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Image Colorization: A Survey and Dataset
Saeed Anwar∗, Muhammad Tahir∗, Chongyi Li, Ajmal Mian, Fahad Shahbaz Khan, Abdul Wahab Muzaffar

Abstract—Image colorization is an essential image processing and computer vision branch to colorize images and videos. Recently,
deep learning techniques progressed notably for image colorization. This article presents a comprehensive survey of recent
state-of-the-art colorization using deep learning algorithms, describing their fundamental block architectures in terms of skip
connections, input etc. as well as optimizers, loss functions, training protocols, and training data etc. Generally, we can roughly
categorize the existing colorization techniques into seven classes. Besides, we also provide some additional essential issues, such as
benchmark datasets and evaluation metrics. We also introduce a new dataset specific to colorization and perform an experimental
evaluation of the publicly available methods. In the last section, we discuss the limitations, possible solutions, and future research
directions of the rapidly evolving topic of deep image colorization that the community should further address. Dataset and Codes for
evaluation will be publicly available at https://github.com/saeed-anwar/ColorSurvey

Index Terms—Image colorization, deep learning, experimental survey, new colorization dataset, colorization review, CNN model
classification.
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1 INTRODUCTION

“Don't ask what love can make or do! Look at the colors of
the world.” - Rumi

COLORIZATION of images is a challenging problem due
to the varying image conditions that need to be dealt

via a single algorithm. The problem is also severely ill-
posed as two out of the three image dimensions are lost;
although the semantics of the scene may be helpful in many
cases, for example, grass is usually green, clouds are usually
white, and the sky is blue. However, such semantic priors
are highly uncommon for objects such as t-shirts, desks, and
many other observable items. Further, the colorization prob-
lem also inherits the typical challenges image enhancement,
such as changes in illumination, variations in viewpoints,
and occlusions.

In recent years, with the rapid development of deep
learning techniques, a variety of image colorization models
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have been introduced and state-of-the-art performance on
current datasets has been reported. Diverse deep-learning
models ranging from the early brute-force networks (e.g. [1])
to the recently carefully designed Generative Adversarial
Networks (GAN) (e.g. [2]) have been successfully used to
tackle the colorization problem. These colorization networks
differ in many major aspects, including but not limited to
network architecture, loss types, learning strategies, net-
work depth, etc.

In this paper, we provide a comprehensive overview of
single-image colorization and focus on the recent advances
in deep neural networks for this task. To the best of our
knowledge, no survey of either traditional or deep learning
colorization has been presented in current literature. Our
study concentrates on many important aspects, both in a
systematic and comprehensive way, to benchmark the recent
advances in deep-learning based image colorization.

Contributions: Our contributions are as follows

1) We provide a thorough review of image colorization
techniques including problem settings, performance
metrics and datasets.

2) We introduce a new benchmark dataset, named
Natural-Color Dataset (NCD), collected specifically
for the colorization task.

3) We provide a systematic evaluation of state-of-the-
art models on our NCD.

4) We propose a new taxonomy of colorization net-
works based on the differences in domain type,
network structure, auxiliary input, and final output.

5) We also summarize the vital components of net-
works, provide new insights, discuss the challenges,
and possible future directions of image colorization.

Related Surveys: Image colorization has been the focus of
significant research efforts over the last two decades while
most early image colorization methods were primarily in-
fluenced by conventional machine learning approaches [3],
[4], [5], [6], [7], [8] - the past few years have seen a huge shift
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Fig. 1. Taxonomy: Classification of the colorization networks based on structure, input, domain, and type of network.

in focus to deep learning-based models due to their success
in a number of different application domains [1], [9], [10],
[11], [12].

Automatic image colorization systems built upon deep-
learning methodologies have recently shown impressive
performance. However, despite this success, no literature
survey or review covering the latest developments in this
field currently exists. Therefore, inspired by surveys in
deep image super-resolution [13], VQA [14], etc. we aim to
provide a survey for deep image colorization.

Problem Formulation: The aim of colorization is to convert
a grayscale image to color image, typically captured in
previous decades, when technological advancements were
limited. Hence this process is more a form of image en-
hancement than image restoration. It is also possible that
the color images such as RGB are converted to grayscale
or Y-Channel of YUV color-space, possibly to save storage
space or communication bandwidth. The grayscale images
may also exist due to old technology or low-cost sensors.
Therefore, in this case, a trivial formulation can be written
as:

Ig = Φ(Irgb), (1)

where Φ(·) is a function that converts the RGB image Irgb to
a grayscale image Ig , for example as follows:

Ig = 0.2989 ∗ Ir + 0.5870 ∗ Ig + 0.1140 ∗ Ib. (2)

Typically, colorization methods aim to restore the color
in YUV space, where the model needs to predict only two
channels, i.e. U and V - instead of the three channels in RGB.

2 SINGLE-IMAGE DEEP COLORIZATION

This section introduces the various deep learning techniques
for image colorization. As shown in Figure 1, these coloriza-
tion networks have been classified into various categories,
in terms of different factors, such as structural differences,
input type, user-assistance etc. Some networks may be eligi-
ble for multiple categories; however, we have simply placed
these in the most appropriate category.

2.1 Plain Networks
Like in other CNN tasks, early colorization architectures
were plain networks. We classify a network as plain if it pos-
sesses a simple, straightforward architecture with stacked
convolutional layers, i.e., no, or naive skip connections.
Networks that fall into this category are shown in Figure 2
and are discussed below.

2.1.1 Deep Colorization

Deep colorization1 [1] can be regarded as the first work
to have attempted to incorporate convolutional neural net-
works (CNNs) for the colorization of images. However, this
method does not fully exploit the CNNs; instead, it also
includes joint bilateral filtering [15] as a post-processing step
to remove artifacts introduced by the CNN network.

In the training step, five fully connected linear layers
are followed by non-linear activations (ReLU). The loss
function utilized is the least-squares error. In the proposed
model, the number of neurons in the first layer depends
on the dimensions of the feature descriptor extracted from
the grayscale patch, while the output layer has only two
neurons, i.e., the U and V channel corresponding color pixel
value. In the testing step, features are extracted from the in-
put grayscale image at three levels i.e. low-level, mid-level,
and high-level. The features at low-level are the sequential
gray values, at mid-level they are DAISY features [16], and
at high-level semantic labeling is performed. The patch and
DAISY features are concatenated and then passed through
the network. As a final step for removing artifacts, joint
bilateral filtering [15] is performed.

The network takes as input a 256 × 256 grayscale image
and is composed of five layers: one input layer, three hidden
layers, and one output layer. The model is trained on 2688
images from the Sun dataset [19]. The images are segmented
into 47 objects categories including cars, buildings, sea etc.
for 47 high-level semantics. Furthermore, 32-dimensional
mid-level DAISY features [16] and 49-dimensional low-level
features are utilized for colorization.

2.1.2 Colorful Colorization

Colorful image Colorization CNN2 [18] was one of the first
attempts to colorize grayscale images. The network takes
as input a grayscale image and predict 313 “ab” pairs of
the gamut showing the empirical probability distribution,
which are then transformed to “a” and “b” channels of the
“Lab” color space. The network stacks convolutional layers
in a linear fashion, forming eight blocks. Each block is made
up of either two or three convolutional layers followed by
a ReLU layer and Batch Normalization (BatchNorm [20])
layer. Striding instead of pooling is used to decrease the size
of the image. The input to the network is 256×256, while the
output is 224×224; however, it is resized later to the original
image size.

1. Code available at https://shorturl.at/cestD
2. Code at https://github.com/richzhang/colorization

https://shorturl.at/cestD
https://github.com/richzhang/colorization
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Fig. 2. Plain networks are the earlier models with convolutional layer stacking with no skip or naive skip connections.

The colorful image colorization network removes the
influence (due to background, e.g. sky, clouds, walls etc.)
of the low “ab” values by reweighting the loss based on the
pixel rarity in training—the authors’ term this technique as
class rebalancing.

The framework utilized to build the network is
Caffe [21], and ADAM [22] is used as the solver. The
network is trained for 450k iterations with a learning rate
of 3 × 10−5, which is reduced to 10−5 at 200k and 3 × 10−6

at 375k iterations. The kernel size is 3×3, and the feature
channels vary from 64 to 512.

2.1.3 Deep Depth Colorization

Deep depth colorization3 (DE)2CO [17] employs a deep
neural network architecture for colorizing depth images
utilizing pre-trained ImageNet [23]. The system is primarily
designed for object recognition by learning the mapping
from the depths to RGB channels. The weights of the pre-
trained network are kept frozen, and only the last fully
connected layer of (DE)2CO is trained that classifies the
objects with a softmax classifier. The pre-trained networks
are merely used as feature extractors.

The input to the network is a 228×228 depth map
reduced via convolution followed by pooling to 64×57×57.
Subsequently, the features are passed through a series of
residual blocks, composed of two convolutional layers, each
followed by batch normalization [20] and a non-linear acti-
vation function i.e. leaky-ReLU [24]. After the last residual
block, the output is passed through a final convolutional
layer to produce three channels, i.e., an RGB image as
an output. To obtain the original resolution, the output is
deconvolved as a final step. When an unseen dataset is
encountered, only the last convolutional layer is retrained
while keeping the weights across all other layers frozen.
(DE)2CO outperforms CaffeNet (a variant of Alexnet [25]),
VGG16 [26], GoogleNet [27], and ResNet50 [28] under
the same settings on three benchmark datasets including
Washington-RGBD [29], JHUIT50 [30], and BigBIRD [31].

3. Available at https://github.com/engharat/SBADAGAN

2.2 User-guided networks

User-guided networks require input from the user either in
the form of in points, strikes, or scribbles, as presented in
Figure 3. The user input can be provided in real-time or of-
fline. The following are examples of user-guided networks.

2.2.1 Scribbler
Sangkloy et al. [32] used an end-to-end feed-forward deep
generative adversarial architecture4 to colorize images. To
guide structural information and color patterns, user input
in the form of sketches and color strokes is employed. The
adversarial loss function enables the network to colorize the
images more realistically.

The generator part of the proposed network adopts an
encoder-decoder structure with residual blocks. Following
the architecture of Sketch Inversion [33], the augmented
architecture consists of three downsampling layers, seven
residual blocks preceded by three upsampling layers. The
downsampling layers apply convolutions of stride two,
whereas the upsampling layers utilize bilinear upsampling
to substitute the deconvolutional layers contrary to Sketch
Inversion. All layers are followed by batch normaliza-
tion [20] and the ReLU activation function except the last
layer, where the TanH function is used. The discrimina-
tor part of the proposed network is composed of a fully
convolutional network with five convolutional layers and
two residual blocks. Leaky-ReLU [24] is used after each
convolutional layer except the last one, where Sigmoid is
applied.

The proposed model’s performance is assessed qualita-
tively on datasets from three different domains, including
faces, cars, and bedrooms.

2.2.2 Real-Time User-Guided Colorization
Zhang et al. [34] developed user interaction based on two
variants, namely local hint and global hint networks, both
of which utilize a common main branch for image coloriza-
tion5. The local hint network is responsible for processing
the user input and yielding color distribution, whereas the

4. https://github.com/Pingxia/ConvolutionalSketchInversion
5. https://github.com/junyanz/interactive-deep-colorization

https://github.com/engharat/SBADAGAN
https://github.com/Pingxia/ConvolutionalSketchInversion
https://github.com/junyanz/interactive-deep-colorization
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Fig. 3. User-Guided networks are the ones that require a user to input the color at some stage of the network during colorization.

global hint network accepts global statistics in the form of a
global histogram and average saturation of the image. The
loss functions include Huber and regression.

The main network is composed of ten blocks, made up
of two or three convolutional layers followed by the ReLU.
Similarly, each block is succeeded by batch normalization as
well. In the first four blocks, feature tensors are continuously
halved, while doubling the feature dimensions. The same
process is performed in reverse order for the last four
convolutional blocks. Moreover, a dilated convolution (with
a factor of two) is applied for the fifth and sixth blocks. Sym-
metric shortcut connections are also established between
different blocks for the recovery of spatial information. The
kernel size for all convolutions is set to 3 × 3. However, a
1 × 1 kernel is used at the last layer, mapping block ten and
the final output.

2.2.3 Interactive Deep Colorization
To colorize grayscale images, Xiao et al. [35] developed an
interactive colorization model based on the U-Net [37] ar-
chitecture, which can simultaneously utilize global and local
inputs. The network includes a feature extraction module, a
dilated module, a global input module, and a reconstruction
module.

The feature extraction module (layers 2 to 14) receives
the inputs i.e. a grayscale image, local input, and gradient
map that are merged via element-wise summation. The
global input is processed by four convolution layers inde-
pendently and then merged with the output of the feature
extraction module using element-wise summation. The di-
lated module takes the input from the extraction module
(corresponding to convolutional layers ranging from 15 to

20). The dilated module’s output is further processed by
a reconstruction module composed of many deconvolution
and convolution layers. As a final step, the output of the
network is combined with the input grayscale image to
generate the colorized version. All the layers use ReLU
except the final one, which employs a TanH activation.

The Huber loss is modified to meet the requirements of
the proposed model. The testing set is composed of ran-
domly chosen 1k images from ImageNet [23]. The proposed
model is trained for 300k iterations utilizing the remaining
images from ImageNet [23], combined with 150k images
from Places dataset [38].

2.2.4 Anime Line Art Colorization

Ci et al. [36] proposed an end-to-end interactive deep con-
ditional GAN (CGAN) [39] for the colorization of synthetic
anime line arts. The system operates on the user hints and
the grayscale line art.

The discriminator is conditioned on the local fea-
tures computed from a pre-trained network called Illus-
tration2Vec [40]. The generator adopts the architecture of
U-Net [37] that has two convolution blocks and the local
feature network at the start. Afterward, four sub-networks
with similar structures are employed, each of which is
composed of convolutional layers at the front followed
by ResNeXt blocks [41] with dilation and sub-pixel con-
volutional (PixelShuffle) layers. Each convolutional layer
utilizes LeakyReLU as activation function, except the final
one where TanH activation is employed. The discrimina-
tor, on the other hand, is inspired by the architecture of
SRGAN [42]; however, the basic blocks are replaced from
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the earlier mentioned generator to remove dilation and an
increased number of layers is used.

The generator employs the perceptual and adversarial
losses, and the discriminator combines Wasserstein critic
and penalty losses. The ADAM [22] optimizer is employed
with β1 = 0.5, β1 = 0.9 and a batch size of four.

2.3 Domain-Specific Colorization

The aim of these networks is to colorize images from differ-
ent modalities such as infrared, or different domains such
as radar. We provide the details of such networks in the
following sub-sections and are shown in Figure 4.

2.3.1 Infrared Colorization
An automatic Near Infrared (NIR)6 image colorization tech-
nique [43] was developed using a multi-branch deep CNN.
NIR [43] is capable of learning luminance and chrominance
channels. Initially, the input image is preprocessed and is
converted into a pyramid. Where each pyramid-level is
normalized i.e. has zero mean and unit variance. Next, each
structurally similar branch of NIR [43] is trained using a sin-
gle input pyramid-level without sharing weights between
layers. All the branches are merged into a fully connected
layer to produce the final output. Additionally, the mean
input image is also fed directly to the fully connected layer.

The fundamental structure of NIR is inspired by [18].
Each branch is composed of stacked convolutional layers
with pooling layers placed in the middle after regular
intervals. The activation function after each convolutional
layer is ReLU. In order to produce the colorized image,
the raw output of the network is joint-bilaterally filtered,
and the output is then further enhanced by incorporating
high-frequency information directly from the original input
image.

Each block has the same number of convolutional layers.
The kernel size is 3×3, while a downsampling of 2×2 is
utilized in the pooling layers. Similarly, the same number of
feature maps, i.e. 16, are employed in the first block, but after
each pooling layer, the number is increased by 2. Moreover,
The authors developed a real-world dataset by capturing
road scenes in summer with a multi-CCD NIR/RGB camera.
The proposed model is trained on about 32 image pairs and
tested on 800 images from the mentioned dataset.

2.3.2 SAR-GAN
To colorize Synthetic Aperture Radar (SAR) images,
Wang et al. [46] proposed SAR-GAN. The network uses a
cascaded generative adversarial network as its underlying
architecture. The input SAR images are first denoised from
speckles and then colorized to produce high-quality visible
images. The generator of SAR-GAN [46] consists of a de-
speckling subnet and colorization subnet. The output of the
despeckling subnet is a noise-free SAR image that is further
processed by the colorization subnet to produce a colorized
image.

The despeckling sub-network consists of eight convo-
lutional layers with batch normalization [20], an activation
function, and an element-wise division residual layer. First,

6. Code is available at https://bit.ly/2YZQhQ4

the speckle component in the SAR image is estimated and
forwarded to the residual layer. To generate a noise-free
image, a residual layer equipped with skip connections
performs component-wise division of the input SAR image
by the estimated speckle. The colorization sub-network uti-
lizes a symmetric encoder-decoder architecture with eight
convolutional layers and three skip connections that enable
the network’s input and output to share low-level charac-
teristics.

The ADAM [22] optimization technique is adopted for
training the entire network. The discriminator component of
SAR-GAN [46] utilizes a hybrid loss function, developed by
combining the pixel-level `1 loss with the adversarial loss.
SAR-GAN [46] is tested on 85 out of 3292 synthetic images
as well as real SAR images. .

2.3.3 Radar Image Colorization
Song et al. [45] developed a feature-extractor network
and a feature-translator network for the colorization of
single-polarization radar grayscale images7. To construct
the feature-extractor network, the first seven layers of the
VGG16 [26] pre-trained on ImageNet [23], are used. The
output of the feature extractor network is in the form of a
hyper-column descriptor that is obtained by concatenating
the corresponding pixels from all layers along with the input
image.

The final hyper-column descriptor, thus obtained, is fed
into the feature-translator network that is composed of five
fully connected layers. As a final step, the feature-translator
network uses softmax function to obtain the output similar
to classification, which is achieved by constructing nine
groups of neurons representing nine polarimetric. The ReLU
activation function follows each convolutional layer in both
networks. Furthermore, to train both the feature-extractor
and feature-translator, full polarimetric radar image patches
are employed.

2.3.4 Sketch Image Colorization
Lee et al. [44] proposed a reference-based sketch image
colorization, where a sketch image is colorized according to
an already-colored reference image. In contrast to grayscale
images, which contain the pixel intensity, sketch images
are more information-scarce, which makes sketch image
colorization more challenging.

In the training phase, the authors proposed an aug-
mented self-reference generation method, generated from
the original image by both color perturbation and geomet-
ric distortion. Specifically, a color image is first converted
into its sketch image using an outline extractor. Then, the
augmented self-reference image is generated by applying
the thin plate splines transformation to the reference image.
The generated reference image as the ground truth contains
most of the content from the original image, thus, providing
a full information of correspondence for the sketch. Taking
the sketch image and reference image as inputs, the network
first encodes these two inputs by two independent encoders.
Furthermore, the authors proposed a spatially correspond-
ing feature transfer module to transfer the contextual rep-
resentations obtained from the reference into the spatially

7. Code at https://github.com/fudanxu/SAR-Colorization

https://bit.ly/2YZQhQ4
https://github.com/fudanxu/SAR-Colorization
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Fig. 4. Domain-Specific Colorization networks colorize images from different modalities such as infra-red, radar images.

corresponding positions of the sketch (i.e., integrating the
feature representations of sketch and its reference image).
The integrated features are passed through residual blocks
and a decoder to produce the colored output. During train-
ing, a similarity-based triplet loss, L1 reconstruction loss,
adversarial loss, perceptual loss, and style loss are used to
drive the learning of the proposed network.

The proposed network is a U-net-like structure coupled
with several residual blocks and a spatially corresponding
feature transfer module in between the encoder and de-
coder. The sketch image and the color reference image with
a size of 256 × 256 are fed to the network and the network
outputs the colorization result of the sketch image.

2.4 Text-based Colorization
In these types of networks, the images are colorized based
on the input, which is usually text. We classify the follow-
ing models as text-based colorization networks. Figure 5
presents the network architectures for this category.

2.4.1 Learning to Color from Language
To exploit additional text input for colorization, a language-
conditioned colorization architectures8 [47] was proposed to
colorize grayscale images with additional learning from im-
age captions. The authors employed an existing language-
agnostic architecture called FCNN [18], providing image
captions as an additional input. FCNN [18] is composed

8. Available at https://github.com/superhans/colorfromlanguage

of eight blocks each of which consists of a sequence of
convolutional layers followed by batch normalization. The
authors experimented with the CONCAT network [48] to
generate captions from images, but settled on the FILM
network [49] due to its small number of parameters. To
obtain the final output, the language-conditioned weights
of the FILM [49] are utilized for affine transformation of the
convolutional blocks’ outputs.

Finally, FCNN [18] and the two language-conditioned
architectures i.e. CONCAT and FILM were trained on im-
ages from MS-COCO dataset [50]. Automatic evaluations
indicated that the FILM architecture achieves the highest
accuracy. Moreover, the models were also assessed by per-
forming crowdsourced assessments that authenticated the
effectiveness of the architectures. The output of the network
is a 56×56 color image.

2.4.2 Text2Colors

The Text2Colors9 [51] model is comprised of two conditional
generative adversarial networks: Text-to-Pallette Generation
Network (TPN) and Palette-based Colorization Network
(PCN). TPN is responsible for constructing color palettes
learned from the Palette-and-Text (PAT) dataset, which con-
tains five-color palettes for each of 10,183 textual phrases.
Meanwhile, PCN is responsible for colorizing the input
grayscale image given the generated palette based on the
input text.

9. Code is https://github.com/awesome-davian/Text2Colors/

https://github.com/superhans/colorfromlanguage
https://github.com/awesome-davian/Text2Colors/
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Fig. 5. Text-based colorization networks are based on the text input with the grayscale image.

The TPN generator learns the pairing between text and
color palette, while its discriminator, simultaneously learns
the characteristics of the color palette and text, to identify
the real palettes from the fake ones. The loss function in the
TPN network is the Huber loss.

On the other hand, the generator of the PCN network
has two subnetworks: the colorization network based on U-
Net [37] to colorize the images and the conditioning network
to apply the palette colors to the generated image. The PCN
discriminator is based on the DCGAN architecture [52]. In
the PCN’s discriminator, first, the features from the input
image and generated palette (by the TPN network) are
jointly learned by a series of Conv-LeakyReLU layers. Then,
a fully connected layer classifies the image as either real or
fake.

The discriminator and generator of TPN are first trained
on the PAT dataset for 500 epochs, and then trained on
the ground-truth image for 100 epochs. The trained gen-
erators of TPN and PCN are then used to colorize the input
grayscale image at the testing stage using the input text’s
color palette. Adam optimizer is used with a learning rate
of 0.0002 for all the networks.nput text’s color palette. Adam
optimizer with a learning rate of 0.0002 for all the networks.

2.5 Diverse Colorization
The aim of diverse colorization is to generate different col-
orized images, rather than restore the original color shown
in Figure 6. Diverse colorization is usually achieved via
GANs or variational autoencoders. GANs attempt to gener-
ate the colors in a competitive manner where the Generator
tries to fool the Discriminator while the Discriminator tries
to differentiate between the ground-truth and the generated
colors. We present the vanilla GANs employed for coloriza-
tion.

2.5.1 Unsupervised Diverse Colorization
Cao et al. [53] proposed the utilization of conditional GANs
for the diverse colorization of real-world objects10. In the
generator of the proposed GAN network, the authors em-
ployed five fully convolutional layers with batch normaliza-
tion and ReLU. To provide continuous conditional supervi-
sion for realistic results, the grayscale image is concatenated

10. Code is available at https://github.com/ccyyatnet/COLORGAN

with every layer of the generator. Furthermore, to diversify
the colorization outputs, noise channels are added to the
first three convolutional layers of the generator network.
The discriminator is composed of four convolutional layers
and a fully-connected layer to differentiate between the fake
and the real values of the image.

During the convolution operations, the stride is set to 1
to keep the spatial information the same across all layers.
The performance of the proposed method was assessed
using the Turing test methodology. The authors provided
questionnaire surveys to 80 subjects asking them 20 different
questions regarding the produced results for the publicly
available LSUN bedroom dataset [54]. The proposed model
obtained a convincible rate of 62.6% compared to 70%
for ground-truth images. Additionally, a significance t-test
generated a p-value of 0.1359, indicating that the generated
colorized images are not significantly different from the real
images.

For implementation, the authors opted for the Tensor-
flow framework. The batch size was selected as 64 with
a learning rate of 0.0002 and 0.0001 for the discriminator
and generator, respectively. The model was trained for 100
epochs using RMSProp as an optimizer. The output of the
network is 64×64 in size.

2.5.2 Tandem Adversarial Networks
For the colorization of raw line-art, Frans [55] proposed two
adversarial networks in tandem. The first network, namely
the color-prediction network, predicts the color scheme from
the outline, while the second network, called the shading
network, produces the final image from the color scheme
generated by the color-prediction network in conjunction
with the outline. Both the color-prediction and shading
networks have same structure as U-Net [37] while the
discriminator has the same structure as [53]. The adversarial
training is performed using the discriminator formed by
stacking the four convolutional layers and a fully connected
layer at the end.

The convolutional layers are transposed once the density
of the feature matrix reaches a certain level. The author
also added skip connections between the corresponding
layers to directly allow the gradient to flow through the
network. Further, `2 and adversarial losses are incorporated
in the color-prediction and shading-networks, respectively.
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The convolutional filter size is set to 5×5 with a stride of two
for every convolutional layer in the network. The number
of feature maps is increased by two times after every layer,
where the initial number of feature maps is 64.

2.5.3 ICGAN
Image Colorization Using Generative Adversarial Net-
works, abbreviated as ICGAN [56] proposed by Nazeri et al.,
has demonstrated better performance in image colorization
tasks than traditional convolutional neural networks. Fully
convolutional networks for semantic segmentation [59] in-
spire the baseline model and is constructed by replacing the
fully connected layers of the network by fully convolutional
layers. The basic idea is to downsample the input image
gradually via multiple contractive encoding layers and then
apply a reverse operation to reconstruct the output with
many expansive decoding layers, similar to U-Net [37].

The ICGAN [56] generator takes grayscale input image
as opposed to random noise, like traditional GANs. The au-
thors also proposed the generator’s modified cost function
to maximize the discriminator’s probability of being incor-
rect instead of minimizing the likelihood of being correct.
Moreover, the baseline model’s generator is used without
any modifications, while the discriminator is composed of a
series of convolutional layers with batch normalization [20].

The filter size in each convolutional layer is 4×4 as
opposed to the traditional 3×3, and the activation function
is Leaky-ReLU [24] with a slope value of 0.2. The final one-
dimensional output is obtained by applying a convolution
operation after the last layer, predicting the input’s nature
with a certain probability.

To train the network, the authors employed ADAM opti-
mization [22] with weight initialization using the guidelines
from [60]. The performance of the system is assessed using
CIFAR10 [61] and Places356 datasets [62]. Overall, the visual
performance of the ICGAN [56] is favorable compared to
that of traditional CNN.

2.5.4 Learning Diverse Image Colorization
Deshpande et al. [57] employed Variational Auto-Encoder
(VAE) and Mixture Density Network (MDN) to yield mul-
tiple diverse yet realistic colorizations for a single grayscale
image11. The authors first utilized VAE to learn a low-
dimensional embedding for a color field of size 64× 64× 2,
and then the MDN was employed to generate multiple
colorizations.

The VAE architecture encoder consists of four convolu-
tional layers with a kernel size of 5×5 and stride of two. The
feature channels start at 128 and double in the successive
encoder layer. Each convolutional layer is followed by batch
normalization, and ReLU is used as an activation function.
The last layer of the encoder is fully connected. On the other
hand, the decoder of the VAE architecture has five convolu-
tional layers, each one preceded by linear upsampling and
followed by batch normalization, and ReLU. The input to
the decoder is a d-dimensional embedding, and the output
is a 64 × 64 × 2 color field. The convolutional kernel size
is 4 × 4 in the first layer, and in the remaining, it is of size
5×5. As mentioned earlier, activation function in all layers is

11. Code is available at https://github.com/aditya12agd5/divcolor

ReLU, except in the last layer, where the activation function
is TanH. The output channels at each layer are halved in the
decoder.

MDN consists of twelve convolutional layers and two
fully connected layers and is activated by the ReLU func-
tion, which is followed by batch normalization. During the
testing embeddings sampled from the MDN output can
be used by the Decoder of the VAE to produce multiple
colorizations. To enhance the overall performance of the
proposed architecture, the authors designed three loss func-
tions: specificity, colorfulness, and gradient.

2.5.5 ChromaGAN
ChromaGAN12 [58] exploits geometric, perceptual, and se-
mantic features via an end-to-end self-supervised generative
adversarial network. By utilizing the semantic understand-
ing of the real scenes, the proposed model can colorize
the image realistically (actual colors) rather than merely
pleasing the human eyes.

The Generator of ChromaGAN [58] is composed of two
branches, which receive a grayscale image of size 224×224
as input. One of the branches yields chrominance infor-
mation, whereas the other generates a class distribution
vector. The network composition is as follows: the first
stage is shared between both the branches that implements
VGG16 [26] while removing the last three fully connected
layers. The pre-trained VGG16 [26] weights are used to train
this stage without freezing them. In the second stage, each
branch follows its dedicated path. The first branch has two
modules, each one designed by combining a convolutional
layer followed by Batch normalization [20] and ReLU. The
second path has four modules with the same composite
structure (Conv-BN-ReLU) as of the first branch but is fur-
ther followed by three fully connected layers and provides
the class distribution. In the third stage, the outputs of these
two distinct paths fused. The features then pass through six
modules. Each module has a convolutional layer and ReLU
with two upsampling layers within.

The discriminator is based on PatchGAN [63] architec-
ture that holds high-frequency structural information of the
generator’s output by focusing on the local patches rather
than the entire image. ChromaGAN [58] is trained on 1.3M
images of ImageNet [23] for a total of five epochs. The
optimizer used is ADAM with an initial learning rate of
2e−5.

2.5.6 MemoPainter: Coloring with Limited Data
MemoPainter13 [2] is capable of learning from limited data,
which is made possible by the integration of external mem-
ory networks [64] with the colorization networks. This
technique effectively avoids the dominant color effect and
preserves the color identity of different objects.

Memory networks keep the history of rare examples,
enabling them perform well even with insufficient data.
To train memory networks in an unsupervised manner,
a novel threshold triplet loss was introduced by the au-
thors [2]. In memory networks, the “key-memory” holds
spatial information and computes cosine similarity against

12. Code available at https://github.com/pvitoria/ChromaGAN
13. https://github.com/dongheehand/MemoPainter-PyTorch

https://github.com/aditya12agd5/divcolor
https://github.com/pvitoria/ChromaGAN
https://github.com/dongheehand/MemoPainter-PyTorch
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Fig. 6. Diverse colorization networks generate different colorized images instead of aiming to restore the original color only.

the input. Likewise, “value-memory” keep records about
color information utilized by the colorization networks as
a condition. Similarly, “age” keeps the time-stamp for each
entry in the memory. The “key” and “value” memories are
generated from the training data. The memory is updated
by averaging the “key-memory” and a new query image
owing to the distance between the color information of the
new query image and the available top-1 “value-memory”
element lies below the threshold. Otherwise, a new record
is stored for the input image color information.

The colorization networks are constructed using condi-
tional GANs [39] consisting of a generator and discrimi-
nator, and color information is learned from RGB images
during training. The generator inspired by U-Net [37], is
composed of ten convolutional layers, while the discrim-
inator is fully convolutional, consisting of four layers. The
color feature is extracted and provided to the generator after
being passed forward from the MLP.

During testing, the color information is retrieved from
the memory networks and fed to the generator as a con-
dition. The colorization networks employ adaptive instance

normalization for enhanced colorization as it is considered
as a style transfer. The performance of MemoPainter [2]
is evaluated on different datasets, including Oxford102
Flower [65], Monster [66], Yumi 14, Superheroes [2], and
Pokemon 15.

2.6 Multi-path networks

The multi-path networks follow different parts to learn
features at different levels or different paths. The following
are examples of multi-path networks, and Figure 7 provides
their architectures.

2.6.1 Let there be Color
Iizuka et al. [67] designed a neural network16 to primarily
colorize the grayscale images and provide scene classifi-
cation as a secondary task. The proposed system has two
branches to learn features at multiple scales. Both branches

14. https://comic.naver.com/webtoon/list.nhn?titleId=651673
15. https://www.kaggle.com/kvpratama/pokemon-images-dataset
16. https://github.com/satoshiiizuka/siggraph2016 colorization

https://github.com/satoshiiizuka/siggraph2016_colorization
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are further divided into four subnets, i.e. the low-level
features subnet, mid-level features subnet, global features
subnet, and colorization network. The low-level subnet
decreases the resolution and extract edges and corners. To
learn the textures, mid-level features come in handy.

Similarly, a 256D vector is computed by the global subnet
to represent the image. The mid-level and global features are
combined and fed into the colorization network to predict
the chrominance channel. The final output is restored to
the original input resolution. The global features help the
classification network to classify the scene in the image. Both
the colorization network and scene classification network
are jointly trained.

The low-level features subnet is composed of six convo-
lution layers, the mid-level features subnet has two convolu-
tional layers, and the global features network is comprised
of four convolutional layers as well as three fully-connected
layers. The colorization network is made up of a fusion
layer, four convolutional, and two upsampling layers. To
feed input to the network, the image is resized to 256×256,
and then output is upsampled to its original resolution. The
kernel is of size 3×3; feature channels vary between 64 to
512, and striding is used to reduce the feature map size.
Moreover, the learning rate is determined automatically
using ADADELTA [68], the network is optimized using
Stochastic Gradient Descent (SGD) [69], and the system is
designed using Torch [70].

2.6.2 Learning Representations for Automatic Colorization
Learning Representations for Automatic Colorization17 [71]
aims to learn a mapping function taking per-pixel features
as hypercolumns of localized slices from existing CNN
networks to predict hue and chroma distributions for each
pixel. The authors use VGG16 [26] as a feature extrac-
tor while discarding the classification layer and using a
grayscale image as input rather than RGB. For each pixel, a
hypercolumn is extracted from all the VGG16 layers except
the last classification layer resulting in a 12k channel feature
descriptor that is fed into a fully connected layer of 1k
channels, which predicts the final hue and chroma outputs.

The KL divergence is employed as a loss to predict
distributions over a set of color bins. The input size is
256×256, and the framework used is Caffe [21], where the
network is fine-tuned for ten epochs, each of which takes
about 17 hours. Other parameters and optimizations are
similar to VGG16 [26].

2.6.3 PixColor
PixColor, proposed by [72], employs a conditional Pixel-
CNN to produce a low-resolution color image from a given
grayscale image. Then, a refinement CNN is then trained to
process the original grayscale and the low-resolution color
image to produce a high-resolution colorized image. The
colorization of an individual pixel is determined by the color
of the previous pixels.

PixelCNN is composed of two convolutional layers and
three ResNet blocks [28]. The first convolutional layer uses
kernels of size 7 × 7 while the last one employs 3 × 3.
Similarly, ResNet blocks contain 3, 4, and 23 convolutional

17. Code is available at https://github.com/gustavla/autocolorize

layers, respectively. The PixelCNN colorization network is
composed of three masked convolutional layers: one in the
beginning and second at the end of the network, whereas a
Gated convolutional Block with ten layers is surrounded by
the Gated convolutional layers.

The PixelCNN model is trained by applying a maxi-
mum likelihood function with cross-entropy loss. Then, the
refinement network - composed of 16 convolutional layers
followed by two bilinear upsampling layers, each with two
internal convolutional layers - is trained on the ground-
truth chroma images downsampled to 28×28. The network
ends with three convolutional layers, where the final layer
outputs the colorized image.

2.6.4 ColorCapsNet

Colorize Capsule Network (ColorCapsNet) [76] is built
upon CapsNet [77] with three modifications. Firstly, the
single convolutional layer is replaced by the first two convo-
lutional layers of VGG19 [26] and initialized via its weights.
Secondly, Batch normalization [20] is inserted in between
the first two convolutional layers. Thirdly, the number of
capsules is reduced from ten to six in the capsule layer. The
architecture of ColorCapsNet is similar to an autoencoder.
The colorization specific hidden variables are in between
the encoder and decoder, are processed in the latent space.

To train the model, the input RGB image is first con-
verted into the CIE Lab colorspace, and extracted patches
are fed to the network in order to learn the color dis-
tribution. The output is in the form of colorized patches
which are combined to obtain the complete image in Lab
colorspace and later converted to RGB colorspace.

The difference between real and generated images is
minimized using the Mean Squared Error loss. ColorCap-
sNet is trained on ILSVRC 2012 to learn the general color
distribution of objects and then be finetuned using the
DIV2K dataset [78]. ColorCapsNet shows comparable per-
formance to other models, despite its shallow architecture.
Adam is used as the optimizer with a learning rate of 0.001
with different kernel sizes.

2.6.5 Pixelated

Pixelated, introduced by Zhao et al. [74] is an image col-
orization model guided by pixelated semantics to keep the
colorization consistent across multiple object categories. The
network architecture is composed of a color embedding
branch and a semantic segmentation branch. The network
is built from gated residual blocks, each of which contains
two convolutional layers, a skip connection, and a gating
mechanism.

The learning mechanism is composed of three compo-
nents. Firstly, an autoregressive model, is adopted to utilize
pixelated semantics for image colorization. A shared CNN
is used for modeling to achieve colorization diversity by
generating per-pixel distributions using a conditional Pixel-
CNN. Secondly, semantic segmentation is incorporated into
color embedding by introducing atrous spatial pyramid
pooling at the top layer capable of extracting multi-scale
features using several parallel filters. The output is obtained
by fusing multi-scale features. The loss function for semantic

https://github.com/gustavla/autocolorize
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Fig. 7. Examples of multi-path networks. These colorization networks learn different features via several network paths.

segmentation is the cross-entropy loss with softmax func-
tion. Thirdly, to produce better and more accurate color dis-
tributions, pixelated color embedding is concatenated with
semantic segmentation to create the semantic generator.

During training, color embedding loss, semantic loss,
and color generation loss are combined. The performance
of the network is evaluated on the Pascal VOC2012 [79]
and COCO-stuff [50] datasets. The images are rescaled to
128×128 for use in the network.

2.6.6 Multiple Hypothesis Colorization

Mohammad & Lorenzo [73] developed a multiple hypothe-
sis colorization architecture, producing multiple color val-
ues for each pixel of the grayscale image. The low-cost
colorization is achieved by storing the best pixel-level hy-
pothesis. The shared features are computed by a common
trunk consisting of convolutional layers. The trunk is then
split into multiple branches where each branch predicts
color for each pixel. The layers in the main trunk and its
subsequent branches are all fully convolutional.

The authors developed two architectures, one for CI-
FAR100 and the other for ImageNet [23]. The architecture for
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the CIFAR100 dataset is composed of 31 blocks preceded by
a stand-alone convolutional layer. The number of channels
in different layers across multiple blocks varies from 64 to
256. In contrast, the architecture for the ImageNet [23] is
composed of 21 blocks in total. The number of channels
across different layers inside blocks varies from 32 to 1024.
Although the two models have a different number of blocks,
the block structure is the same. Residual connections are
also used in both networks. Moreover, batch normalization
is performed in all blocks, and ReLU is applied to all layers,
except the last of each block.

Softmax is employed as a loss function. The CIFAR100
model is trained for 40k iterations with a learning rate of
0.001, which is dropped after 10k and 20k iterations by a
factor of 10. Similarly, the ImageNet [23] model is trained
for 120k iterations with an initial learning rate of 0.0005 that
is dropped after 40k and 80k iterations by a factor of 5.

2.6.7 Pixel-Level Semantics Guided Image Colorization
A hierarchical network comprised of a semantic segmen-
tation branch and a colorization branch was developed by
Zhao et al. [75]. The first four convolution layers are shared
between the two branches to learn low-level features. Four
more convolutional layers further extend the colorization
branch, while three deconvolution layers from the segmen-
tation branch. The output of the deconvolutional layers is
concatenated and passed through the final convolutional
layer to produce class probabilities.

Semantic segmentation is achieved through weighted
cross-entropy loss and softmax function, whereas coloriza-
tion is performed via multinomial cross-entropy loss with
class rebalance. During the training, the network jointly
optimizes the two tasks. During the testing, a joint bilateral
upsampling layer is introduced to generate the final output.

For semantic segmentation, the model is trained on
10,582 and tested on 1449 images from the PASCAL
VOC2012 dataset for 40 epochs. Similarly, 9k images are
used for training and 1k images for testing on the COCO-
stuff dataset [50] for 20 epochs.

2.7 Exemplar-based Colorization

Exemplar-based colorization utilizes the colors of example
images provided along with input grayscale images. Fig-
ure 8 presents the example networks for exemplar-based
colorization. We provide more details about the networks
in the subsequent sub-sections.

2.7.1 Deep Exemplar-based Colorization
Deep exemplar-based colorization18 [80] transfers the colors
from a reference image to the grayscale one. The aim here
is not to colorize images naturally but to provide diverse
colors to the same image. The system is composed of two
subnetworks: Similarity subnetwork and Colorization sub-
network.

The similarity subnet takes the target and reference lumi-
nance channels aligned before via Deep Image Analogy [81].
The authors use the standard features of VGG19 [26] after
each of its blocks resulting in coarse to fine, five levels

18. https://github.com/msracver/Deep-Exemplar-based-Colorization

of feature maps. The features are upsampled to the same
size. The similarity subnet computes a bidirectional sim-
ilarity map using discrete cosine distance. Furthermore,
the colorization subnet concatenates the grayscale image,
chrominance channels, and the calculated similarity maps.
U-Net [37] inspires the structure of the colorization subnet.

The loss function is `2, which is a combination of
chrominance channels and perceptual loss. The network is
trained by employing ADAM optimizer [22] in the Caffe
framework [21] with a learning rate of 10−3 for ten epochs,
reduced by 0.1 after 33% of training.

2.7.2 Fast Deep Exemplar Colorization

Current exemplar-based colorization methods suffer from
two challenges: 1) they are sensitive to the selection of refer-
ence images, and 2) they have high time and resource con-
sumption. Inspired by stylization characteristics in feature
extracting and blending, Xu et al. [82] proposed a stylization-
based architecture for fast deep exemplar colorization. The
proposed architecture consists of two parts: a transfer sub-
net that learns a coarse chrominance map (ab map in CIELab
color space) and a colorization sub-net that refines the map
to generate the final colored result. The proposed method
aims to generate plausible colorization results in real-time,
whether the input and exemplar image are semantically re-
lated or not. More specifically, an encoder-decoder structure
is used for the transfer sub-net, which takes the target-
reference image pairs as the input and output initial ab
map. The pre-trained VGG19 module (from conv11 layer
to conv41 layer) is treated as the encoder and a symmetri-
cal decoder for image reconstruction. In addition, the fast
Adaptive Instance Normalization (AdaIN) [84] is utilized
after convolutional layers to accelerate feature matching and
blending. The ab map generated by the transfer sub-net is
inaccurate and has some artifacts. To refine it, a coloriza-
tion sub-net that adopts an analogous U-Net structure is
designed, which takes a known luminance map along with
initial chrominance ab map as input.

In the original implementations, the transfer sub-net is
trained on the Microsoft COCO dataset [50] by minimizing
the sum of the L2 loss while the colorization sub-net is
trained on the ImageNet dataset [23] by minimizing the
Huber loss [85].

2.7.3 Instance-Aware Image Colorization

The Existing colorization models usually fail to colorize the
images with multiple objects. To solve this issue, Su et al. [83]
proposed an instance-aware image colorization method19.
The network includes three parts: 1) an off-the-shelf pre-
trained model to detect object instances and produce
cropped object images, 2) two backbone networks trained
end-to-end for instance, and full-image colorization and 3)
a fusion module to selectively blend features extracted from
different layers of the two colorization networks. Specifi-
cally, a grayscale image as input is fed to the network. The
network first detects the object bounding boxes using an
off-the-shelf object detector. Then, each detected instance is

19. Code is available at https://cgv.cs.nthu.edu.tw/projects/
instaColorization

https://github.com/msracver/Deep-Exemplar-based-Colorization
https://cgv.cs.nthu.edu.tw/projects/instaColorization
https://cgv.cs.nthu.edu.tw/projects/instaColorization
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Fig. 8. Exemplar-based Colorization networks. These networks imitate the colors of the input example image provided along with the grayscale
image.

cropped out and forwarded to the instance colorization net-
work, for instance, colorization. At the same time, the input
grayscale image is also sent to another instance colorization
network (with same structure, but different weights) for
full-image colorization. Finally, a fusion module is used to
fuse all the instance features with the full-image feature at
each layer until obtaining the output colored image. In the
training phase, a sequential approach strategy that trains
the full-image network followed by the instance network,
and finally trains the feature fusion module by freezing the
above two networks is adopted. The smooth-L1 loss is used
to train the network.

In the original implementation, the channel numbers of
the full-image feature, instance feature, and fused feature in
each of the 13 layers are 64, 128, 256, 512, 512, 512, 512, 256,
256, 128, 128, 128, and 128. The authors use three datasets for
training and evaluation, including ImageNet [23], COCO-
Stuff [86], and Places205 [87]. Moreover, the images are
resized to a size of 256 × 256.

3 EXPERIMENTS

3.1 Datasets
The datasets available for evaluation are the most commonly
used ones in the literature for other tasks such as detection,
classification, segmentation etc. Where the images are first
converted to grayscale, and then apply colorization mod-
els to analyze its performance. Hence, we provide a new
dataset, explicitly designed for the colorization task in the
next section, while We list the currently used datasets below.

• COCO-stuff dataset [86]: The Common Objects in
COntext-stuff (COCO-stuff) is constructed by anno-
tating the original COCO dataset [50], which origi-

nally annotated things while neglecting stuff annota-
tions. There are 164k images in COCO-stuff dataset
that span over 172 categories including 80 things, 91
stuff, and 1 unlabeled class.

• PASCAL VOC dataset [88]: PASCAL Visual Object
Classes (PASCAL VOC) dataset has more than 11000
images that are divided into 20 object categories.

• CIFAR datasets [61]: CIFAR-10 and CIFAR-100 are
two subsets created and reliably labelled from 80
million tiny image dataset [89]. CIFAR-10 is com-
prised of 60k images equally distributed over mutu-
ally exclusive 10 categories with 6k images in each
category. On the other hand, CIFAR-100 has the
same images distributed over 100 categories with 600
images assigned to each category. Each image in both
the subsets is of size 32×32 pixels. In CIFAR-100, two
level labelling is used. At the higher level there are
20 superclasses each of which is further divided into
five subclasses. Overall, 50k and 1k images comprise
training and testing sets, respectively.

• ImageNet ILSVRC2012 [23]: This dataset contains
1.2 million high resolution training images spanning
over 1k categories where 50k images comprise the
hold-out validation set. Images are rescaled to 128 ×
128 pixels.

• Palette-and-Text dataset [51]: is constructed by mak-
ing modifications to the data collected from color-
hex.com where users upload user-defined color
palettes with label names of their choice. The authors
first collected 47,665 palette-text pairs and removed
non-alphanumeric and non-English words from the
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Fig. 9. Sample images for each category from our proposed Natural-Color dataset (NCD).

collection. After removing text-palette pairs that lack
semantic relationships, the final curated dataset con-
tains 10,183 textual phrases with their corresponding
five-color palettes.

3.2 Evaluation Metrics

The metrics typically used to assess colorization quality are
either subjective or commonly used mathematical metrics
such as PSNR and SSIM [90]. Subjective evaluation is the
gold standard for many applications where humans deter-
mine the accuracy of the output of the algorithms.

In colorization, although subjective evaluation is used to
some extent, it has two limitations: 1) scaling is exception-
ally challenging, 2) accurately determining the color is also
very difficult. On the other hand, the mathematical metrics
are general and may not provide an accurate performance
of the algorithms. We provide more insights into the metrics
for colorization in the “Future Directions” section.

4 COMPARISONS

Qualitative Comparisons: The networks mentioned in sec-
tion 2 are evaluated on the peak signal-to-noise ratio
(PSNR), the structural similarity index (SSIM) [90], patch-
based contrast quality index (PCQI), and underwater im-
age quality measure (UIQM) measures. Table 1 presents
the results for each category for all measures. Real-Time
colorization [34] achieves high performance of 21.93 dB
and 0.881 for PSNR and SSIM against other competitive
measures. Furthermore, the PCQI performance of Instance-
Aware colorization [83] and IQM achievement of Color-
ful colorization [18] are higher compared to state-of-the-
art methods. However, declaring one method against the
other may not be a simple task due to the involvement of
many various elements such as the number of parameters,
depth of the network, the number of images for training,
the datasets employed, the size of the training patch, the
number of feature maps and the network complexity etc..
For a fair comparison, the only possible approach is to
ensure that all methods have similar elements, as mentioned
earlier.

Quantitative Comparisons: We present the visual coloriza-
tion comparisons on fruits and vegetables in Figure 10
and 11, respectively, for few state-of-the-art algorithms. We
can observe that most of the algorithms fail to recover the

original natural colors for most of the images. Though Real-
Time [34] and Instance-Aware [83] colorization algorithms
provide consistent performance and colors closer to the orig-
inal objects; however, the algorithms are still far from deliv-
ering accurate colorization performance. The experiments
on the proposed Natural-Color Dataset (NCD) shows the
limitation of the state-of-the-art algorithms and encourages
the authors to explore novel colorization techniques.

5 LIMITATIONS AND FUTURE DIRECTIONS

Lack of Appropriate Evaluation Metrics: As mentioned
earlier, colorization papers typically employ metrics from
image restoration tasks, which may not be appropriate for
the task at hand. We also propose that instead of comparing
YUV, only the predicted color channels i.e. U-channel and
V-Channel should be compared. Similarly, it will be highly
sought after to use metrics specifically designed to take color
into account, such as PCQI [91] and UIQM [92].

PCQI stands for Patch-based contrast quality index. It is
a patch-based evaluation metric. It considers three statistics
of a patch i.e. mean intensity (pm), signal strength or contrast
change (pc), and structure distortion (ps) for comparison
with ground-truth. It can be expressed as

PCQI = pm(x, y) · pc(x, y) · ps(x, y). (3)

Similarly, UIQM is the abbreviation of underwater image
quality measure. It is different from earlier defined eval-
uation metrics as it does not require a reference image.
Like PCQI, it also depends on three measures i.e. image
colorfulness, image sharpness, and image contrast. It can
be formulated as:

IQM = w1(ICM) + w2(ISM) + w3(IConM), (4)

where ICM, ISM, and IConM stand for image colorfulness,
image sharpness and image contrast, respectively while “w”
controls the weight of each quantity.

Lack of Benchmark Dataset: Image colorization techniques
are typically evaluated on grayscale images from various
datasets available in the literature due to the absence of pur-
posefully built colorization datasets. The available datasets
were originally collected for tasks such as detection, classi-
fication, etc. contrary to the image colorization. The quality
of the images may not be sufficient for image colorization.
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Original Grayscale [71] [76] [67] [18] [83] [34]

Fig. 10. Visual comparison of colorization algorithms on different fruit images from the Natural-Color Dataset. State-of-the-art colorization algorithms
are unable to colorize the images effectively.

Moreover, the datasets contain objects, such as buses, shirts,
doors, etc., that can take any color. Hence such an evaluation
environment is not appropriate for fair comparison in terms
of PSNR or SSIM. We aim to remove this unrealistic setting
for image colorization by collecting images that are true
to their colors. For example, a carrot will have an orange
color in most images. Bananas will be either greenish or
yellowish. We have collected 723 images from the internet
distributed in 20 categories. Each image has an object and
a white background. Our benchmark outlines a realistic
evaluation scenario that differs sharply from those generally
employed by the image colorization techniques. Figure 9
shows the images from each category from our Natural-
Color Dataset (NCD).

Lacking of Competitions: Currently, most vision tasks have
competitions held across different top-tier conferences e.g.
(CVPR, ECCV workshops such as NTIRE, PBVS, etc.) and
online submission platforms, such as Kaggle. These compe-
titions help push state-of-the-art. Unfortunately, there is no
such arrangement for image colorization. Making compe-
titions a regular feature in top-tier conferences and online
venues would thus be a drastic step forward for image

colorization.

Limited Availability of Open-Source Codes: Open-source
code plays a vital role in the advancement of the research
fields, as can be seen in classification [28], image super-
resolution [93], image denoising [94] etc. In image coloriza-
tion, open-source codes are rare or codes are obsolete now as
they were built in earlier CNN frameworks. In other fields
of research, the codes are either recycled or re-implemented
by volunteers in the corresponding field to the new frame-
works and environments. However, this is not currently
being done for image colorization, hindering progress.

6 CONCLUSION

Single-image colorization is a research problem with critical
real-life applications. Deep learning approaches’ exceptional
success has resulted in rapid growth in deep convolutional
techniques for image colorization. Based on exciting inno-
vations, various methods are proposed exploiting network
structures, training methods, and learning paradigms etc.
This article presents a thorough review of deep learning
methods for image colorization.
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Original Grayscale [71] [76] [67] [18] [83] [34]

Fig. 11. Qualitative comparison on a few sample images of vegetables from Natural-Color Dataset. Most of the algorithms fail to reproduce the
original colors.

We observe image colorization performance has im-
proved in recent years at the cost of increasing the network
complexity. However, state-of-the-art methods application
to critical real-world scenarios is restricted due to inade-
quate metrics, network complexity, and failure to handle
real-life degradations.

We observe the following trends in image colorization. 1)
GAN-based methods deliver diverse colorization visually
compared to CNN-based methods, 2) the existing models
generally deliver a sub-optimal result for complex scenes
having a large number of objects with small sizes, 3) deep
models with higher complexity have little improvement
in terms of numbers, 4) the diversity of networks in im-
age colorization as compared to other image restoration is
significant, 5) a future direction for image colorization is
unsupervised learning, 6) many recent advancements and
techniques such as attention mechanism, and loss functions
can be incorporated for performance. We believe this article
and novel dataset will attract further attempts to resolve the
mentioned crucial problems.

REFERENCES

[1] Z. Cheng, Q. Yang, and B. Sheng, “Deep colorization,” in IEEE
International Conference on Computer Vision, 2015, pp. 415–423.

[2] S. Yoo, H. Bahng, S. Chung, J. Lee, J. Chang, and J. Choo, “Coloring
with limited data: Few-shot colorization via memory augmented
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 11 283–11 292.

[3] T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring color to
greyscale images,” in 29th annual conference on Computer graphics
and interactive techniques, 2002, pp. 277–280.

[4] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using opti-
mization,” in Proceedings of International Conference on Computer
Graphics and Interactive Techniques’ ACM, 2004, pp. 689–694.

[5] Y.-C. Huang, Y.-S. Tung, J.-C. Chen, S.-W. Wang, and J.-L. Wu,
“An adaptive edge detection based colorization algorithm and
its applications,” in 13th annual ACM international conference on
Multimedia, 2005, pp. 351–354.

[6] Y. Qu, T.-T. Wong, and P.-A. Heng, “Manga colorization,” ACM
Transactions on Graphics (TOG), vol. 25, no. 3, pp. 1214–1220, 2006.

[7] L. Yatziv and G. Sapiro, “Fast image and video colorization us-
ing chrominance blending,” IEEE transactions on image processing,
vol. 15, no. 5, pp. 1120–1129, 2006.

[8] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y. Shum,
“Natural image colorization,” in 18th Eurographics conference on
Rendering Techniques, 2007, pp. 309–320.

[9] T. Pärnamaa and L. Parts, “Accurate classification of protein
subcellular localization from high-throughput microscopy images



17

TABLE 1
Comparisons of the state-of-the-art methods for the colorization in terms of PSNR, SSIM, PCQI, and IQM on our Natural-Color Dataset. The

higher value of the metrics indicates better performance.

Category No. of Automatic Colorizer [71] ColorCapsNet [76] Let there be Color [67] Colorful Colorization [18] Instance-Aware Colorization [83] Real-Time Colorization [34]
Images PSNR SSIM PCQI IQM PSNR SSIM PCQI IQM PSNR SSIM PCQI IQM PSNR SSIM PCQI IQM PSNR SSIM PCQI IQM PSNR SSIM PCQI IQM

Apple 39 16.66 0.772 0.881 1.009 17.64 0.625 0.825 0.869 20.17 0.820 0.918 0.944 18.71 0.792 0.922 1.095 21.94 0.903 0.918 0.918 21.27 0.888 0.915 1.104
Banana 44 17.83 0.792 0.937 0.688 16.43 0.598 0.820 0.652 16.74 0.733 0.936 0.634 22.22 0.894 0.948 0.813 22.14 0.889 0.947 0.643 23.34 0.923 0.948 0.780
Brinjal 35 27.21 0.849 0.946 1.179 26.32 0.720 0.876 1.015 27.74 0.866 0.939 1.094 24.52 0.829 0.946 1.304 25.59 0.843 0.949 1.134 27.56 0.855 0.944 1.242
Broccoli 35 18.57 0.870 0.895 1.419 18.48 0.717 0.865 1.232 18.59 0.816 0.918 1.301 19.34 0.842 0.920 1.483 20.11 0.851 0.964 1.431 19.54 0.854 0.918 1.435
Capsicum green 35 18.72 0.812 0.894 1.097 19.67 0.646 0.840 0.918 19.35 0.731 0.914 0.970 19.91 0.807 0.917 1.168 18.02 0.752 0.927 1.140 19.32 0.789 0.910 1.118
Carrot 39 23.10 0.929 0.931 0.921 17.65 0.655 0.852 0.748 19.40 0.826 0.927 0.825 21.16 0.917 0.939 1.026 22.00 0.908 0.932 0.832 22.62 0.937 0.936 1.005
Cherry 34 23.09 0.892 0.920 1.055 19.71 0.656 0.839 0.927 22.74 0.868 0.919 0.993 23.93 0.896 0.918 1.197 23.47 0.891 0.919 1.042 24.28 0.902 0.924 1.169
Chilli green 36 20.82 0.868 0.944 1.115 20.77 0.716 0.889 0.882 20.86 0.844 0.944 0.962 20.94 0.872 0.948 1.224 20.38 0.858 0.963 1.193 21.39 0.878 0.946 1.154
Corn 36 19.41 0.873 0.911 1.079 15.34 0.584 0.820 0.925 17.03 0.780 0.903 0.997 20.25 0.888 0.905 1.163 19.15 0.849 0.912 1.035 20.44 0.910 0.902 1.146
Cucumber 35 22.58 0.879 0.919 1.304 22.73 0.725 0.862 1.059 22.70 0.834 0.927 1.157 21.63 0.837 0.931 1.409 21.34 0.817 0.955 1.310 23.24 0.865 0.929 1.321
Lady Finger 36 20.66 0.874 0.925 1.189 21.42 0.721 0.876 0.878 21.69 0.848 0.926 0.990 21.64 0.882 0.928 1.246 21.50 0.866 0.954 1.110 23.04 0.903 0.926 1.148
Lemon 39 19.15 0.877 0.873 0.899 14.47 0.551 0.766 0.786 15.37 0.697 0.873 0.816 20.43 0.878 0.875 0.978 21.13 0.894 0.895 0.841 21.20 0.901 0.876 0.962
Orange 29 19.27 0.905 0.873 0.896 13.98 0.536 0.784 0.793 15.16 0.696 0.894 0.788 19.49 0.895 0.899 0.989 21.44 0.915 0.905 0.816 21.06 0.909 0.898 0.991
Peach 27 17.99 0.841 0.849 0.882 16.09 0.550 0.789 0.820 18.63 0.797 0.876 0.811 19.07 0.857 0.902 1.010 19.39 0.833 0.878 0.739 19.53 0.861 0.901 0.997
Pear 28 19.60 0.883 0.926 0.985 16.72 0.591 0.835 0.831 18.59 0.796 0.932 0.888 23.13 0.917 0.943 1.057 21.14 0.893 0.952 0.915 23.87 0.935 0.940 1.026
Plum 35 21.48 0.726 0.888 1.212 22.14 0.626 0.836 1.063 23.43 0.768 0.898 1.114 21.87 0.747 0.901 1.310 20.59 0.734 0.912 1.195 23.37 0.764 0.901 1.263
Pomegranate 55 19.47 0.875 0.901 1.285 16.44 0.602 0.843 1.112 17.56 0.740 0.915 1.165 19.25 0.853 0.925 1.338 19.92 0.863 0.949 1.240 18.72 0.817 0.922 1.295
Potato 35 24.48 0.939 0.862 1.028 18.83 0.622 0.766 0.869 21.81 0.854 0.862 0.945 22.43 0.935 0.860 1.102 23.53 0.935 0.892 1.022 23.19 0.946 0.857 1.046
Strawberry 35 20.84 0.920 0.955 1.444 15.48 0.621 0.880 1.157 15.96 0.743 0.932 1.222 19.13 0.881 0.932 1.485 19.59 0.891 0.972 1.440 20.24 0.898 0.920 1.466
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