Top-10 is 87.93% + 2.14%. These high performance num-
bers show the high quality of the sketches in our dataset.

4.2. Strokes composition in freehand sketches

Sketch complexity Existing datasets of freehand sketches
[14,42] contain sketches of single objects. The complex-
ity of scene sketches is unavoidably higher than the one of
single-object sketches. Sketches in our dataset have a me-
dian stroke count of 64. For comparison, a median strokes
count in the popular Tu-Berlin [14] and Sketchy [42]
datasets is 13 and 14, respectively.

4.3. What does sketch capture?

Sketching strategy We observe that humans follow a
coarse-to-fine sketching strategy in scene sketches: in Fig. 2
(a) we show that the average stroke length decreases with
time. Similarly, coarse-to-fine sketching strategies were
previously observed in single object sketch datasets [14,

,42,56]. We also verify the hypothesis that humans
draw salient and recognizable regions early on [6, 14, 42].
We first train the classical SBIR method [60] on sketch-
image pairs from our dataset: 70% of each user sketches
are used for training and 30% for testing. During evalua-
tion we follow two strategies: (i) We progressively mask a
certain percentage of strokes drawn early on — indicated by
the red line in Fig. 2 (b). (ii) Next, we progressively mask
strokes drawn towards the end — indicated by the blue line
in Fig. 2 (b). We observe that masking strokes towards the
end has smaller impact on the retrieval accuracy than mask-
ing early strokes. Thus we quantitatively verify that humans
draw longer (Fig. 2a) and more salient for retrieval (Fig. 2b)
strokes early on.

4.3.1 Sketch captions vs. image captions

To gain insights into what information sketch captures we
compare sketch captions and image captions. The vocabu-
lary in our sketch captions overlaps with that of image cap-
tions by 81.50%. In particular, comparing sketch and image
captions for each instance reveals that on average 66.5%
words in sketch captions are common with image captions
whereas 60.8% words overlap among the 5 available cap-
tions of each image. This indicates that sketches preserve
a large fraction of information in the image. However, the
sketch captions in our dataset are on average shorter (6.55
words) than image captions (10.46). We explore this differ-
ence in more detail by visualizing the word cloud for sketch-
and image captions. From Fig. 4 we observe that unlike
image captions, sketch descriptions do not use “color” in-
formation. In addition, as shown in Fig. S9, we compute
the percentage of nouns, verbs, and adjectives in sketch and
image captions, showing that our sketch captions are likely
to focus more on objects (i.e., nouns like “horse”) and their
actions (i.e., verbs like “standing”) instead of focusing on
attributes (i.e., adjectives like “a brown horse”).

4.3.2 Freehand sketches vs. image captions

We compare freehand scene sketch with textual descrip-
tion as queries for fine-grained image retrieval. We eval-
uate two baselines: (1) CNN-RNN the simple and classic
approach that encodes text using LSTM and image using
a CNN encoder (VGG-16 in our implementation) [24, 51],
and (2) CLIP [41] which is one of state-of-the-art methods
alongside [25] in text-based image retrieval. Both CLIP and
Oscar [25] require training on huge datasets to be competi-
tive. For purity of experiments we evaluate here CLIP, as its
training data did not include MS-COCO dataset from which
the reference images in our dataset are coming from.

CNN-RNN and CLIP* are trained with a triplet loss.
CLIP zero-shot uses off-the-shelf ViT-B/32 weights. CLIP*
is fine-tuned on our sketch-captions by fine-tuning only
layer normalization modules [4] with batch size 256 and
learning rate 1le — 7. We use the same split to train/test sets
as in Tab. 2. For image-captions-based retrieval we use the
same set of images and randomly select one of 5 available
caption versions.

Tab. 3 shows that image captions result in better retrieval
performance compared to sketch captions, containing ad-
ditional information such as color. However, comparing
Tab. 2 and Tab. 3 we observe that image captions are inferior
to sketches for fine-grained image retrieval. While CLIP*,
using image captions as queries (Tab. 3), reaches close to
R@10 accuracy of Siam.-VGGI6 (Tab. 2) using sketches
as queries (Tab. 2), this is due to pre-training CLIP* on 400
million text-photo pairs, whereas Siam.-VGG16 was trained
on a much smaller set of 7000 sketch-photo pairs.



- . ’
Lo
i
l ” ‘_p l-|i-‘|-'
A sheep is eating sheep One giraffe standing on The giraffes
the grass a grass and one giraffe
(a) grass sitting on a grass

o I Image-Captions
ﬁ, : g H Sketch-Captions
i3Il s Overlapping

Percentage(%)

~
<
©

o
8o Y an
<[ glo o~
2= < <

)
Qe‘\os d\eéﬂe
X

Horses are standing 0
near a fence and horses standing

N
trees (b) WO

Figure 3. A qualitative and quantitative comparison of image- and sketch-captions. (a) The overlapping words are marked in Blue, the

words present only in image-captions are marked in

, while the words present only in sketch-captions are marked in Green. (b)

Percentage of nouns, verbs and adjectives in image captions, sketch captions, and their overlapping words.

werwhite e (at 21de- bikes1gn

p = L hte SLgnglll :
green : 1Mage frujit ... eldStr ?E‘I""_‘”“; ’EL as
pillewphotograph &7 : pLctuce - iSKale:
T T EHL-L St ihaard s o ey WAYE
: b3.:-1%Er_}.‘r..-c-,-r_.et\_ﬂfo' *0 ‘clockhouse Y

(a) Image Captions (b) Sketch Captions
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ring words in image captions and sketch captions, respectively.
The large is the word the more frequent it is. It shows that color

information such as “white”, “green” is present in image captions
but is missing from sketch captions.

Table 3. Text-based image retrieval: Comparing fine-grained im-
age retrieval when using image captions or sketch captions as input
query. Image captions lead to superior result than sketch captions
but inferior to SBIR, given same amount of training data.

Retrieval accuracy
Image Captions | Sketch Captions
Methods R@1 R@10 R@1 R@10
CNN-RNN [46] 11.1 31.1 72 23.6
CLIP zero-shot [41] 21.0 50.9 11.5 353
CLIP* 22.1 523 14.8 36.6

This leads to two conclusion: (i) scene sketches can
achieve higher fine-grained image retrieval accuracy than
text descriptions, and (ii) scene sketches intrinsically en-
code fine-grained visual cues that is difficult to convey in
text, hence sketch captions lead to inferior retrieval accu-
racy than image captions (which contains additional infor-
mation such as “color”).

4.3.3 Text and sketch synergy

While sketches have shown superior ability in expressing
fine-grained visual cues, image captions convey additional
information such as “color”. We explore if a combination
of both query modalities compliment each other to improve
fine-grained image retrieval. Following [30], we use two
simple approaches to combine sketch and text: (i) concate-
nate feature representation of sketch and text followed by a
fully connection layer (-concat) (ii) additive approach that
aggregates features from sketch and text (-add). Tab. 4

shows that combining image captions and scene sketches
improves fine-grained image retrieval. This confirms that
scene sketch compliments the information conveyed by text.
Table 4. Scene Sketch + Text-based fine-grained image retrieval:

Combining both visual cues in scene sketch and semantic informa-
tion in text leads to enhanced result across several state-of-the-arts.

Methods R@1 R@10
CNN-RNN [46] -add 253 55.0
CNN-RNN [46] -concat 24.3 53.9
CLIP* -add 23.9 53.5
CLIP* -concat 23.3 52.6

4.4. Are scene sketches more informative than
single-object ones?

To answer this question, we evaluate the generalization
ability when trained either using object sketch or scene
sketches. Training and testing Siam.-VGGI6 on object
(Sketchy) and our scene (FS-COCO) sketch datasets gives
43.6 and 23.3 Top-1 retrieval accuracy (R@1), respectively.
Next, we perform cross-dataset evaluation where a model
trained on object sketches is evaluated on scene sketch
dataset and vise-versa. Tab. 5 shows that training on object
and testing on scene sketches significantly reduces R@1
from 23.3 to 4.3. However, training on scene and testing
on object sketches leads to a smaller drop in R@1 from
43.6 to 29.8. This indicates that scene sketches are more
informative than single-object ones for the retrieval task.

Table 5. We evaluate the generalization ability of scene sketches
(ours) and object sketches [42] on the fine-grained sketch-based
image retrieval task (Sec. 4.4). We show a top-1 retrieval accuracy
R@1 in this table.

Trained on object sketches [42] Trained on scene sketches
Tested on sketches (R@1): Tested on sketches (R@1):

object [42] scene (ours) object [42] scene (ours)

43.6 43 29.8 233

4.5. Sketch Captioning

While scene sketches are a pre-historic form of human
communication, scene sketch understanding is nascent. Ex-
isting literature has solidified captioning as a hallmark task



Table 6. Sketch captioning (Sec. 4.5): our dataset, for the first
time, enables captioning of scene sketches. We provide the results
of the popular captioning methods, developed for photos. For the
evaluation, we use the standard metrics: BELU (B4) [36], ME-
TEOR (M) [1 1], ROUGE (R) [26], CIDEr (C) [50], SPICE (S) [!].

Methods B4 M R C S
Xu et al. [58] 137 17.1 449 694 145
AG-CVAE [53] 16.0 189 49.1 805 158
LNFMM [31] 16,7 21.0 529 90.1 16.0
LNFMM
(H-Decoder)

173 21.1 532 953 172

for scene understanding. The lack of paired scene-sketch
and text datasets posed the biggest bottleneck. Our dataset
allows to study this problem for the first time. We eval-
uate several popular and SOTA methods in Tab. 6: Xu et
al. [58] is one of the early popular work that leveraged at-
tention mechanism with LSTM for image captioning. AG-
CVAE [52] is a SOTA image captioning model that use vari-
ational auto-encoder along with an additive gaussian prior.
Finally, LNFMM [31] is a recent SOTA approach using nor-
malizing flows [13] to capture the complex joint distribution
of photos and text. We show the qualitative results in Fig. 5,
using the LNFMM model with the pre-training strategy we
introduce in Sec. 5.

While SOTA methods like LNFMM [31] achieve a high
CIDEr score of 98.4 (which goes up to 170.5 when 100 gen-
erated captions are evaluated against the ground-truth in-
stead of 1) for image captioning on MS-COCO dataset, per-
formance for sketch captioning (see Tab. 6) drops to 90.1.
This indicates the potential for future research in developing
more effective approaches for sketch captioning.

4.6. User-style adaptation

In this section, we partition a dataset differently from
previous sections: we train the models discussed in Sec. 4.1
using sketches from 70 users, and test on the sketches of re-
maining 30 “unseen” users. Tab. 7 ‘Before Adapt.’” column
shows that the performance on sketches of “unseen” users
is much worse than the one shown in Tab. 2. Hence, it is im-
portant to study methods that can provide a personalization
to a new user in a few-shot scenario. Here, we adopt meta-
learning [2, 15] to increase the accuracy of the fine-grained
retrieval for a particular subject given just 5 subject-specific
sketch examples. We repeat each experiment 5 times with
5 randomly selected sketches each time, and indicate the
average performance and the standard deviation among the
experiments. Tab. 7 ‘After Adapt.” column shows that us-
ing just 5 subject-specific sketch examples greatly improve
scene-level FG-SBIR performance for Siam.-VGG16 and
HOLEF models. Tab. 7 shows that such large models as
CLIP are less beneficial in the context of personalization.

Table 7. User-style adaptation (Sec. 4.6). We evaluate gener-
alization of sketch-based fine-grained image retrieval models to
“unseen” user styles (Before Adapt.), and the proposed personal-
ization to a user style via meta-learning with just 5 user-scene-
sketches (After Adapt.).

Methods Before Adapt. After Adapt.
R@l R@I10 R@1 R@10
Siam.-VGG16 10.6 325 15.5+£14  37.6£19
HOLEF [47] 10.9 33.1 155+1.3  38.1&£15
CLIP* [41] 4.2 223 4.2+0.1 22.440.1
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\™™ ' "# ) the bushes.

Figure 5. Qualitative results showing predicted captions from
LNFMM (H-Decoder) for scene sketches from our dataset.

Predicted Captions:
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Predicted Captions:

=> A plane is taking off.
=> A plane is flying in the
sky.

5. Efficient ‘“‘pretext” task

Our dataset is sufficiently large (10,000 scene sketches!),
especially for a sketch dataset. However, scaling it up to
millions of sketch instances paired with other modalities
(photos/text) to match the size of the photo datasets [48]
might be intractable. Therefore, when working with free-
hand sketches, it is important to find ways to go around the
limited dataset size. One traditional approach to address this
problem is to solve an auxiliary or “pretext” task [33,37,62].
Such tasks exploit self-supervised learning, allowing to pre-
train the encoder for the ‘source’ domain leveraging un-
paired/unlabeled data. In the context of sketching, solving
jigsaw puzzles [35] and converting raster to vector sketch
[5] “pretext” tasks were considered. We extend the state-of-
the-art sketch-vectorization [5] “pretext” task to support the
complexity of scene sketches, exploiting the availability of
time-space information in our dataset. We pre-train a raster
sketch encoder with the newly proposed decoder that recon-
structs a sketch in a vector format as a sequence of stroke
points. Previous work [5] leverages a single layer Recur-
rent Neural Network (RNN) for sketch decoding but those
designs can only reliably model up to around 200 stroke
points [20], whereas our scene sketches can contain more
than 3000 stroke points, making scene sketch modeling in-
tractable. However, we observe that, on average, scene
sketches consist of only 74.3 strokes, with each stroke con-
taining around 41.1 stroke points. Modeling such number
of strokes or stroke points individually is possible using a
standard LSTM network [22]. Hence, we propose a novel
2-layered hierarchical LSTM decoder.
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Figure 7. Simplifying scene sketch using RDP algorithm looses
salient information. RNNs can reliably model around 200 points.
The training of the single-layer RNN exploits the simplification
matching the most right image.

5.1. Proposed Hierarchical Decoder (H-Decoder)

We denote a raster sketch encoder that our proposed de-
coder pre-trains as F(-). Let the output feature map of E(-)
be F € RM xw'x¢ where b/, w' and ¢ denotes height, width,
and number of channels, respectively. We apply a global
max pooling to F', with consequent flattening, to obtain a
latent vector representation of the raster sketch, g € R?'2,

Naively decoding g using a single layer RNN is in-
tractable [20]. We propose a two-level decoder consisting
of two LSTMs, referred to as global and local. The global
LSTM (RNNg) predicts a sequence of feature vectors, each
representing a stroke. The second local LSTM (RNNy,) pre-
dicts a sequence of points for any stroke, given its predicted
feature vector.

We initialize the hidden state of the global RNN¢ using
a linear embedding as follows: h§ = WSlg + b§. The
hidden state A of decoder RNN is updated as follows:
h$ = RNNg(h$ ;[Ir, Si—1]), where [-] stands for a con-
catenation operation and S;_; € R512 is the last predicted
stroke representation computed as: S; = WFhF + b

Given each stroke representation S;, the initial hidden
state of local RNNy, is obtained as: h§ = WIS, + bk
Next, h}f is updated as: h? = RNNL(hg-Ll; [Si, Pi—1]),
where P;_ is the last predicted point of the ¢-th stroke. A
linear layer is used to predict a point: P, = W}hl + bY,
where where P, = (24, Y1, 4}, q7, ¢}) is of size R**3 whose
first two logits represent absolute coordinate (x, y), and the
later three denotes pen’s state position (g}, ¢Z, g7 ) [20].

We supervise the absolute coordinate and pen state pre-
diction, using mean-squared error and categorical cross-

Table 8. The role of pre-training with H-Decode in retrieval. The
Siam.-VGG16 exploits the pre-training on ImageNet via image-
classification task, while CLIP* baseline uses the model weights
in ViT-B/32.

Baseline H-Decoder
Method R@1 R@10 R@1 R@10
Siam.-VGG16 23.3 52.6 24.1 54.3
CLIP* 5.5 26.5 5.7 27.1

entropy losses, respectively, as was proposed in [5].

5.2. Evaluation & Discussion

We show the efficiency of our proposed H-Decoder in
pre-training the raster sketch encoder for fine-grained image
retrieval (Tab. 8) and sketch captioning (Tab. 6).

We begin the pre-training of VGG-16-based encoders of
Siam.VGG16 (Tab. 8) and LNFMM (Tab. 6) on the large
freehand object sketch dataset QuickDraw [20], following
Bhunia et al. [5], by coupling a VGG16 raster sketch en-
coder with our H-Decoder. For CLIP* we start from the
model weights in ViT-B/32. We then train CLIP* and VGG-
16-based encoders with our “pretext” task on all sketches
from our dataset. We exploit here that the test data is avail-
able but does not have the paired data — captions, photos.
Following the pre-training, the training of the downstream
tasks starts from the weights learned with the pre-training.

Tabs. 6 and 8 show the benefit of the pre-training with
the proposed decoder. In addition, we compare the per-
formance of Siam.VGGI16, when the pre-training is per-
formed with the proposed H-Decoder, against a more naive
approach. If we simplify scene sketches with the Ramer-
Douglas Peucker (RDP) algorithm (Fig. 7), and pre-train
with a single layer RNN, as proposed in [5], Siam.VGG16
achieves RQ10 of 52.1. On average, the simplified sketches
contain 165 stroke points, while the original sketches con-
tain 2437 stroke points. It performs worse than using
VGG16 encoder pre-trained on ImageNet (Tab. 8). This
further demonstrates the advantage of the proposed hierar-
chical decoder.

6. Future work and Conclusion

We introduce to the sketch community a much-needed
freehand scene sketch dataset with fine-grained paired text
information. With the dataset, we made the first stab to-
wards freehand scene sketch understanding, studying tasks
such as fine-grained image retrieval from scene sketches
and captioning of scene sketches. We demonstrated the po-
tential of the solutions targeting personalization to a new
user style and pre-training leveraging unlabeled data. We
hope that our dataset will promote research on freehand
scene sketch to photo generation, better sketch captioning,
and novel sketch encoding approaches that are well suited
for the complexity of freehand scene sketches. We will re-
lease the dataset upon acceptance.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. Spice: semantic propositional image cap-
tion evaluation. In ECCV, 2016. 7

Antreas Antoniou, Harrison Edwards, and Amos Storkey.
How to train your maml. In /ICLR, 2019. 2,7

Yusuf Aytar, Lluis Castrejon, Carl Vondrick, Hamed Pirsi-
avash, and Antonio Torralba. Cross-modal scene networks.
IEEE-TPAMI, 2018. 2

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. In NIPS Deep Learning Symposium, 2016. 4,
5

Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Yongxin
Yang, Timothy M. Hospedales, Tao Xiang, and Yi-Zhe Song.
Vectorization and rasterization: Self-supervised learning for
sketch and handwriting. In CVPR, 2021. 1,2,7, 8

Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad,
Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia
Gryaditskaya, and Yi-Zhe Song. Pixelor: A competitive
sketching ai agent. so you think you can beat me? In SIG-
GRAPH Asia, 2020. 1,2, 5

H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuft: Thing and
stuff classes in context. In CVPR, 2018. 2, 3

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed EI-
hoseiny. Visualgpt: Data-efficient adaptation of pretrained
language models for image captioning. arXiv preprint
arXiv:2102.10407,2021. 3

Liang-Chieh Chen, George Papandreou, Iasonas Kokki-
nos, Kevin Murphy, and Alan L. Yuille. Deeplab: Se-
mantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. arXiv preprint
arXiv:1606.00915, 2016. 3

Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang,
and Yi-Zhe Song. Béziersketch: A generative model for scal-
able vector sketches. In ECCV, 2020. 1, 15

Michael J. Denkowski and Alon Lavie. Meteor universal:
Language specific translation evaluation for any target lan-
guage. In WMT@ACL, 2014. 7

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019. 14

L Dinh, D Krueger, and Y Bengio. Nice: non-linear inde-
pendent components estimation. In ICLR, Workshop Track
Proc, 2015. 7

Mathias Eitz, James Hays, and Marc Alexa. How do humans
sketch objects? ACM Trans. Graph.,2012. 1,2,3,5
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, 2017. 2,7

Chengying Gao, Qi Liu, Limin Wang, Jianzhuang Liu, and
Changqing Zou. Sketchycoco: Image generation from free-
hand scene sketches. In CVPR, 2020. 1, 2, 3,4, 13, 15
Songwei Ge, Vedanuj Goswami, C. Lawrence Zitnick, and
Devi Parikh. Creative sketch generation. In ICLR, 2021. 2
Yulia Gryaditskaya, Felix Hédhnlein, Chenxi Liu, Alla Shef-
fer, and Bousseau. Lifting freehand concept sketches into 3d.
In SIGGRAPH Asia, 2020. 1,2

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer,
Sylvia Pont, Frédo Durand, and Adrien Bousseau. Opens-
ketch: a richly-annotated dataset of product design sketches.
ACM Trans. Graph., 2019. 1, 2,5, 13

David Ha and Douglas Eck. A neural representation of
sketch drawings. In ICLR, 2018. 1, 2,3,7,8, 15

Aaron Hertzmann. Why do line drawings work? Perception,
2020. 1

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural computation, 1997. 7

Josh Holinaty, Alec Jacobson, and Fanny Chevalier. Support-
ing reference imagery for digital drawing. In ICCV Work-
shop, 2021. 2

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. [EEE-TPAMI,
2017. 5

Xiujun Li, Xi Yin, Chunyan Li, Pengchuan Zhang, Xiaowei
Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu
Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-semantics
aligned pre-training for vision-language tasks. In ECCV,
2020. 5

Chin-Yew Lin. Rouge: A package for automatic evaluation
of summaries. In Text Summarization Branches Out, 2004. 7
Hangyu Lin, Yanwei Fu, Yu-Gang Jiang, and Xiangyang
Xue. Sketch-bert: Learning sketch bidirectional encoder rep-
resentation from transformers by self-supervised learning of
sketch gestalt. In CVPR, 2020. 15

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and
C. Lawrence Zitnick. Microsoft coco: common objects in
context. In ECCV, 2014. 2,3,4, 11, 14

Fang Liu, Changqing Zhou, Xiaoming Deng, Ran Zuo, Yu-
Kun Lai, Cuixia Ma, Yong-Jin Liu, and Hongan Wang.
Scenesketcher: Fine-grained image retrieval with scene
sketches. In ECCV, 2020. 1, 3,4, 13

Kuan Liu, Yanen Li, Ning Xu, and Prem Nataranjan. Learn
to combine modalities in multimodal deep learning. arXiv
preprint arXiv:1805.11730, 2018. 6

Shweta Mahajan, Iryna Gurevych, and Stefan Roth. La-
tent normalizing flows for many-to-many cross-domain map-
pings. In ICLR, 2020. 3,7, 15

Gioacchino Noris, Daniel Sykora, Ariel Shamir, Stelian
Coros, Brian Whited, Maryann Simmons, Alexander Hor-
nung, Marcus Gross, and Robert Sumner. Smart scribbles
for sketch segmentation. Comp. Graph. Forum, 31(8), 2012.
13

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
2016. 7

Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
Im2text: Describing images using 1 million captioned pho-
tographs. In NIPS, 2011. 2

Kaiyue Pang, Yongxin Yang, Timothy M Hospedales, Tao
Xiang, and Yi-Zhe Song. Solving mixed-modal jigsaw puz-
zle for fine-grained sketch-based image retrieval. In CVPR,
2020. 2,7



(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In ACL, 2002. 7

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In CVPR, 2016. 7

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana Lazeb-
nik. Flickr30k entities: Collecting region-to-phrase corre-
spondences for richer image-to-sentence models. In ICCV,
2015. 4

Anran Qi, Yulia Gryaditskaya, Jifei Song, Yongxin Yang,
Yonggang Qi, Timothy M. Hospedales, Tao Xiang, and Yi-
Zhe Song. Toward fine-grained sketch-based 3d shape re-
trieval. IEEE-TIP, 2021. 2

Yonggang Qi, Guoyao Su, Pinaki Nath Chowdhury,
Mingkang Li, and Yi-Zhe Song. Sketchlattice: Latticed rep-
resentation for sketch manipulation. In /CCV, 2021. 14, 15
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. arXiv preprint
arXiv:2103.00020,2021. 3, 4,5, 6,7, 14, 15

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James
Hays. The sketchy database: Learning to retrieve badly
drawn bunnies. ACM Trans. Graph., 2016. 1,2,3,5,6

R. G. Schneider and T. Tuytelaars. Sketch classification and
classfication-driven analysis using fisher vectors. In SIG-
GRAPH Asia, 2014. 2

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In ACL,
2018. 2

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
2015. 4, 14

Jifei Song, Yi-Zhe Song, Tao Xiang, and Timothy M
Hospedales. Fine-grained image retrieval: the text/sketch
input dilemma. In BMVC, 2017. 1, 2, 6

Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timo-
thy M Hospedales. Deep spatial-semantic attention for fine-
grained sketch-based image retrieval. In ICCV, 2017. 4,7,
14, 15

Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael
Bendersky, and Marc Najork. Wit: Wikipedia-based image
text dataset for multimodal multilingual machine learning.
arXiv preprint arXiv:2103.01913, 2021. 2,7

Christian Szegedy, Vincet Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016.
14

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalua-
tion. In CVPR, 2015. 7

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In CVPR, 2015. 5

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-
ing fine-grained image similarity with deep ranking. In
CVPR, 2014. 4,7

Liwei Wang, Alexander G. Schwing, and Svetlana Lazebnik.
Diverse and accurate image description using a variational
auto-encoder with an additive gaussian encoding space. In
NeurIPS, 2017. 3,7, 15

Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. Sketch your
own gan. In ICCV, 2021. 2

Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popovic, and
Niloy J. Mitra. Learning a shared shape space for multimodal
garment design. In SIGGRAPH Asia, 2018. 1

Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier,
Leonard McMillan, and Julie Dorsey. Tracing versus free-
hand for evaluating computer-generated drawings. ACM
Trans. Graph.,2021. 1,2, 5

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A
discriminative feature learning approach for deep face recog-
nition. In ECCV, 2016. 4

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image caption
generation with visual attention. In /ICML, 2015. 3,7, 15
Chuan Yan, David Vanderhaeghe, and Yotam Gingold. A
benchmark for rough sketch cleanup. ACM Trans. Graph.,
2020. 1

Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M.
Hospedales, and Chen Change Loy. Sketch me that shoe. In
CVPR, 2016. 1,2,4,5, 14

Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao Xiang, and Tim-
othy Hospedales. Sketch-a-net that beats humans. In BMVC,
2015. 2,4, 14

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016. 7

Changqing Zou, Qian Yu, Ruofei Du, Haoran Mo, Yi-Zhe
Song, Tao Xiang, Chengying Gao, Baoquan Chen, and Hao
Zhang. Sketchyscene: Rickly-annotated scene sketches. In
ECCV,2018. 1,2,3,4,13, 15



Supplementary Material

S1. Ethical considerations in data collection

Our dataset contains scene sketches of photos with paired textual description of the sketches. It does not include any
personally identifiable information. Each sketch and caption are associated only with an ID.

Prior to agreeing to participate in the data collection, each participant was informed of the purpose of the dataset: namely
that the dataset would be publicly available and released as part of a research paper with potential for commercial use.
The participants were asked to accept the Contributor License Agreement that explains legal terms and conditions, and in
particular it specifies that the data collector has the rights to distribute the data under any chosen license: The participants
granted to the data collectors and recipients of the data distributed by the data collectors a perpetual, worldwide, non-
exclusive, nocharge, royalty-free, irrevocable copyright license to reproduce, prepare derivative works of, publicly display,
publicly perform, sub-license, and distribute participants contributions and such derivative works. We further requested a
written confirmation from annotators that they give the data collector permission to conduct research on the collected data
and release the dataset.

Each participant who approved these terms, was assigned a random user ID. Each participant was given the option of
deleting any or all their annotations/collected data at any point during the data collection process.

We also included an anonymous public discussion forum in our annotation web portal which could be used by any partici-
pant to raise concerns and collectively inform others. Annotators were also given the option of directly contacting us to raise
concerns privately.

S2. Data collection: Additional detail
S2.1. Instruction for collection of Sketch Captioning

The instruction for collection of sketch captioning is similar to that of MS-COCO [28]. In particular, the subjects received
the following instructions:

* Describe all the important parts of the scene.

* Do not start the sentence with “There is”.

* Do not describe unimportant details.

* Do not describe things that might have happened in the future or past.
* Do not describe what a person might say.

* Do not give proper names.

* The sentence should contain at least 5 words.

S2.2. Ul of our data collection tool

Fig. S8 shows the user interface of our data collection tool. We will release the frontend and backend scripts upon
acceptance. The frontend and backend scripts communicate using REST API. We use MongoDB to store the dataset in our
database server. An auxiliary script was also deployed to take backups from the database server at regular time intervals to
prevent data loss due to server crashes.

S2.3. Sample data from our dataset

Fig. S9 shows sample scene sketches from FS-COCO dataset. We will release the entire dataset upon acceptance.
S2.4. Pilot study on optimal sketching and viewing duration

As we mention in the main document in Sections 1 and 3: “To ensure recognizable but not too detailed sketches we impose
a 3-minutes sketching time constraint, where the optimal time duration was determined through a series of pilot studies. A
scene reference photo is shown to a subject for 60 seconds before being asked to sketch from memory. We determined the
optimal time limits through a series of pilot studies with 10 participants.” Here we provide the details of the pilot study.

We find the optimal duration for viewing a reference scene photo and drawing a scene sketch by conducting a series of
pilot study on 10 individuals: (i) We started with a low duration of 30 seconds to view a reference photo and 60 seconds
to draw a scene sketch. This resulted in freehand sketches that were flagged as unrecognizable by our human judge. (ii)
Next, we increased the drawing time to 120 seconds while keeping the viewing time to 30 seconds. Based on interviews
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* The image will be put up for display for 60 seconds, 4 J
& Afier 30 seconds, Sketch the scene that you saw within 180 seconds N 2N,

~
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| Mextto draw Sketch )
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(e) Instruction after viewing photo and before starting to draw a scene (f) Empty canvas to draw a scene sketch from memory. The sketch shown
sketch. in this illustration is drawn by the authors and not by our annotators.

with our human judge and annotators we conclude that while the increase in sketching time results in barely recognizable
scene sketches, annotators still missed important scene information due to the short viewing duration of 30 seconds. (iii) In
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I yau are happy with the (Sketch, Caption), enter 'Accept’ button, Ebe you can redran the sketeh using ‘Reda’ buttan,

(h) During the annotation process, a human judge evaluates if a scene
sketch can be recognizable or understandable using our inspection tool.
Badly drawn scene sketches will be deleted and sent back to their respec-
tive annotator for a REDO. The annotators also have the option of deleting
their sketch from the portal.

(g) Verify if the drawn scene sketch is acceptable or understandable by
the annotator before submitting to the server. Annotators can REDO and
start from beginning of viewing the photo and drawing a scene sketch
from scratch in an empty canvas.

Figure S8. User Interface of our data collection tool. We shall release our data collection tool upon acceptance.

the final phase of our pilot study, we increased the viewing duration to 60 seconds and sketching time to 180 seconds. This
helped non-expert annotators to create scene sketches in an average of 1.7 attempts that could be understood or recognized
by a human judge.

In our experiments, increasing the viewing or sketching time beyond 60 and 180 seconds resulted in overly detailed
sketches. Guided by practical applications, we limit the viewing and sketching time to a duration that allows for recognizable,
but not overly detailed sketches.

S2.5. Limitations and future work

Our FS-COCO includes freehand scene sketches of photos along with the textual description of the sketch. However, we
did not collect stroke- or object-level annotations.

One option would have been to let sketchers to assign labels by selecting a label for each stroke while sketching. Following
the arguments from the previous work on data collection [19], we refrained from this option, as that could have disturbed the
natural sketching process, resulting in non-representative sketches. Indeed, we observe that objects in sketches in our dataset
can share certain strokes and that participants can progress on multiple objects iteratively, not sketching one object at a time.
Therefore, annotating while sketching would have turned sketching to a very tedious process and could have disturbed a
natural sketching flow.

Having done a huge step towards enabling scene sketch understanding, we leave the stroke- and object-level annotations
for future work. Such annotations can be done using the tools from [19] or [32].

S3. Quantitative comparison with existing datasets.

Table S9. Comparing existing Scene Sketch datasets: Unlike SketchyScene [63] and SketchyCOCO [16], our FS-COCO provides human
drawn freehand scene sketches that enable analysis towards insights into how humans sketch, not possible with earlier datasets [ 16, 63].

Scene Sketch Dataset . Abstraction # photos  Vectored Sketch ~ Paired Text ~ Real Human Drawn
Object-level  Scene-level

SketchyScene [63] v X 7,264
SketchyCOCO [16] X v 14,081
SceneSketcher [29] X v 1,225
Our Dataset v v 10,000

N X X X
N X X X
N X X X




S4. Subjective quality of sketches: FS-COCO vs SketchyCOCO

Subjective quality of sketches We conduct a perceptual study to judge the subjective quality of our freehand scene
sketches. In our perceptual study, each of our 5 participants were shown 100 randomly selected triplets consisting of: (i)
a photo, (ii) our freehand scene sketch, (iii) and a sketch from the SketchyCOCO dataset. The participants were prompted:
“Which of the two sketches best represent the image (content relevance) and is likely to be drawn by a human (visual qual-
ity)?”. Our freehand sketches were preferred 72.6% of the time.

SS. Additional experiments for Sec. 4.1 in the main document: Fine-grained scene sketch-based
image retrieval

We provide additional experiments for Sec. 4.1 in Tab. S10. Siam.-SN [60] employs triplet ranking loss with Sketch-a-
Net [61] as its baseline feature extractor. HOLEF-SN [47] extends over Siam.-SN employing spatial attention along with
higher-order ranking loss. Our experiments suggest inferior results using Sketch-a-Net [601] backbone feature extractor.
Hence, we replace the backbone feature extractor of Siam.-SN with VGG16 [45], we refer to this setting as Siam.-VGGI6.
Similarly, we replace Sketch-a-Net [61] backbone in HOLEF-SN with VGG16: HOLEF-VGGI6. In contrast to Siam.-
VGGI6 that use a common shared encoder for both sketch and photo, we use different encoders for sketches and photos in
Heter.-VGGI16. However, we note that using separate encoders leads to an inferior result. A similar drop in performance
on using a heterogenous sketch/photo encoder was previously observed by Yu et al. [00] for object sketch datasets. Instead
of using a CNN-based sketch encoder, SketchLattice adapts the graph-based sketch encoder proposed by Qi et al. [40]. We
use a 32 x 32 evenly spaced grid or lattice for sketch representation of a rasterized scene sketch. To encode photos, we use
VGGI16 [45]. While such a latticed sketch representation is beneficial for sketch manipulation of object sketches, an off-the-
shelf adaptation for fine-grained scene sketch-based image retrieval results in inferior to VGG16 performance. In addition,
we replace our sketch encoder with a BERT-like model [12] where VGG16 is used to encode photo in SkBert-VGG16. Since
the sketch encoding module requires vector data, we only show result on our FS-COCO. SketchyScene is an extension of
Siam.-SN by replacing the backbone feature extractor from Sketch-a-Net to InceptionV3 [49]. CLIP [4 1] is a recent state-of-
the-art method that has shown an impressive generalization ability across several photo datasets. In CLIP (zero-shot) we use
the pre-trained photo encoder from the publicly available ViT-B/32 weights > as a common backbone feature extractor for
scene sketch and photo. In CLIP-variant, we fine-tune the layer normalization layers in CLIP using our train/test split with
triplet loss, batch size 256, and a very low learning rate of 0.000001.

S6. Additional discussion for Sections 4.3.1 and 4.3.2 in the main document: Fine-grained text-
based image retrieval

In section 4.3.1 and 4.3.2 in the main document, our objective is to judge, given the same amount of training data, if
scene sketch or image-caption, or sketch-caption is a better query modality for fine-grained image retrieval. Our FS-COCO
dataset consisting of 10,000 scene sketch, photo, image-caption, and sketch-cation is a subset of the larger MS-COCO dataset.
While Oscar gives a high R@1 score of 57.5 for text based image retrieval, it was trained on the entire training set of MS-
COCO [28]. This results in an unfair comparison. Hence for a fair evaluation, we use CLIP [4 1] which in spite of training of
a much larger dataset of 400 million text-image pairs, did not include MS-COCO.

S6.1. Additional experiments for Sec. 4.5 in the main document: Sketch Captioning

Tab. S11 includes additional experiments for Sec. 4.5 for sketch captioning using existing state-of-the-art methods.

S7. H-Decoder: Additional experiments and discussions
S7.1. H-Decoder implementation details

We use the data format that represents a sketch as a set of pen stroke actions. A sketch is a list of points, and each point is a
5 dimensional vector: (x,y, g1, ¢2, ¢3). The first two logits (z, y) represent the absolute coordinate in the = and y directions
of the pen. The later three (g1, 2, ¢3) represent a binary one-hot vector of 3 possible states: (i) pen down state: The first pen
state q1 denotes that the pen is touching the paper. This indicates that a line will be drawn connecting the next point with the
current point. (ii) pen up state: The second pen state g2 indicates the pen will be lifted from the paper after the current point

5h:tps://qithub.com/openai/CLIP



Table S10. Fine-grained freehand-scene-sketch-based image retrieval: Additional experiments for Sections 4.3.1 and 4.3.2 in the main
document.

Trained On
SketchyScene (S-Scene) [63] SketchyCOCO (S-COCO) [16] FS-COCO (Ours)
Methods
Evaluate on Evaluate on Evaluate on

S—-Scene S-CcocO | FS-COCO | s-Scene S-coco | FS-COCO | s-Scene S—-coco | FS-COCO
R@] R@10|R@]1 R@10|R@]1 R@10|R@]1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10|R@1 R@10
Siam.-SN 27 173 |<0.1 1.1 |01 32 |<0.1 <0.1 62 329 |<0.1 <0.1| 12 9.1 |[<0.1 39 |47 21.0
Siam.-VGG16 228 435 |11 41 |18 66 |03 21 376 806 [<0.1 04 |58 245 |24 11.6 233 526
Heter.-VGG16 159 384 |02 37 |08 58 [01 16 349 76.1 [<0.1 03 |42 201 |19 107 |19.2 47.6
HOLEF-SN [47] 29 17.7 |<0.1 13 |02 32 |<0.1 <01 62 407 |<0.1 <0.1]12 93 |<0.1 4.1 |49 21.7
HOLEF-VGG16 [47]|22.6 442 |12 39 |17 59 |04 23 383 8.5 |01 04 |60 247 |22 119 |228 53.1
SketchLattice [40] 159 372 | 0.1 33 |08 56 |01 15 337 743 |<0.1 03 |37 194 |07 9.5 |189 465
Lin et al. [27]
(SkBert-VGG16) B B - - B B B B - - B B - - B - R
SketchyScene [63] |20.6 41.7 | 09 39 | 1.8 6.1 |02 1.7 365 786 |<0.1 04 |51 241 |24 115 |23.0 523
CLIP (zero-shot) [41]| 1.26  9.70 | — - - - - 1.85 941 - - - - - | 1.17 6.07
CLIP-variant 86 248 | 1.7 66 |25 82 |13 51 153 439 |06 3.1 |16 119 |26 125 |55 265

Table S11. Sketch Captioning: Our novel dataset, for the first time, enables captioning of scene sketches. We provide the results of
some popular captioning methods originally developed for photos. Empirical results suggests there is significant gap in performance
in comparison to image captioning literature. We hope our dataset and quantitative results will inspire future methods to caption scene
sketches.

Methods Belu-1 Belu-2 Belu-3 Belu-4 Meteor Rouge CIDEr  Spice

Xu et al. [58] 46.2 29.1 17.8 13.7 17.1 449 69.4 14.5
GMM-CVAE [53] 49.6 339 18.2 15.5 18.3 48.7 77.6 15.5
AG-CVAE [53] 50.9 34.1 19.2 16.0 18.9 49.1 80.5 15.8
LNFMM [31] 522 35.7 20.0 16.7 21.0 529 90.1 16.0

LNFMM (H-Decoder) 54.7 37.3 22.5 17.3 21.1 53.2 95.3 17.2

to mark the end of a stroke. (iii) pen end state: The final pen state ¢3 represent that the drawing of scene sketch has ended,
and subsequent points will not be rendered.

Our hierarchical decoder consists of two LSTMs: (i) The global LSTM (RN N¢) that predicts a sequence of feature
vectors, each representing a stroke. (ii) A second local LSTM (RN Ny,) predicting a sequence of points for any stroke, given
its predicted feature vector. The stroke points P; are predicted across i" and j*" steps in RN Ng and RN Ny, respectively.
In more details, let’s assume the local RN Ny, predicts P; with pen up state (0, 1,0) at the 5" unroll step, given input stroke
feature .S;. It will then trigger a single step unroll of the global RN N to predict the next stroke representation S; ;1. This
will re-initialise RN V1, to predict stroke points starting with P; 1 for S; 1 where P is the last predicted point. The unrolling
of both RN Ny, and RN N comes to a halt upon predicting P; with pen end state (0,0, 1). We define Py as (0,0,1,0,0).

S7.2. Learning to synthesize human-like sketches

A byproduct of our hierarchical sketch decoder is a naive photo to vector sketch synthesis pipeline. Fig. S9 shows
preliminary samples of scene sketches synthesized using our proposed sketch decoder. To improve these results, future work
can exploit VAE-based solutions, sequentially generating sketches [20], or paramaterized strokes representation [ 0] to tackle
the challenges posed by scene sketches.
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Figure S9. Photo to vectored sketch synthesis: Our novel dataset allows interesting downstream applications such photo to vectored scene
sketch synthesis as a byproduct of our hierarchical decoder used during pre-training. For brevity, we only show qualitative results using
VGG-16 encoder followed by the hierarchical decoder.
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Figure S9. Sample sketches from our FS-COCO dataset, the first dataset of 10,000 unique freehand scene sketches, drawn by 100 non-
expert participants. We envision this dataset to permit a multitude of novel tasks and to contribute to the fundamental understanding of
visual abstraction and expressivity in scene sketching. With our work, we make the first stab in this direction by (i) studying the role of
freehand sketches in fine-grained image retrieval and (ii) sketch understanding on the example of sketch-captioning.



