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Figure 1: RetroDepth is a new 3D silhouette sensing system for high-precision interaction on and above physical surfaces.

ABSTRACT
We present RetroDepth, a new vision-based system for ac-
curately sensing the 3D silhouettes of hands, styluses, and
other objects, as they interact on and above physical surfaces.
Our setup is simple, cheap, and easily reproducible, compris-
ing of two infrared cameras, diffuse infrared LEDs, and any
off-the-shelf retro-reflective material. The retro-reflector aids
image segmentation, creating a strong contrast between the
surface and any object in proximity. A new highly efficient
stereo matching algorithm precisely estimates the 3D con-
tours of interacting objects and the retro-reflective surfaces.
A novel pipeline enables 3D finger, hand and object track-
ing, as well as gesture recognition, purely using these 3D
contours. We demonstrate high-precision sensing, allowing
robust disambiguation between a finger or stylus touching,
pressing or interacting above the surface. This allows many in-
teractive scenarios that seamlessly mix together freehand 3D
interactions with touch, pressure and stylus input. As shown,
these rich modalities of input are enabled on and above any
retro-reflective surface, including custom “physical widgets”
fabricated by users. We compare our system with Kinect and
Leap Motion, and conclude with limitations and future work.
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INTRODUCTION
Natural user interfaces (NUI) have received much attention
recently, as they provide rich modalities and possibilities for
interaction, beyond mouse and keyboard. Whilst the term is
broad and can encompass touch, gesture, gaze, voice, and
tangible input, NUI often implies leveraging the dexterity and
higher degrees-of-freedom (DoF) of our hands for interaction.
However, even when focusing on hands, NUI has vastly dif-
ferent interpretations. A decade ago, the term predominately
referred to emerging multi-touch interfaces. More recently, it
has become more synonymous with 3D touchless input using
fingers, hands or whole body interactions, popularized by
products such as Kinect and Leap Motion.

This has resulted in the emergence of many underlying NUI
technologies designed with very different scenarios in mind,
each with strengths and weaknesses. For example, Leap
Motion is only able to estimate fingertips of a hand in-air,
but at a high precision, where Kinect provides more flexibility
in sensing dense depth maps of arbitrary scenes and tracking
a human skeleton, but at a relatively low precision.

In this paper we present RetroDepth, a system that unifies a
variety of NUI modalities such as freehand touch, pressure,
in-air interactions, as well as stylus and other tangible ob-
ject input. Our system is designed specifically for scenarios
where users interact on and above physical surfaces of differ-
ent shapes and sizes, and allows seamless switching between
these modes of input. RetroDepth provides a middle ground
between sensors that extract high-level features such as finger-
tips (e.g. Leap Motion) and more flexible depth cameras (e.g.
Kinect) that expose raw depth maps but at lower precision.

Our system is designed specifically to sense only the 3D sil-
houette of interacting objects. The use of silhouettes greatly
lowers the computation required for depth sensing, when com-
pared to estimating a dense depth map. We present a novel
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vision-based approach for silhouette sensing, which leads to
extremely high-precision contour estimation, and demonstrate
sufficient accuracy to distinguish between touch, hover and
pressure. Interestingly, most consumer depth cameras, such
as stereo cameras, Kinect or even time-of-flight sensors (ToF),
struggle the most at object boundaries and edges, where large
depth discontinuities lead to noise and imprecise depth estima-
tion. In this paper, we highlight the importance of precision
at these object edges, as ultimately these form the main point
of contact between the user and the digital/physical world.

We highlight numerous examples of how the resulting 3D sil-
houette information can be exploited for interactive scenarios.
In particular, we demonstrate just how much information a
silhouette can encode, and present a novel pipeline that identi-
fies and tracks fingers and objects in 3D, and infers hand parts,
poses and gestures, using 3D contours only. We compare the
accuracy of our system with Kinect and Leap Motion, and
conclude with a discussion of limitations and future work.

RELATED WORK
Early uses of 2D silhouettes and contours in the context of
interaction coincide with pioneering work on NUI, indicating
their importance for enabling such experiences. Krueger’s
seminal work [21] and SideShow [9] enables whole-body and
gestural interactions using 2D silhouettes. In recent years, 2D
silhouettes and contours have been exploited in the context of
vision-based tabletop systems [39, 28, 37, 20, 41]

Top-down configurations that place a 2D camera above a
physical surface have proved popular as they provide more
flexibility in sensing, allowing any regular desk to be trans-
formed into an interactive one. Because these systems rely on
2D cameras, segmentation of hands and objects from the (typ-
ically cluttered) desktop is non-trivial, and touch and hover
is difficult to disambiguate. These challenges have led re-
searchers to use stereo cameras for higher precision touch
sensing, combined with simple “hardware” techniques for
segmentation, e.g. colored backgrounds or polarizing filters
[25, 2]. Izadi et al. [16] use the same configuration as [2]
to combine stereo-based touch estimation with stylus input,
object recognition, and depth sensing, but the latter is used
for remote feedback only.

Two recent notable products enable high-precision sensing
using stereo cameras. The commercial Leap Motion sensor
is a small, self-contained unit containing a pair of wide field-
of-view (FoV) infrared (IR) cameras and IR LEDs pointing
upwards on a desk. Whilst not published, the device provides
tracking of fingertips and other strong peaks in the input signal,
such as a pen, with high frame-rate and precision sensing. The
device does not expose a full contour, only tracked 3D points
mapping to high-level features such as fingertips. Further,
segmentation is based on assuming that only freespace exists
behind interacting objects. This limits the device to in-air
input only, which can result in arm fatigue during prolonged
interactions. Haptix [11] uses a similar small desktop unit
with two IR cameras but instead points across the physical
surface to detect multi-touch gestures only. Our approach
combines these modalities of high-precision touch and in-air
input, but also provides features such as pressure sensing, full
contour-based interactions, gestures, and tracking of hands
and tangible objects.

Going beyond the tabletop A logical next step for interac-
tive surfaces is to explore in-air interactions, potentially in
combination with touch. Systems have demonstrated stylus-
based input using magnetic, inductive or vision-based sys-
tems (see [35, 40]). Many optical and non-optical techniques
have been explored for freehand in-air input in the context
of interactive surfaces. These include electric-field sensing
techniques [30, 23], use of scanning lasers [30] and laser-line
generators [36], or IR proximity sensors [29, 17, 4], either
placed around the bezel or embedded behind a display. These
techniques either coarsely sense 3D input, or have a limited
interaction volume or are limited to 3D input only.

Other notable systems combine on-surface and in-air interac-
tions using a variety of different hardware configurations. For
example, the use of high-end (and costly) marker-based mo-
tion trackers used for 3D tabletops [26] or even 3D cardboard
or foam prototypes [3]; as well as, synchronized IR cameras
and switchable diffuser to image on and beyond the surface
[18], where depth was coarsely estimated using diffuse IR
light intensity falloff [13]; and light field imaging through
an LCD to coarsely estimate depth [15]. Prior to the wide
availability of depth cameras, researchers also explored ToF
sensors placed behind [13] and above [43] projection surfaces.
These sensors suffered from low resolution and high noise
making interactions coarse and limited.

The rise of consumer depth cameras With the advent of
consumer depth cameras, many new systems for in-air interac-
tions coupled with surface-based interactions have appeared.
Examples include situated augmented reality displays such
as [14, 5], as well as augmented desktops [12, 24]. All these
systems use a top-down Kinect camera to both sense touch
[44] and in-air interactions. These systems inherently lack
precision due to the quantization noise of the Kinect (see be-
low) making such systems imprecise compared to other input
devices [10]. 3Gear Systems [1] demonstrate tracking of spe-
cific hand gestures above a desktop, again using a top-down
Kinect camera, based on early research of Wang et al. [38].
This method can be considered state-of-the-art in terms of
Kinect-based hand tracking, and we provide quantitative com-
parisons later in this paper.

One of the main drawbacks with consumer depth cameras
is high noise at object boundaries. However, for NUI, these
boundaries are critical for sensing when the user’s hands (or
other physical tool) interacts with either digital or physical
content. The original Kinect uses a method akin to stereo
matching, where each small 2D patch of the reference dot
pattern is matched by sweeping a window along the associ-
ated epipolar line in the observed IR image. This leads to
ambiguities when matching at object boundaries, where large
depth discontinuities lead to outliers, holes, and edge fatten-
ing [32, 8]. ToF sensors suffer from issues such as multi-path
or mixed pixels [31], where light returns from secondary sur-
faces to the same pixel during a single exposure, as well as
‘flying pixels’ where depth is estimated across multiple cap-
tures and scene motion results in foreground and background
contributions being averaged together [31].

Custom depth cameras This fundamental issue of con-
sumer depth cameras is a key motivation for RetroDepth,
where we specifically design a system for real-time, high-
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precision depth estimation at silhouette and object boundaries.
Whilst consumer depth cameras lack precision, researchers
have demonstrated much higher quality sensors, in particu-
lar by using dynamic structured light patterns (see [22] for
a review). There are however limitations in such systems
for our interactive scenarios. Most of these systems estimate
depth by projecting multiple dynamic patterns into the scene
and capturing multiple images with a camera. To deal with a
moving scene (which is necessary in our interactive scenar-
ios) and therefore limit motion artifacts, these patterns need
to be projected and imaged at very high frame-rates. This
necessitates costly high speed camera and projector hardware
that can add considerably to the system cost. There is also the
computational cost associated with estimating dense depth
maps, which as demonstrated in this paper is unnecessary for
many interactive scenarios.

RetroDepth
In the following sections we present the physical RetroDepth
setup and demonstrate the interactive capabilities of the sys-
tem. The physical configuration is shown in Fig. 1. Two
off-the-shelf monochrome cameras are positioned on a metal
rail at a fixed baseline (6cm apart). Currently we use Lumen-
era PLT-425-NIR (running at 1024x512 and 60Hz) due to
their IR response and global shutter capabilities, but there is
no hard restriction on manufacturer or imaging sensor. A ring
of 8 diffuse IR LEDs (OSRAM CHIPLED SFH 4053) oper-
ating at 850nm are attached around the lens of each camera.
This placement and number of LEDs ensures that illumination
is uniform and shadows are minimized. IR bandpass filters
are placed on each camera lens.

This hardware setup is easily reproducible with only off-the-
shelf components. The setup is powered entirely over USB
(peak power for each LED is 260mW, and average power is
35mW). The LEDs are pulsed from each camera’s General
Purpose Input/Output (GPIO) pins, and only active during the
camera exposure (2ms). A synchronization board is used to
generate a 60Hz trigger to shutter the cameras simultaneously.

Figure 2: Left: passive retro-reflective keyboard, and series
of other “physical widgets”. Right: IR image of scene.

Retro-reflective segmentation
Fig. 2 also shows retro-reflective surfaces (such as the off-
the-shelf 3M Scotchlite-Part 8910), which are cut in various
shapes and sizes, and placed on a table. Upon shuttering,
the cameras both simultaneously capture an image of the
scene. All IR LEDs are switched on during this exposure
time, producing a bright uniform response from all the retro-
reflective materials on the table, as shown in Fig. 2 (right).
This makes these reflective surfaces readily distinguishable
as bright silhouettes in the captured stereo images. When
objects interact on or above these surfaces, a sharp contrast
is created between the background and foreground, e.g. the
hand or marker pen shown in Fig. 2 (right).

In a first pass, we extract contours of any bright silhouettes
observed from each camera. We then perform stereo matching
across these contour images. In a second pass, we invert the
image within the contour boundaries, creating bright silhou-
ettes within each retro-reflective region, which correspond
to objects (e.g. hands or styluses), interacting on or above
the surface (Fig. 2). We again extract contours and perform
stereo matching in these regions. This creates a clean separa-
tion between sensing the retro-reflective objects, and the 3D
interactions occurring on or above them. Optionally, we inter-
polate to fill in a dense 3D silhouette of foreground objects.
Creating and tracking physical widgets
Retro-reflective material is cheap and readily procurable. It is
also easy to cut into various shapes and sizes. Fig. 2 shows a
variety of simple “physical widgets”, made by cutting sheets
of acrylic or cardboard into the desired shape and gluing the
retro-reflective material on the upper-side. Additionally, a
clear acetate sheet is used to print labels (most printer ink is
invisible to IR) for the widget, such as keys for a 3D sensing
touch keyboard (Fig. 2, left).
Our stereo matching algorithm estimates the precise metric
depth of the outlines of these physical widgets. After depth
estimation, a machine learning algorithm classifies the widget
based on silhouette shape. This classification occurs per frame
in real-time and is robust to large parts of the widget being
occluded by interacting hands and objects. Once classified
the widget can be tracked in 6DoF. Given that new physical
widgets are easy to fabricate, our machine learning algorithm
is extensible in order to add new training classes at runtime.
Freehand 3D interactions and gestures
As the user’s hand or physical tool interacts above a retro-
reflective widget, a clear internal silhouette is visible (Fig. 2,
right). By inverting the image, our stereo matching algorithm
can precisely estimate the depth of these internal silhouettes.
Even a small occluding region of the finger can be sensed
accurately. This creates an interaction volume above each
widget that allows freehand 3D input. Depending on the size
of widget this can be either bimanual or single hand input,
with fine-scale sensing of individual fingers (Fig. 3).

Figure 3: Left: Recovering the precise 3D contour of ob-
jects placed on the retro-reflector, including hands and other
physical objects. Middle: Distinguishing between the wid-
get (red contour) and the interacting objects (blue contour).
Middle & Right: Sensing in-air (green), touch (red) and
pressure (blue) input.

We repurpose the same machine learning pipeline to detect
distinct hand shapes (i.e. when performing different gestures).
Our system currently identifies a number of shapes includ-
ing pointing, pinching, and whole hand interactions. Our
approach can robustly handle variations across poses, and
also estimate whether the left or right hand is observed.
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After classifying the hand into distinct shapes, a machine
learning classifier robustly identifies whether contour points
belong to fingertips or the thumb, based on a curvature met-
ric. These classified contour points can be clustered, and the
individual fingertip peak identified. Simple line-fitting can
be used to determine orientation of the fingertip in 3D. As
shown in Fig. 1, Fig. 3 and accompanying video this allows
for robust real-time identification of the digits of the hand.

Stylus input and tangible tools
As shown in Fig. 3 and Fig. 4 a variety of objects placed on
top of a retro-reflective surface can be clearly identified by
their contours. These objects could either invoke specific UI
commands, or be used for continuous input. One example
of the latter is a stylus, which can be used for fine grained
manipulations in 3D as shown in Fig. 1 and accompanying
video. During contour extraction, we look for very sharp
peaks in the signal to identify the pen tip, and estimate the
pen location and orientation in 3D (using line fitting).

Touch & Pressure
Beyond the 3D and tangible interactions outlined above, each
retro-reflective widget has the capability of supporting touch
and pressure input purely with our depth estimation method.
To detect when finger or stylus touches a flat surface, a plane
is estimated based on the widget’s contour and intersections
with any classified tips identified. One interesting possibility
as shown in the accompanying video and Fig. 3 is to use
a malleable material for the widget allowing users to press
fingers into the substrate. Here the precision of our contour-
based depth estimation method allows very small changes in
the 3D location of the fingertip to be identified when the user
presses the surface to approximate pressure.

Example physical widgets
Fig. 2 shows a variety of different widgets that take minutes to
fabricate. As highlighted just by virtue of covering an object
with retro-reflective material, a interactive volume is created
above the object, where touch, pressure, in-air and stylus
input can be sensed readily, without any direct computational
augmentation of the widget. Widgets that allow for 3D touch
pads, mice, and keyboards can be easily created. Sheets of
retro-reflector can be rolled out to enable ad-hoc 3D input
devices. Physical toolbars and marking menus can be mapped
to specific 2D UI functions, e.g. color selection.

SOFTWARE PIPELINE
So far we have provided a high level view of the RetroDepth
system and its sensing and interactive capabilities. In the
next sections, we describe the software processing pipeline
that takes pairs of synchronized images and estimates depth,
and classifies widgets, hand shapes and salient hand features.
The pipeline is composed of fairly standard image processing
tasks, followed by a new contour-based stereo and classifica-
tion algorithm. We briefly discuss these initial steps before
focusing on the novel components.
First an offline calibration process is performed which com-
prises of: 1) intrinsic calibration to compute the geometric
parameters of each IR camera lens (focal length, principal
point, radial and tangential distortion); 2) stereo calibration to
compute the geometric relationship between the two cameras,
expressed as a rotation matrix and translation vector; 3) stereo
rectification to correct the camera image planes to ensure they

are scanline-aligned to simplify disparity computation. At
runtime, the synchronized input IR images are undistorted
given intrinsic lens parameters, scanline rectified, and finally
cropped to ignore non-overlapping parts.

Figure 4: Early stages of processing pipeline. Top left:
scanline-rectified stereo images. Bottom left: Foreground
segmentation (in red) of internal objects within convex hull
(blue). Note convex hull maps to each physical widget. Top
right: extracted foreground contours. Bottom right: esti-
mated depth of foreground silhouette (shown in false color).

The remainder of this online pipeline works in two steps. First,
the depth for the background objects is computed, i.e. the
visible widgets that are brightly lit. Second, depth is estimated
for foreground objects, i.e. internal silhouettes within each
widget. Because of the sparse nature of the contour-based
algorithm, we can efficiently compute depth in two-passes.

To compute depth for background objects, we threshold both
scanline-rectified images to remove low intensity pixels. We
trace the contour of each binary image, which efficiently com-
putes a set of 2D pixel coordinates corresponding to contour
points for each connected component. At this point, stereo is
computed on these background contours to estimate the 3D
silhouettes of the widgets.

What remains is to compute the depth for internal foreground
physical objects such as hands (the dark silhouettes inside the
widget). We compute the convex hull for each background
object, and generate a binary mask (1 within the convex hull,
and 0 outside) for both stereo images. For each valid pixel
in the mask, we invert the binary image, and repeat contour
extraction on these points. This leaves us with two pairs of
contour images; one corresponding to bright regions in the
input images, and the other the silhouettes (of foreground
objects) within these bright regions. Finally, our efficient
stereo matching algorithm is computed for the foreground.
(Fig. 4) shows an example of this processing pipeline.

Efficient Contour-based Stereo
Stereo algorithms identify corresponding points in both im-
ages that are projections from the same scene point. We refer
to [32, 8] for an in-depth discussion of stereo matching ap-
proaches. Because our input images are rectified, correspond-
ing points are known to lie on the same horizontal scanline in
the left and right image (see Fig. 5), which reduces the depth
estimation to a 1D search task. The horizontal displacement
is known as disparity d and is inversely proportional to depth.
In the following, we focus on the key problem of determin-
ing the correspondences between contour points that lie on a
particular scanline S.

A core contribution of our work is extending the standard
dynamic programming dense stereo algorithms to sparse con-
tours, which greatly reduces the amount of computation,
whilst increasing precision of disparity estimation.
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Figure 5: Left: contour-based depth estimation for rectified
images. For notation please see text. Right: Cost Matrix
C. The brightness of each cell indicates the accumulated
costs at C(i, j) (dark cells have low costs and bright ones
high costs). The path of lowest costs is indicated in red.
Matching pixels are marked with a red circle. All other pixels
along the red path are occluded in the left or right image.

Let p and q be contour points in the left and right image,
respectively. P and Q are lists of length |P | and |Q| that
store the image x-coordinate of those contour points lying
on scanline S in the left and right image, respectively. P (i)
denotes the ith element in the list and we assume that the
lists P and Q are sorted. For better understanding, Fig. 5
illustrates rectified stereo images that show a contour as well
as lists P and Q for scanline S.
To find correspondences between the points in P and Q, we
compute the minimum-cost path through a matrix C, illus-
trated in Fig. 5 (right). C is of size |P |× |Q| and C(i, j) stores
the minimum accumulated cost of an optimal path from (0, 0)
to (i, j). The path of minimum cost is indicated in red in
Fig. 5. Every path is restricted to start at cell (0, 0) and to
end at cell (|P |, |Q|), because we require a mapping for all
contour points. Furthermore, only three moves are possible to
construct a path: a diagonal 45◦ move that indicates a match,
as well as horizontal and vertical moves that represent points
that are only visible in the left or right image, respectively.
The restrictions imposed on the path imply the following
properties of the solution:
Uniqueness property: Every (contour) point in P can only
match to one point in Q and vice versa. Ordering property:
If point P (i) matches Q(j) than P (i+ 1) can only match to
Q(j +4) where4 > 0.
We enforce a third constraint, which we empirically found
beneficial to improve robustness: Let K be the contour that
P (i) belongs to and K ′ the contour that Q(j) belongs to.
Then if P (i) matches Q(j) the height of the bounding boxes
of K and K ′ must not differ by more than 50 pixels.
Energy Function
The (accumulated) cost of a path is defined recursively (for
i > 0 and j > 0) as:

C(i, j) = min


C(i− 1, j − 1) + Cmatch(i, j) + Csmooth(i, j)

C(i− 1, j) + λocclusion

C(i, j − 1) + λocclusion

(1)
where the three different cases correspond to the three permit-
ted moves discussed above. The boundary conditions are

C(0, 0) = Cmatch(0, 0)

C(i, 0) = i · λocclusion i > 0

C(0, j) = j · λocclusion j > 0

In Eq. 1, λocclusion is a constant occlusion penalty and the
remaining terms are defined as follows.
The data termCmatch measures the compatibility of putatively
matching contour points:

Cmatch(i, j) = ‖ ~n(i)− ~n(j)‖
+ |distC(P (i))− distC(Q(j))| . (2)

Here, the first part measures the Euclidean distance of the
normal vectors ~n(i) and ~n(j) at contour points indexed by
P (i) and Q(j), respectively. The second part compares
the horizontal distance of point P (i) and Q(j) to the cen-
troid of their corresponding contours K and K ′, respectively:
distC(P (i)) = P (i)− Centroid(K).
The pairwise term Esmooth encourages solutions where the
horizontal distance between two neighboring matching points
P (i) and P (ϕ(i)) is similar to the distance of their matching
points Q(j) and Q(l):

Esmooth(i, j) = ‖P (i)−P (ϕ(i))−(Q(j)−Q(ϕ(j)))‖, (3)

where function ϕ() returns the closest previous matching
point for the current path.
Optimization via Dynamic Programming
Dynamic programming is a well established technique to find
the path of minimal cost through C. The optimization consists
of two consecutive steps. First, the cumulative costs C(i, j)
are computed recursively for every pair (i, j) as per Eq. 1.
At each recursion we also store the best “move” (i.e. the
arg min of Eq. 1) at (i, j) in a matrixM that has the same
dimensions as C. In the second step we reconstruct the best
path by tracing back the best moves stored inM starting from
(|P |, |Q|) until we reach the origin (0, 0) ofM. Once the best
path is computed the disparity d(i) (with respect to the left
image) can be derived as d(i) = P (i) −Q(j) for matching
points P (i) and P (j).
Post Processing
Although the estimated disparity map is usually of high qual-
ity, there might be outliers and contour points where no depth
could be estimated (e.g. due to occlusion of this point in the
other image). In the post-processing stage we aim to filter out
wrong matches and assign all points along the contour to a
depth value. In particular we apply the following steps:
Invalidation of horizontal lines. The depth estimation can
be unreliable at contour points whose normal is almost per-
pendicular to the scanlines (such regions are marked in orange
in Fig. 5). This is because the term Cmatch is ambiguous in
those regions. Therefore, we invalidate contour points whose
normal vector has an angle of ≥ 85◦.
Outlier invalidation. The depth map obtained with dynamic
programming is computed independently for each scanline.
As a consequence, the depth at neighboring contour points
that lie across scanlines might be inconsistent. Thus we in-
validate points whose depth differs from those of the closest
neighboring points along the contour by more than 3mm.
Contour Smoothing. We further smooth the depth values
along the contour with a 1D mean filter of size 25 pixels. Note
this filter can be implemented very efficiently using a sliding
window technique with two operations per contour pixel.
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Filling. Finally, we assign occluded and invalidated contour
points to a depth value. This depth value is computed as a
linear combination of the depth assigned to the closest valid
contour points.

Discussion
One important feature of our algorithm is the underlying
computational cost. In general, the complexity of a pixel-
wise stereo matching algorithm can be characterized with
O(WHD), where W and H are the width and height of the
images, respectively, and D is the number of tested depth
hypotheses. In many scenarios D = O(W ), i.e. higher reso-
lution images imply a larger set of depth hypothesis to be con-
sidered. Coarse-to-fine frameworks for stereo (e.g. [34]) and
randomized stereo correspondence algorithms [6] (largely) re-
move the dependency of the runtime complexity on D. Since
in our hardware setup the most discriminative regions in the
image are the silhouettes, we restrict the computation of depth
to pixels lying on the silhouette contours. Further, we obtain
a substantial reduction in the search range D, since only a
small set of extracted contour pixels in both images can be
potential matches (∼2-10 points).

1D HAND POSE AND FINGERTIP RECOGNITION
Once we have efficiently estimated the 3D silhouette, this
high-quality contour contains valuable information about the
scene objects, and in particular on the state and pose of any
interacting hands – a key to enable truly interactive scenarios.

There are many options for detecting gestures and salient
features of the hand. One simple approach detects points of
high curvature as fingertip candidates (during contour tracing).
Whilst a heuristic, these types of rules can produce convincing
results [25]. However, there are often failure cases, such as
complex poses where knuckles, styluses or other high curva-
ture features confuse the peak detector. To address some of
these issues, we present a novel contour (1D) based hand state
and part classification algorithm, which is complimentary to
more regular peak detection in specific scenarios.

For hand state classification we use a random decision forest
(RDF) [7], which has been shown to be effective for both
body [33] and hand [19] pose estimation using depth images.
These approaches are trained to be invariant to pose and shape
variations, use scale-invariant features, and achieve a robust
result by averaging over multiple pixels. For RetroDepth, we
adapt these approaches to silhouettes, keeping their benefits,
while further reducing the complexity from 2D to 1D.

RDF based contour classification
As a key contribution of this work, our classifiers operate
on 1D contours instead of 2D images. These contours are
essentially 1D sequences of 3D points in world space, sampled
with a rate determined by the camera resolution and setup. For
notational convenience, and without loss of generality, we will
assume that the contours can be parameterized by a variable s,
such that X(s) gives the world coordinates of the point s on
the curve, and a unit step in s on the 1D sequence corresponds
to a unit step along the contour in 3D world space.

Each point on the contour is associated with two class labels
ys and yf , where ys is a hand shape label (such as pointing,
pinching, grasping or open hand) and yf is a fingertip label
(such as index, thumb, or non-fingertip). The task of the

Figure 6: Left: For a given point s on the contour, we move
by the offsets u1 and u2 to reach points X(s + u1) and
X(s+u2). Middle: Hand shape class label ys (one shared
label for all pixels). Right: Fingertip class labels yf .

RDF is to classify the hand shape for the entire contour, and
localize and identify the fingertips.
Decision trees use the internal split nodes to test and guide
the input to one of the leaves, where class distributions of the
output labels are stored. Test functions at split nodes are of
the form: f(F ) < T , where the function f maps the features
F onto a line, and T acts as a threshold. We use the following
test function:

f(s, u1, u2, ~p) = [X(s+ u1)−X(s+ u2)]~p (4)

where [.]~p is a projection onto the vector ~p, and ~p is one of
the primary axes ~x, ~y or ~z. This test probes two offsets on
the contour, gets their world distance in the direction ~p, and
this distance is compared against the threshold T (Fig. 6).
Because the parameterization of s is normalized, the offsets
u1 and u2 are scale invariant. The test function splits the data
into two sets and sends each to a child node. The quality of a
split is determined by the information gain defined as follows:

G(u1, u2, T ) = H(C)−
∑

s∈{L,R}

|Cs|
|C|

H(Cs) (5)

where H(C) is the Shannon entropy of the class label distri-
bution of the labels y in the sample set C, and CL and CR

are the two sets of examples formed by the split. At training
time, multiple features and thresholds are uniformly sampled
from a large range for each split node, and the one with the
highest information gain is selected. Once leaves are reached,
the class distribution of the remaining pixels in the node are
saved. As each pixel has two labels from distinct sets in our
case, we keep two histograms at each leaf: one for hand shape
and one for fingertips.
At run-time, every pixel is evaluated independently with each
tree in the forest and they descend into one of the leaves. For
hand shape classification, the associated distributions read
from the leaves are pooled across the contour to form a final
set of state probabilities. The mode of this distribution is
selected as the hand shape for the contour X . The fingertip
localization algorithm is instead more akin to the part clas-
sification method of [33]. After classification, we apply a
1D running mode filter to the labeled contour to filter out the
noisy labels. We finally apply connected components to give
labels to the fingers. The system selects the point with the
largest curvature as the fingertip.
To train a single forest that jointly handles shape classification
and fingertip localization, we first disregard the yf labels and
calculate the information gain only using ys until we reach a
certain depth m. From then on, we switch to using yf labels
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instead, and do not use ys to select features. This has the effect
conditioning each subtree that starts at depth m to the shape
class distributions at their roots. This is similar to the idea
presented in [19], in that the low level features are conditioned
on the high level feature distribution. However, instead of
using a multi-layered approach, we handle the classification
jointly in a single forest.
We use a realistic synthetic hand model to automatically gen-
erate high-quality hand contours with labels. The hand model
has 32 DoF, which can be used to automatically pose the
object in a range of parameters, with added random noise
on every joint angle. We generate a total of around 8000
left-hand images for each hand state class. These are then
mirrored and given right hand labels. Fingertips are labeled
by mapping the model with a texture that signifies different
regions with separate colors. An example of the hand shape
and fingertip labels for a certain pose can be seen in Fig. 6.

Classifying other object contours
Our method for hand posture classification can also be lever-
aged to classify retro-reflective widgets. Even though the
shapes are mostly primitive shapes e.g. rectangles and circles,
applying template matching is not optimal. This is mainly
because the contour of the object changes while the user is
interacting with it, and also because for every type of object,
a new set of heuristics or rules need to be generated. An
off-the-shelf RDF on the other hand can learn all the variation
of the contours for every shape. It is accurate and fast, and
can learn to recognize new objects at run-time.
To reduce the variation due to occlusion, we first estimate the
convex hull of the objects and evaluate this simplified contour.
We use real data for training, since labeling the contours is
straightforward in this case. The same features and objective
function are used as in Equation 4 and 5. As the contours
are much simpler in this case, much shallower forests are
sufficient for online training.

Recognizing a stylus
Pens are typically much sharper than fingers and therefore
easier to recognize with heuristics. On both small objects
where we have partial hand contours, as well as on larger
surfaces where we have the full hand contour, finding the
sharpest point on the contour (and thresholding it) is a good
estimator for the pen tip location. However, the pen changes
the contour of the hand shape considerably, which reduces the
accuracy of the hand state classifier and causes the fingertip
localizer to fail. Therefore, when a pen is detected on a
large surface, the pen contour points are first removed from
the contour. This can be done by following the pen contour
in both directions until the gradient of the contour changes
abruptly. The corresponding points are then connected to
form the hand contour.

Discussion and results
When users interact with smaller widgets, where only a few
fingers or the pen is visible, hand state recognition is not
desired as we have only a partial hand contour. In these cases,
the pen and fingers can be found by simple peak detection.
When the hand is on the large rectangular surface however,
simple heuristics fail to identify or localize fingers robustly
(e.g. finding peaks at knuckles). Examples that would very
likely be failure cases for standard heuristic-based approaches

Class Thumb Index Middle Ring Pinky Reject
Accuracy 0.848 0.754 0.615 0.594 0.796 0.882

Table 1: Per-pixel classification accuracy for the individual
fingertip classes, before filtering.

Figure 7: Examples of results based on complex poses and
visually ambiguous poses. Ground truth data shown left
and test results shown right. Poses shown from left to right:
two pinch gestures, a splayed hand with an occluded finger,
and fused fingers on a splayed hand.

such as detecting pinch [42] or fingertips [25] are shown in
Fig. 7. Whilst these reinforce the need for a machine learning
approach, our method is also complimentary to more heuristic-
driven approaches.

We conducted experiments with eight hand states, correspond-
ing to left and right handed versions of four hand poses,
namely “pointing”, “pinching”, “open hand looking down”,
and “open hand looking up”. For each hand state we have
4000 synthetic left hand images, which are mirrored to re-
trieve data for the right hand. We train on half of the samples
and test on the remaining ones.

We train an RDF with a single tree until depth 18 with the
state labels only, and calculate the confusion matrix over all
hand states. The RDF reaches perfect accuracy for both left
and right handed versions of three of the command modes,
and only shows confusion between the left– and right–handed
pointing gestures. The success rate of left–handed pointing is
93% and right–handed pointing is 92%, and the corresponding
left-right confusion is 7% for the former and 6% for the latter
case. This gives us an overall command mode classification
accuracy of 100% and left-right hand classification accuracy
of 98% when all states are considered.

The synthetic images also have labels for the five fingertips
and the reject class, corresponding to the non-fingertip areas.
After the state classification training concludes at depth 18,
we continue training with the fingertip labels until depth 25.
The leaves are assigned the distributions of both state and
fingertip labels. The success rates are given in Table 1. Even
though we are operating on 1D contours, with much lower
computation, the per-pixel classification rates are similar to
the reported results in [33] and [19].

CONTOUR INPAINTING
So far we have purposefully pushed the limits of what can
be achieved purely based on silhouettes. However, there are
certain scenarios and legacy applications that require fully
dense depth maps. In this section, we show a robust and fast
method for inpainting the contour of objects. The results of
our contour inpainting algorithm can be found in Fig. 8.

In order to fill the interior Ω of our segmented contour ∂Ω,
we formulate the interpolation problem as a Laplace equa-
tion with Dirichlet boundary condition. Hence, contour
depth values define a known scalar-valued boundary func-
tion f̂(x, y)|∂Ω and we need to solve for the interior depth
values f(x, y) over Ω with:
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∆f(x, y) = 0 (x, y) ∈ Ω− δΩ
f(x, y)|∂Ω = f̂(x, y)|∂Ω otherwise

Then, we use a parallel Jaccobi/Gauss-Seidel solver on the
GPU to solve the Laplace equation. In order to speed up
convergence, we initialize the interior using a hierarchical pull-
push interpolation with bi-cubic interpolation weights [27].
Note that we mark pixel values of ∂Ω with a negative sign,
which allows us (except for the pull-push hierarchy) to solve
the system in place. The contour inpainting results can be
seen in the supplemental video.

EXPERIMENTS
We now evaluate the performance of our system compared to
three baseline measures. As a first baseline, we choose Leap
Motion (Leap) given the widely publicized precision of the
system, and its availability as a commodity sensor. The other
baselines are based on another, arguably more ubiquitous
depth sensor: the Kinect. With this sensor, we chose to run
two conditions. The first (KinectLight) uses the RetroDepth
hand posture and fingertip tracking pipeline described previ-
ously, and uses contour-traced Kinect depth maps as input
(instead of RetroDepth stereo data). This in part evaluates
our software pipeline with a commodity sensor, but also gives
us an indication of the precision of the stereo matching al-
gorithm and hardware setup that the full RetroDepth system
supports. The second Kinect baseline (3Gears) evaluates the
hand tracker from 3Gear systems [1]. This can be considered
the current widely-available state-of-the-art hand tracker for
Kinect with scenarios close to RetroDepth.

3D Target Acquisition
In our first task, we wanted to evaluate one of the core features
of RetroDepth, its 3D input precision. For all conditions,
the same physical setup was used as shown in Fig. 9. This
provided a physical input space of 30x30x30cm. Leap was
placed on the table, Kinect and RetroDepth mounted top down.
All cameras were configured to share the same center of origin.
A large table was used with retro-reflective material visible
for the RetroDepth condition. This material was removed for
the other conditions to avoid IR interference. A PC with a
6-core 2.8GHz processor and Nvidia GTX480 GPU, and large
display were used for all conditions. Our pipeline ran on this
hardware at 60Hz.

Participants Twelve participants (9 male, 3 female) be-
tween the ages of 21 and 39 were recruited for the study.
Participants were daily computer users, 2 were left handed.
All had normal vision. Participants had no experience of using
3D hand gesture-systems, but some had experiences playing
Kinect games.

Task We conducted a 3D targeting task where the physical
interaction volume was subdivided into 27 equally sized cells

Figure 8: Contour inpainting results in false color.

Figure 9: Study setup. Left: Kinect, Leap and RetroDepth
setups for 3D acquisition task. Middle: Kinect touch evalu-
ation. Right: Leap touch evaluation.

Figure 10: Left: touch targeting results, and right: 3D ac-
quisition targeting results.

(3x3x3 grid). The user began by holding their finger in a 3D
transparent box appearing centered and at the front of the
3D scene. After a fixed time, a billboarded target shown in
Fig. 9 (left screen) appeared centered in one cell for users to
select. 3 trials were performed per condition. Starting and
target positions were coupled a priori to reduce in-condition
variance. This set was used across all conditions, with the
order randomized, ensuring that the total distance traveled
was exactly equal across all users, and each condition. Mea-
surement of task completion was triggered once the fingertip
left the starting position and ended once the user entered the
target triggering area. The targets were 5x5cm high.
Procedure The experiment employed a within-subject re-
peated measure design. The independent variable was the
input type: RetroDepth, Leap, KinectLight, 3Gears. The de-
pendent measure was the targeting accuracy (measured as a
distance of the fingertip to the target center upon selection).
The presentation order of the conditions was counterbalanced
using a Latin Square design across users. A short training
phase was first performed, after which each user was asked
to perform the task as accurately as possible. The entire ex-
periment lasted about 60 minutes. Participants filled out a
post-experiment questionnaire upon completion. Users were
observed at all times as the task was performed, and notes on
subjective experiences were taken.
Results
Our 12 participants produced a total of 3888 selections in this
task. No effect was found between the four blocks of trails
(e.g. from fatigue or learning effects). Additionally there
was no significant differences between participants. This
allows us to combine data to cluster per condition results as
shown in Fig. 10 (right). The plot shows the average of the
target hits across all participants, clustered by condition. Note
we ignore the Z contribution as the targets were planar, and
depth is measured along the Y axis in our 3D scene. The
more compact the cluster the more accurate the result. 95%
confidence ellipses are shown for each condition.
We compute the minimum target sizes required to achieve
95% accuracy for each condition. RetroDepth achieves the
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Figure 11: 2D touch results across all four conditions.

smallest minimum target size of 1.95x1.55cm with error
X=7.89mm and Y=10.90mm. 3Gears achieves the largest
minimum target size of 5.30x3.15cm with error X = 20.86mm
and Y=29.74mm. KinectLight achieves a size of 2.89x2.08cm
with error X= 15.24mm and Y=24.87mm. Leap performs sim-
ilarly achieving a size of 3.18x2.00cm with error X=17.53mm
and Y=22.67mm.

Physical Touch Performance
Another important feature of RetroDepth is the ability to
support touch sensing. To evaluate the performance of the
system against our baseline, we ran a further experiment,
where each camera (Kinect, Leap and RetroDepth) was setup
in top down arrangement Fig. 9 (middle and right). For Leap
this meant adding a sheet of IR absorbing film to the table. A
20cm×25cm acrylic sheet was used as a touch surface, with
small laser etched targets (spaced 5cm apart), and sized for
the user’s fingertips. 12 participants, 3 women and 9 men,
were asked to perform a physical touch task. The aim was to
measure system performance in terms of touch accuracy, and
overall sensor precision. Participants were asked to touch all
12 targets in turn over 5 trials. The 3D point was recorded once
the user’s self reported. Fig. 11 shows the X-Y 2D accuracy
plots for each of the sensors. Fig. 10 (left) shows the Z-Y
accuracy plots (Z axis corresponds to depth precision). Based
on these statistics it is possible to define the minimum 3D
target bounds to capture 95% of the touches. For RetroDepth
this is 1.69x0.98x0.75cm, KinectLight is 1.49x1.29x0.85cm,
Leap is 3.88x2.91x 1.63cm, 3Gear is 4.41x3.71x2.78cm.

Discussion
We found the results extremely encouraging given the preci-
sion of RetroDepth compared to these baselines. It is however
important to note that we are not comparing like-for-like nec-
essary. In terms of fidelity, for example, Leap uses lower cost
cameras, and we use more costly research cameras. Nor was
the Leap designed for touch-like scenarios (i.e. pointing down-
wards). Although we feel that the touch accuracy of the Leap
is good enough to warrant future work on this scenario, based
on our IR absorbing idea. On the other hand, RetroDepth is
a research prototype whilst others are engineered products.
Our system also offers different data (silhouettes) than the
Leap and the Kinect, and none of these elements are being
measured. However, with all this in mind our results are
encouraging in terms of precision and performance.

An interesting finding is how well Kinect performed in the
KinectLight condition, particularly for touch sensing. This
illustrates benefits of our software pipeline for improving
touch and 3D acquisition. Another interesting finding is that
user’s perceptions and performance can be very different.

Leap surprisingly did not perform as well as expected, yet
it was ranked a close second to RetroDepth in terms of pref-
erence. Many users described it as fluid, which indicates
that the higher frame-rate has a strong impact in terms of
NUI experience, potentially even distorting views of sensor
accuracy. The 3Gear performance also gives an interesting
insight. Whilst the system appeared to be performing well,
showing compelling 3D models fitting the Kinect data, this
model fitting approach ultimately led to severe inaccuracies
for touch and selection, as there will always be discrepancies
between a generic model and the user’s hand.

Overall we feel that RetroDepth offers an exciting new re-
search platform for future work on NUI interfaces, leading
to new applications that incorporate touch, pressure, 3D, and
even tangible input. There are of course limitations with our
approach. Ultimately, 3D silhouettes are a lower dimensional
representation of the real world, and in that regard data can be
lost. The interesting finding from our experiments is just how
much information is encoded in the silhouette allowing high
accuracy rates for hand pose and part classification. Another
clear finding is around frame rate, where user feedback sug-
gests that trading some precision for speed may be desirable,
and where there are significant computational advantages of
working with silhouettes.

CONCLUSIONS
In this paper we have presented RetroDepth a system that
allows for high-precision 3D sensing on and above physical
surfaces. We have provided several key contributions: 1)
A fully working real-time 3D silhouette sensing technology
which combines (for the first time) the common NUI modali-
ties of touch, pressure, stylus, objects, and 3D, into a single
system. 2) a new stereo matching algorithm for computing
fast and precise 3D contours. 3) a new 1D contour classifica-
tion algorithm, for robustly identifying physical tools, hand
poses and salient features. 4) A software pipeline with practi-
cal impact even for regular Kinect sensors.
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