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Abstract—Augmented Reality has excellent potential for many 

robotic applications, including the validation of robot models in 

working environments. However, a dedicated depth sensor is only 

available on a high-end mobile device. Hence, the realistic AR 

experience for robotic applications is not available for a wide 

range of mobile phones. This paper presents a way to use a robot 

control algorithm on a virtual robot model in AR without the need 

for a depth sensor while keeping the depth required feature such 

as an occlusion. The connection between the AR and the robot 

operating system allows the exiting control algorithm to be applied 

to the augmented robot model. The navigation of a mobile robot 

with the AR interface was used as an example of robot validation 

in real-world spaces. Despite some communication delays, the 

virtual robot can be controlled and navigated in the real world 

with a certain degree of accuracy. It has been shown that 

visualizing and controlling a robot in an AR scene can be done 

with this method. Future work on the interaction between the 

virtual robot and the real environment should be conducted to 

expand the application of robot validation with AR. 
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I. INTRODUCTION 

Augmented Reality (AR) has become widely used in many 
fields, from the game industry to medical applications as well 
as robotic research [1]. One application of AR is visualizing 
robot models and the data from various sensors. The AR robot 
model, developed by Disney Research [2], demonstrated the 
possibility of presenting the virtual robot in real-world space 
using Hololens1. On the other hand, Augmented Reality can 
also be used as an interfacing tool for controlling robots. Some 
research has shown the application of AR in mobile robot 
navigation, such as the swarm robotic [3]. One key common 
feature introduced in these works is the improvement of 
Human-Robot Interaction (HRI) by using AR. HRI is 
challenging in the robot validation process since human 
interaction is difficult to predict [4]. The study from CARIS 
Lab [5] successfully used the virtual robot in AR to test and 
improve the operation between a human and robot. The 
operator can easily specify the trajectory of the manipulator in 
a 3-dimensional space with Hololens and sent it to the robot 
workspace. AR is used to preview the robot's motion in the 
working environment and increase the confidence of the user 
before executing the motion of the robot. Inspired by the 
previous works, we desire to use AR for validating robot 

models in a real-world environment. However, relying on 
expensive AR devices will limit the development of AR 
systems and the accessibility of AR solutions. Alternative 
devices such as an AR platform on mobile phones seem to be a 
more affordable choice but their lack of the time-of-flight 
sensor restricts the capability of an AR technology. 

To overcome the limitation, we aims to propose a method 
for implementing the robot controlling system with ARCore2 
and Unity3. We use Depth API [6], a library that provides depth 
maps from a single RGB camera, to get over the missing depth 
information. By connecting to a robot operating system (ROS), 
the robot model in AR can be controlled with the exiting control 
algorithms. We apply the method to a Turtlebot3 [7] which is a 
widely used open-source mobile robot. After demonstrating the 
AR user interface on top of ROS Navigation Stack, we validate 
it by controlling the virtual mobile robot in the AR to the desired 
position in real-world space. Finally, we evaluate the 
performance of the proposed method in terms of navigation 
accuracy and execution time. These experimental results 
illustrate the capability of the proposed method in robotic 
utilization. 

II. RELATED WORK

The proposed method is built upon the ARCore toolkit 
together with the Unity 3D engine. ROS#, a Plugin for Unity, 
is used for interfacing ROS on Unity. Some additional scripts 
are required to operate ROS with AR application. 

A. ARCore

ARCore is a platform for developing an augmented reality
application on a mobile device introduced by Google. The major 
task of the ARCore is tracking where the mobile phone is in real-
world space and finding the surface for placing the AR object. 
ARCore can also be used on another developing platform like 
Unity. Two SDKs tools are provided for building an ARCore 
application on Unity which are AR Foundation and ARCore 
SDK for Unity. AR Foundation is a cross-platform API that can 
be built on both Android and iOS devices. On the other hand, 
ARCore SDK for Unity can only be used on Android devices 
but provides all features of the ARCore. The ARCore SDK is 
used for developing the prototype because it supports the up-to-
date Depth API. 

1Microsoft HoloLens: https://microsoft.com/hololens. 
2ARCore : https://developers.google.com/ar.  
3Unity      : https://unity.com/ 
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Depth API is a programming interface that allows 
developers to build a depth awareness feature on an android AR 
application by using depth-from-motion algorithms. Depth API 
makes many AR features possible to be presented on a mobile 
phone without a time-of-flight sensor. The examples of these 
features are presented in the Depth Lab [8]. 

B. ROS# 

ROS# is an open-source software library containing Unity 
plugin and ROS packages for the communication between two 
platforms [9]. The provided ROS packages are used to 
communicate the data to the Unity application via the RosBridge 
server and send the robot description read from the URDF 
resource files of the robot model. Oppositely, the provided 
plugin on Unity can send the data and the robot model from 
Unity to ROS as well. 

ROS# provides a simple method for importing the robot 
URDF model to a Unity game object. The provided ROS node 
read through the robot description and send the corresponding 
mesh file to the computer used to develop the Unity application. 
After that, the given plugin creates a robot model in Unity using 
the hierarchy of the game object. 

C. ROS and AR 

Previous studies have shown the possibility of using ROS 
with the mobile AR device. The framework for communicating 
between ROS and the AR using ROS# library has been shown 
by Krupkeet et al. [10]. The other work demonstrates the use of 
AR for visualizing the information of the navigation stack on top 
of the physical space [11]. A similar implementation on mobile 
devices has been done by iVIZ [12]. 

Motivated by these works, we developed a new method for 
visualizing and controlling the robot model on a mobile device 
AR without the need for a time-of-flight sensor by using Depth 
API from ARCore. 

III. SYSTEM DESIGN 

As stated above, this paper aims to use the Augmented 
Reality developed on ARCORE to validate the robot by 
assigning the navigation in real-world space to a virtual robot. 
Fig. 1 shows the overview of the system in this paper. Starting 
by designing the developing environment, Unity3D is chosen 
for prototyping AR on a mobile phone since it supports the 
development toolkit of an ARCORE. We use Turtlebot3 Burger 
as a model of the mobile robot in this work. The robot was 
operated on ROS and simulated in GAZEBO resulted in the 
need for communication between unity apps and ROS Node. 
This can be done by using RosBridge which is a ROS package 
helping the non-ROS program to communicate with the ROS 
node. ROS#, an open-sourced project from Siemens, present an 
effortless way to use RosBridge with Unity together with the 
other useful tools for exporting robot URDF model to Unity 
game object. After setting up the communication and exporting 
the robot model, the transformation between different 
coordinate of ROS environment and AR application needs to be 
considered to make the virtual robot in AR move to the desired 
position in a real-world environment and also to give the desired 
goal in the real world to ROS environment correctly.  Then,  the  

 

Fig. 1. Overview of The System. (a) Robot Model is imported from URDF 

with ROS# library. (b) User input data is published to ROS from a mobile 
device. (c) The desired goal is sent with an action command to the navigation 

stack. (d) The robot states are published to the ROS topic while the robot is 

moving toward the goal. (e) The subscribed joint states are sent to the robot 
joint and subscribed odometry is sent to the Transformation node. (f) The 

transformation node transforms odometry data and sent it to the robot model. 

Depth API is applied to introduce the depth-required features 
including occlusion and depth cursor. Finally, we connected the 
AR interface to the navigation stack to validate the mobile robot 
in the workspace.  

A. System Requirement 

An ARCore compatible device is required for utilizing the 
proposed method. The summary of the hardware system 
specification together with the chosen version of the software 
development tools are listed in Table I. 

B. Communication 

To communicate between ROS and the android device, a 
WebSocket Server is used on top of the ROS# plugin. The 
Android device, which is connected to the same local network 
as ROS operating computer, can subscribe to the joint state and 

 

TABLE I.  SYSTEM SPECIFICATION 

Mobile Phone 

Module Pixel 4a 

Chipset Qualcomm Snapdragon 730G  

Operating System Android 11 

Computer 

Module Alienware m15 R4 

CPU Intel® Core™ i7 

GPU GeForce RTX 2070 Super 

Operating System Ubuntu 20.04.2.0 LTS 

Network 

Protocol 802.11ac 

Software Development Tools 

Unity 2019.14.18f1 

ARCore SDK for Unity 1.22.0 

Gazebo  11.3.0 

ROS Noetic 
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odometry data from the simulation software to move the virtual 
robot in AR.  Before sending the data from ROS to the mobile 
device, serialization is required. ROS# provides the interface 
for JSON serialization tools where .Net from Microsoft can be 
selected. 

C. Placing Virtual Robot in AR 

A properly coordinate system alignment needs to be 
considered to ensure that the virtual robot in AR is presented 
correctly on the real-world scene. Most of the AR-related 
robotic research uses an image marker to reference the position 
in physical space. However, we found that using the marker is 
not very intuitive especially for using on the mobile robot since 
the reference position may need to change frequently. Thus, we 
use the anchor module for placing the virtual object on the object 
tracked by ARCore. ARCore updates the position of the 
trackable object when the understanding of the environment 
changes. This helps the referencing object stay in the same place 
in the real scene even when the mobile phone is moved around 
in the real scene.  

Before changing the robot's transformation to the desired 
place, the odometry data of the robot in ROS has to be 
transformed to the world reference frame in ARCore. Fig. 2 
demonstrates the corresponding coordinate frame in ROS 
workspace and ARCore workspace. The odometry in ROS is the 
same value as the transformation between the robot frame and 
the anchor frame in the AR scene, but the robot's input 
transformation is relative to the world frame in the AR scene. 
Hence, the desired robot position in the world coordinate frame 
can be found from: 

(1) 

where 𝐓R
W   is a transformation matrix of the robot relative to 

world frame in AR scene, 𝐓A
W  is transformation matrix of the 

anchor frame relative to the world frame in AR, 𝐓R
A   is a 

transformation matrix of the robot frame relative to the anchor 
frame in the AR scene which is equal to the odometry in the ROS 
workspace. It should be noted that the coordinate system in 
Unity uses the left-handed coordinate system, which is different 
from the ROS coordinate system. Hence, additional 
transformation is required before using (1). 

D. Depth Map Implementation 

In reference to Depth API Samples for Unity, accessing 
depth information can easily be done by adding a game object 
which provides DepthSource class to the scene. This per-pixel 
depth data is crucial for applying a depth effect likes the 
occlusion effect on the AR object. Fig. 3 displays the AR model 
of the Turtlebot3 with the depth effect provided by the Depth 
API. In addition to the occlusion effect, we found that this depth 
information could be used to localize and navigate the robot 
model in real-world space. 

E. AR User Interface 

In the example of DepthLab, the navigation of virtual 
avatars in the AR scene has been shown. It uses the oriented 
reticle as a depth-aware cursor to locate the goal for the avatar 
to move. Although it is an intuitive user interface, the error 
between the desired target and robot position is noticeable. We 

Fig. 2. Relevant Coordinate System where the virtual anchor was used as a 

reference of the odometry frame in real world. (a) shows the coordinate frame 

in Gazebo. (b) shows the coordinate frame in AR scene. 

Fig. 3. Visualization of Turtlebot3 on a real-world space. (a) shows a 
visualization of depth map generated by Depth API. (b) shows a robot model 

without occlusion effect. (c) shows a robot with occlusion effect 

customize the stated method to be more suitable for a mobile 
robot by ensuring the plane alignment between the robot and 
desired target. Also, designing a way to specify the desired 
orientation of the robot by using the angle calculated from the 
current position of the cursor. 

Fig. 4 illustrates the described user interface used in this 
paper. Since the Turtlebot3 is moving on a flat plane, aligning 
each reference frame on the same plane is important to increase 
the accuracy of localization. A raycast function is used to find 
where the imaginary ray from the camera hit on the imaginary 
plane created by ARCore. The reticle depth cursor was used to 
help the user recognize where the raycast would be hit. After 
placing a referenced frame object and desired goal position, the 
destination in the world coordinate frame needs to be 
transformed to the referenced frame before publishing to the 
robot in ROS. The interaction between human and the 
navigation of the AR robot is shown in Fig. 5. 

For an orientation of the robot, the angle between the depth 
cursor and the specified goal is used as an input value visualized 
by the guiding line. The difference of the desired goal and depth 
cursor is then transformed to the reference frame before 
publishing the desired rotation to the robot.  

𝐓𝑅
W  =  𝐓A

W  𝐓R
A  

 

 

Odom Base Link

World
Anchor

Virtual Robot
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Fig. 4.  An AR navigation interface of our system with virtual Turtlebot3 

model sitting on the virtual plane. (a) shows a depth cursor for placing a marker 
on the goal position. (b) shows an orientation input line for determining the goal 

rotation. 

Fig. 5. The navigation procedure of human-robot interaction with AR. 

F. Robot Model for Validation with AR 

We use Turtlebot3 Burger as a demonstration of the robot 
validation with AR. Instead of using rviz, a typical 3D robotics 
visualization tool for ROS, the kinematic of the robot can be 
seen on top of the real environment with a mobile AR. In case 
of the dynamic model, we use GAZEBO to simulate the mobile 
robot since it has a ROS interface. After the simulation is 
calculated, the robot joint state and odometry data are published 
to the ROS workspace for moving the virtual robot in AR. 

The navigation of Turtlebot3 is relying on the ROS 
navigation stack [13]. The navigation is done on the odometry 
frame of the robot by publishing the goal derived from the above 
method to the subscriber node in ROS. After the navigation 
stack receives the action command from the subscriber node, the 
planner in navigation would plan the path for the robot in 
simulation to follow. 

IV. PERFORMANCE EVALUATION 

In order to evaluate the performance of the proposed method, 
we evaluated the positioning accuracy and the execution time 
before the robot starts to move. 

A. Positioning Accuracy 

The accuracy evaluation was done by placing an object in a 
reference point and another one in a different position. The test 
positions were select on the principal axis of the reference point 
0.5 m away from each other as shown in Fig. 6. The orientation 
accuracy was measured at 1.5 m away from the reference point 
at an angle of ±0º, ±45º, ±90º, ±135º, and ±180º. Then, the 
distances between these two objects were estimated and 
compared with the measured distance in real-world space. Fig. 
7 demonstrates the deviation of the measured distance in the real 
world and the estimated distance with AR. The accuracy of the 
positioning was 17.14 ± 3.56 mm, and the accuracy of the input 
rotation was 0.77 ± 0.01º. The statistical tests were done at the 
5% significance level. 

The experimental result shows the possibility of using an AR 
interface to navigate robots in real-world space. The accuracy is 
compatible with the time-of-flight method  [14] which reports 
30 mm for static positioning. A similar test on the Hololens [5] 
can achieve an accuracy of 7 mm on the horizontal plane 
localization. Although the accuracy of this method is inferior to 
the one obtained from using the devices with a depth sensor, this 
level of accuracy can navigate the virtual robot to move to the 
desired position in physical space as shown in Fig. 8.  

B. Execution Time 

The execution time was recorded after the user published the 
command until the virtual robot in AR starts to move. In order 
to investigate the effect of the wireless communication on the 
delay of the operation, the result was compared with the 
execution time commanded on the same computer running the 
robot simulation.  

Fig. 9 shows the time required for the virtual robot in AR to 
start to move. The rise in execution time on the mobile device 
was about 60 ms. The increase could be due to the additional 
communications between the programming modules and 
devices. The increase in execution time might be a severe issue 
for a specific type of robot application and should be considered 
when applying the proposed method. 

Fig. 6. Scene for testing localization accuracy. (a) shows the range of the 

testing environment. (b) Shows the virtual object which were used to get the 

input position and orientation of the robot. 
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Fig. 7. The positioning of the virtual object estimated by AR and the measured 

distance in real world 

Fig. 8. Navigation of the Turtlebot3 in real environment 

Fig. 9. Time to movement execution for a local-device commander and a 

mobile-device commander. 

V. CONCLUSION AND FUTURE WORK 

]In this paper, we present the method of visualizing the 
virtual robot in Augmented Reality for validating the robot in a 
real-world environment. The integration with ROS is presented 
to be a shortcut for controlling the virtual robot in AR. As an 

example of robot validation, we validated the augmented reality 
localization and user interface with the ROS navigation stack.  
While the virtual robot model in AR can successfully move to 
the desire location with a certain degree of accuracy, the 
proposed method does have limitations.  

The accuracy is limited due to the lack of a time-of-flight 
sensor. In case a higher accuracy is required, using the 
smartphone with a time-of-flight sensor, or using the additional 
range finding sensor might resolve the problem. These 
improvements could be simply made since ARCore support the 
usage of a time-of-flight sensor on some mobile phone and the 
implementation of the other sensor is straight forward on ROS.  

This paper mainly focuses on the visualization of the robot 
model in real-world space. However, the robot validation might 
require the interaction between the augmented robot and the 
object in physical space, such as collision-free path planning. 
Hence, the study on other physical properties of the robot model 
should be conducted to wider the application of AR for robot 
validation. 
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