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Figure 1. In an iterative sketch communication game [17], players first need to ground sketches to referents. The drawer (Alice) gradually
simplifies the drawing but keeps the most salient parts of the target concept (rooster crown). This evolution process enables the viewer
(Bob) to promptly distinguish the target (rooster) from distractors (bird, cup, rabbit, and sheep).

Abstract

Humans communicate with graphical sketches apart
from symbolic languages [8]. While recent studies of
emergent communication primarily focus on symbolic lan-
guages [24], their settings overlook the graphical sketches
existing in human communication; they do not account for
the evolution process through which symbolic sign systems
emerge in the trade-off between iconicity and symbolicity.
In this work, we take the very first step to model and simu-
late such an evolution process via two neural agents playing
a visual communication game; the sender communicates
with the receiver by sketching on a canvas. We devise a
novel reinforcement learning method such that agents are
evolved jointly towards successful communication and ab-
stract graphical conventions. To inspect the emerged con-
ventions, we carefully define three key properties – iconic-
ity, symbolicity, and semanticity – and design evaluation
methods accordingly. Our experimental results under dif-
ferent controls are consistent with the observation in stud-
ies of human graphical conventions [9, 17]. Of note, we
find that evolved sketches can preserve the continuum of se-
mantics [30] under proper environmental pressures. More
interestingly, co-evolved agents can switch between conven-
tionalized and iconic communication based on their famil-
iarity with referents. We hope the present research can pave
the path for studying emergent communication with the un-
explored modality of sketches.

1. Introduction

Communication problem naturally arises when traveling
in a foreign country where you do not speak the native lan-
guage, which necessitates exploring non-linguistic means
of communication, such as drawings. Due to its iconic na-
ture (i.e., perceptual resemblance to or natural association
with the referent), drawings serve as a powerful tool to com-
municate concepts transcending language barriers [8]. In
fact, we humans started to use drawings to convey messages
dating back to 40,000–60,000 years ago [17, 18]. Some
studies from cognitive science hypothesize a transition from
sketch-based communication before the formation of sign
systems and provide evidence that iconic signs can gradu-
ally become symbolic through repeated communication [8].
In contrast to icons, symbols are special forms bearing arbi-
trary relations to the referents. Fig. 1 describes a typical sce-
nario of such phenomena: Alice (in green) uses a sketch to
communicate the concept “rooster” to Bob (in yellow). Ini-
tially, they need to ground the sketch to the referent. Later,
details of the visual concept, such as strokes of head and
body, are gradually abstracted away, leaving only the most
salient part, the crown. The iconicity in the communicated
sketch drops while the symbolicity rises.

While models of emerging communication protocols has
attracted attention [3, 4, 6, 12, 16, 24–26, 31, 33], the ini-
tial and primary communication medium is presumed and
limited to be symbolic rather than iconic. By simulating
a multi-agent referential game, prior work seeks for envi-
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ronmental driving forces behind the emergence of effective
communications. In a typical setup of referential games,
two agents play similar roles as in the above Alice-Bob ex-
ample but share a primitive set of arbitrary tokens (i.e., the
vocabulary). Using these tokens, an agent (the sender) at-
tempts to communicate a message to another agent (the re-
ceiver). A communication convention is emerged when two
agents successfully communicate by associating visual con-
cepts in the images with tokens in the pre-selected vocab-
ulary. Though this line of work has probed into some lin-
guistic properties of the established communication conven-
tions [25, 26, 33], some intriguing questions remain open:
How do agents make a trade-off between iconicity and sym-
bolicity to emerge symbolic sign systems?

In this work, we present the very first step of model-
ing and simulating the evolution process of graphical con-
ventions [17], a two-participant communication convention
whose medium is drawings in an abstract form. Specifically,
we consider our contributions in three folds:

First, we model a multi-agent visual communication
game and propose a learning framework, wherein the sender
and the receiver evolves jointly. This visual communication
game is an alternating sequential decision-making process,
in which the sender generates a sequence of strokes step by
step, terminated by the receiver. In contrast to discretized
tokens in prior work, strokes can be naturally parametrized
in a continuous space [13, 19] such that the derivatives of
learning objectives can be more effectively back-propagated
through communication channels [11]. We further derive
a novel training surrogate for multi-agent reinforcement
learning based on a joint value function and the eligibility
trace method [39]. In experiments, we empirically demon-
strate that such an integration of function approximation
and Monte Carlo sampling in sequential communication fa-
cilitates the agents to be aware of the correlation between
complex and simple sketches, hereby enabling a smooth ab-
straction process.

Second, we define essential properties in studying
evolved sketches. Specifically, we define iconicity [8] as
the drawings exhibiting high visual resemblance to the cor-
responding images, such that they are proximal to the latter
when measured on the high-level embedding of a general-
purpose visual system; we define symbolicity [10] as these
drawings being consistently separable in the high-level vi-
sual embedding, which facilitates new communication par-
ticipants to easily distinguish between categories without
grounding them to referents; we define semanticity [15] as
the topography of the high-level embedding space of the
drawings being strongly correlated to that of images, such
that semantically similar instances and categories lie close
to each other in the embedding space. Of note, this is not the
only way to define these cognitive concepts; our intention is
to align readers on critical concepts in our work.

Third, we present a suite of quantitative and qualita-
tive methods to evaluate the emergent graphical conventions
based on the carefully defined iconicity, symbolicity, and se-
manticity. This is neccesary because a high communication
rate does not imply good representations [2]. The graphical
nature of the communication medium mandates us to repur-
pose representation learning metrics rather than adopt lin-
guistic metrics in emergent symbolic communication. We
evaluate the contribution of different environmental drivers,
early decision, sender’s update, and sequential communi-
cation, to the three properties of the emergent conventions.
Critically, the empirical results assessed on our metrics well
align with our prediction based on the findings of human
graphical conventions [9, 17], justifying our environment,
model, and evaluation. One of these setups emerges con-
ventions where the three properties are consistent with our
expectation of a sign system. Particularly, we find two in-
spiring phenomena: (i) Evolved sketches from semantically
similar classes are perceptually more similar to each other
than those falling into different superclasses. (ii) To com-
municate concepts not included in their established conven-
tions, evolved agents can return to more iconic communica-
tions as we humans do. We hope our work can invoke the
investigation of emergent communication in the unexplored
modality of sketches and facilitate the study of cognitive
evolutionary theories of pictographic sign systems.

2. Related work
Learning to sketch Ha and Eck [13] begin the endeavor
of teaching modern neural models to sketch stroke by
stroke. However, generating meaningful stroke sequences
directly from various categories of natural images is still
in early phase [38, 42, 48]. To assure the interestingness
of the category-level sketch communication, we design a
stage-wise agent that first transfers a natural image into a
pixel-level sketch through a CNN-based model [20] and
then draws the sketch on the canvas stroke by stroke with
a policy [19]. To pretrain our neural agents to sketch, we
select Sketchy [34] from many datasets [5,13,34,45] for its
fine-grained photo-sketch correspondence, rich stroke-level
annotations, and well-organized categorization structure.

Communication games While learning to sketch is for-
mulated as a single-agent task with explicit supervision,
our focus is on how sketches would evolve when utilized
as the communication medium between two cooperative
agents. The tasks the two agents cooperate on are always
formulated as communication games, recently adopted to
study phenomena in natural languages, such as symbolic
language acquisition [12] and the emergence of compo-
sitionality [33]. Some notable works [6, 16, 25, 26] have
devised interesting metrics, such as purity [26] and topo-
graphic similarity [25]. In comparison, our work is unique
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due to the distinctive communication medium, continuously
parametrized sketches. Although a concurrent work [29]
also enables the agents to sketch in a communication game,
it focuses only on drawing interpretable sketches with-
out abstracting into graphical symbols along the commu-
nication process. We position our work as an alternative
to emergent symbolic communication, since the emergent
graphical symbols may better represent the continuum of
semantics, as encoded in the vector representation of to-
kens [30]. Methodologically, we devise new evaluation
metrics for this unexplored modality, assessing the iconic-
ity, symbolicity, and semanticity in the evolved sketches.

Emergent graphical conventions Evolving from
sketches to graphical conventions/symbols is an active
field in cognitive science under the banner of “emergent
sign systems.” Fay et al. [9] show that pair interaction
can form their local conventions when they play the
Pictionary game. Using natural images instead of texts
as the prompt, Hawkins et al. [17] show that, besides
partners’ shared interaction history, visual properties of the
images also influence the formed graphical conventions.
That is, the evolved sketches highlight visually salient
parts. Nevertheless, only a few computational models exist
apart from these human behavior studies. Fan et al. [7]
describe a model for selecting complex or simple sketches
considering the communication context. Bhunia et al. [1]
and Muhammad et al. [32] consider stroke selection and
reordering to simplify the sketch. In contrast to sketch or
stroke selection, we model embodied agents who can draw
and recognize sketches, a more natural setting if we were
to fulfill the goal of modeling the transition from iconic
sketches to graphical symbols.

3. The visual communication game
Our visual communication game is formulated as a tuple

pI, C,AS ,AR, G, r, γq,

where I is the image set to be presented to the sender S
and the receiver R. These images contain a single object in
the foreground, and hence the image space I can be parti-
tioned into N classes according to the category of the ob-
jects. In each round of the game, the sender is presented
with one image IS , and the receiver is presented with M
images tI1R, ..., I

M
R u. Inspired by the category-level game

introduced by Lazaridou et al. [26], we make the observa-
tions of S andR disjoint (i.e., IS R tI1R, ..., I

M
R u), but with a

target image I˚R in the same class as IS . We refer to the M
images that the receiver can see as the context. Neither the
receiver nor the sender would see the image(s) presented to
their partner; they can only communicate this information
by drawing sketches on the canvas C, observable to both

players. As shown in Fig. 2, at the beginning of each round,
C0 is initialized to be blank. Only the sender can draw on
the canvas with actions chosen from AS . The action at each
time step consists of 5 strokes, which are continuous vec-
tors in R6. We constrain each dimension to be in p0, 1q
due to limited space on the canvas. The canvas is updated
from Ct to Ct`1 by the renderer G after each step of the
sender’s sketching. The receiver, after observing the up-
dated canvas, would have to choose among the M images
or wait for the next step from the sender; these M`1 pos-
sible actions constitute AR. A game round terminates when
the receiver gives up waiting and chooses one from the im-
ages. After the termination, the sender and the receiver will
receive a shared reward or penalty, depending on if the re-
ceiver makes the right choice:

r : IˆIÑt´1, 1u.

This reward/penalty is temporally decayed with a decay fac-
tor γ. That is, if the receiver decides to choose from the
images at step t, this cooperating pair will receive either γt

or ´γt. Hence, even though the players do not receive an
explicit penalty for long conversations, there is an implicit
penalty/reward for delayed positive/negative answers. No
reward will be assigned if the receiver chooses to wait. The
next round starts after the reward/penalty assignment.

4. Agents
The two agents involved in the visual communication

game are modeled with two decision policies, πS and πR,
for the sender and the receiver, respectively. These policies
are stochastic mapping from the agents’ observation space
to the action space:

πS : IˆCÑPpASq, πR : IM ˆCÑPpARq, (1)

where PpAq is a distribution over the support set A. As
shown in Fig. 2, at each time step t P t0, ...T u, the sender
first emits the stroke parameters for the next five strokes
aSt„πSpIS , Ctq. These strokes are applied to the canvas
by a differentiable renderer, Ct`1“GpCt, aStq. Next, the
updated canvas is transmitted to the receiver. The receiver
decides whether to terminate the game and make its predic-
tion (i.e., aRt P t1, ...,Mu) or wait for another round (i.e.,
aRt“M`1); its decision is sampled from πR. If a pre-
diction is made, it is used to select the image IaRR from
tI1R, ...I

M
R u and score this game with rpIS , I

aR
R q. Other-

wise, this routine repeats in the next step tÐ t`1.

4.1. Sender

Prior to playing the visual communication game, the
sender should be able to (i) extract edges from natural im-
ages [44] and (ii) draw sketches that closely resemble the
configurations of salient edges [28], just as humans [35]
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Sender

Receiver

Figure 2. Communication process. In our visual communication game, a sender S and a receiver R only share the observation of the
canvas C. The sender first converts the natural image IS to a pixel-level sketch ÎS . At each step, the sender first draws five strokes aS
through the renderer G, which updates the canvas to Ct`1. Next, the receiver uses the updated canvas Ct`1 to query from the context
images tI1R, ..., I

M
R u and the last canvas Ct, deciding the action aR at this step. The game continues if the receiver chooses to wait.

do. To endow the sender with these capabilities, we design
a stage-wise architecture hS “ gS ˝fS . Specifically, IS is
first converted to a target sketch ÎS using a visual module
fS [20], capturing the salient edge information in the natu-
ral image; we directly adopt the pretrained model from the
referred work. Next, ÎS is concatenated with the current
canvas Ct and fed to the sketching module gS , whose archi-
tecture is built upon Huang et al. [19]. This sketching mod-
ule outputs five vectors in the form px0, y0, x1, y1, x2, y2q,
which parametrizes the curve of one stroke. The policy is
parametrized as a Gaussian distribution during training,

πS “N pµt, σ2q, µt“hSpIS , Ctq, σ2“ c ¨I, (2)

where I is the identity matrix, and c is a constant hyperpa-
rameter. During testing, we set c“ 0.

These stroke parameters aSt are fed into a pretrained ren-
derer G [19] to update the canvas, Ct`1“GpCt, aStq. This
renderer is fully differentiable, enabling end-to-end model-
based training [14] of the sketching module gS . We pretrain
gS on Sketchy [34]; see Supp. for results.

4.2. Receiver

The receiver, similar to the sender, should also carry
some rudimentary visual capability to this game. Unlike
the low-level vision needed for the sender, the requirement
for the recevier is high-level visual recognition. Therefore,
we adopt a pretrained VGG16 [37] as the visual module
fR : IÑR4096 of the receiver, following a similar practice
in recent literature [16, 26]. The output of this visual mod-
ule is a vector, and further transformed by two separate lin-
ear layers, gKR and gQR , into visual embeddings, hKR pIq and
hQRpIq. That is, hKR “ g

K
R ˝fR, hQR “ g

Q
R ˝fR.

When observing both the context tI1R, ..., I
M
R u and the

canvas Ct, the receiver first embeds each of them with hR.

Next, it makes the decision based on the similarity between
the current canvas and each option in the context. The de-
cision module is thus realized by a Boltzmann distribution
based on resemblance:

πRpaRt|I
1
R, ...I

M
R , Ct´1, Ctq“

expphQRpCtq ¨h
K
R pI

aRt

R qq
řM`1
m“1 expphQRpCtq ¨h

K
R pI

m
R qq

, (3)

where IM`1
R “Ct´1. Although a similar policy was pro-

posed before [16, 25], our πR is distinct as it is endowed
with an external memory ofCt´1. Intuitively, if the receiver
finds the current canvas Ct closer to the last canvas Ct´1 in
the embedding space than all M options in the context, it
will choose to emit aRt“M`1 and delay the decision to
the next step; a prediction can only be made when the re-
ceiver finds the current canvas is informative enough. As a
result, the sender would draw informative strokes as early as
possible to avoid the implicit penalty in the decayed reward.

4.3. Learning to communicate

Policies of the sender and the receiver are trained jointly
to maximize the objective of the stochastic game in Sec. 3:

π˚S , π
˚
R“ argmax

πS ,πR

Eτ∼pπS ,πRqr
ÿ

t
γtrts, (4)

where τ “tC0, aS0, C1, aR1, aS1, ...u is the simulated
episodic trajectory. As well known in reinforcement learn-
ing, the analytical expectation in Eq. (4) is intractable to
calculate along the trajectory τ . We devise value functions
VpXtq and VλpXtq for an optimization surrogate:

VpXtq“EπSpaSt|IS ,Ct´1q,πRpaRt|X̂tq
rprt`γδpaRtqVλpXt`1qs, (5)

where X̂t“rI
1
R, ...I

M
R , Ct´1, Cts, Xt“ catprISs, X̂tq,

δpaRtq is the Dirac delta function that returns 1 when
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the action is wait and 0 otherwise. The expectation
EπSpaSt|IS ,Ct´1qr¨s is approximated with the point estimate,
as in the reparametrization in VAE [23]. The expectation
EπRpaRt|X̂tq

r¨s can be calculated analytically because πRt
is a categorical distribution. The connection between these
two expectation is one of our contributions. Of note, Ct
in X̂t in πRtpaRt|X̂tq is generated by the differentiable
renderer G with the actions aSt from the sender policy
πSpaSt|IS , Ct´1q. Hence, we can have both BV{BπRt
and BV{BπSt based on Eq. (5). This results in a novel
multi-agent variant of the general policy gradient [36, 40].
VλpXtq in Eq. (5) is an eligibility trace approxi-

mation [39] of the ground-truth value function. In-
tuitively, a value estimate with eligibility trace Vλ
mixes the bootstrapped Monte Carlo estimate V kN pXtq“

EπS ,πR
r
řh´1
n“t γ

n´trn`γ
h´tδpaRhqυφpXhqs at different

roll-out lengths k, with h“minpt`k, Tchoiceq being the
maximal timestep. Tchoice is the timestamp when the re-
ceiver stops waiting. The articulation of such termination
also makes our eligibility trace deviate from the general
derivation with infinite horizon. We derive an episodic ver-
sion as

VλpXtq“

$

’

&

’

%

p1´λq
řH´1
n“1 λ

n´1V nN pXtq`λ
H´1V HN pXtq

if tďTchoice
vφpXtq otherwise

(6)

where H “Tchoice´ t`1. Please refer to the supplemen-
tary material for a detailed derivation and the algorithm. Fi-
nally, vφpXtq is trained by regressing the value returns:

φ˚“ argmax
φ

EπS ,πR
r
ÿ

t

1

2
||vφpXtq´VλpXtq||

2s. (7)

5. Experiments
5.1. Settings

Images We used the Sketchy dataset [34] as the source of
images. Due to the limited performance of the sketching
module on open-domain image-to-sketch sequential gener-
ation, we select 40 categories (10 images per category) that
enable satisfactory sketching behaviors.

Environmental drivers With the visual communication
game and the learning agents at hand, we investigate the
causal factors in emergent graphical conventions with con-
trolled experiments. Tab. 1 lists all designed settings.
Specifically, we consider the following factors:
• Can receiver make early decisions? The hypothesis is

that the receiver’s decision before exhausting the allowed
communication steps may inform the sender the marginal
benefit of each stroke and incentivize it to prioritize the
most informative strokes. The corresponding control set-
ting is max-step, where the receiver can only make the

choice after the sender finishes its drawing at the maxi-
mum step. This factor is on in other settings.

• Can sender change its way of drawing? The hypothesis is
that the mutual adaptation of the sender and the receiver
may lead to better abstraction in the evolved sketches.
Particularly, the sender may develop new ways of draw-
ing in the evolution. The corresponding control setting
is sender-fixed, wherein we freeze the parameters of the
sender, such that the receiver has to adapt to its partner.
This factor is on in other settings.

• Is the game sequential, and can the receiver observe more
complex drawings? The hypothesis is that the modeling
of a sequential decision-making game and the evolution
from more complex sketches may regularize the arbitrari-
ness, which is unique for graphical conventions. The cor-
responding control setting is one-step: There only exists
one step of sketching, thus no sequential decision-making
at all. This factor is on in other settings.

Training, validation and generalization test We train
the sender and the receiver with batched forward and back-
propagation, with a batch size of 64 and maximum roll-out
step T “ 7. We update using Adam [22] with the learn-
ing rate 0.0001 for a total of 30k iterations. Except for the
sender-fixed setting, there is a warm-up phase in the first
2000 iterations for the sender where we linearly increase
the learning rate to 0.0001. After the warm-up phase, the
learning rate of both agents will be decreased exponentially
by 0.99

i´2000
1000 , where i is the number of training iterations.

In all settings, we set M “ 3, γ“ 0.85. Between iterations,
we randomly sample another 10 batches for validation. We
held-out 10 images per category for unseen-instance test
and 10 categories for unseen-class test. Each image will be
communicated as the target, resulting in 300`100 pairs in
the test set. Results below are statistics of 5 random seeds.

5.2. Results

5.2.1 Communication efficacy and sketch abstraction

We record both the success rate and the communication
steps over the training iterations; see Fig. 3. In Fig. 3a,
agents in all settings except one-step converge to a suc-
cess rate above 80%. Among them, the communicating
pairs in the complete setting and the sender-fixed setting
evolve to achieve a comparable success rate with the re-
trieve baseline. Interestingly, these two pairs also emerge
a phenomenon resembling the natural observation in hu-
man study, named systematic reduction [27]: The average
steps first increase and then gradually decrease as in Fig. 3b.
Contrasting complete and sender-fixed, we can see: (i) The
emergent conventions in the former is much simpler than
the latter (less steps in Fig. 3b), which implies the contri-
bution of mutual adaptation in sketch abstraction. (ii) The
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Game Settings Communication Accuracy (%) ˘ SD (avg. step)

early
decision

update
sender

max/one
step description setting names seen unseen instance unseen class

yes yes max our experimental setting complete 98.07 ˘ 0.01(1.03) 70.37 ˘ 0.04(2.36) 39.40 ˘ 0.05(3.76)
no yes max control setting for early decision max-step 86.27 ˘ 0.03(7.00) 67.93 ˘ 0.02(7.00) 38.40 ˘ 0.04(7.00)
yes no max control setting for evolving sender sender-fixed 99.60 ˘ 0.01(2.41) 71.80 ˘ 0.02(3.83) 45.40 ˘ 0.02(4.75)
yes yes one control setting for sequential game one-step 22.87 ˘ 0.23(1.00) 14.07 ˘ 0.15(1.00) 9.60 ˘ 0.09(1.00)
no no max baseline for all settings above retrieve 99.47 ˘ 0.01(7.00) 76.80 ˘ 0.02(7.00) 48.00 ˘ 0.02(7.00)

Table 1. Game settings and results. The first three columns represent the configurations of the environmental drivers. Setting names and
descriptions specify our purposes for intervention. The last three columns show success rates and conversation length in testing games.
“seen” are validation games with the same image set as training. “unseen” are testing games with unseen images.

(a) validation accuracy (b) average communication steps (c) prediction accuracy

Figure 3. Statistics aggregated over all random seeds. (a) The validation accuracy of different game settings and the ablation baseline.
(b) The average communication steps under different settings and ablation baselines. γ is 0.85 by default, 0.95 in complete95 and cumula-
tive95. (c) The prediction accuracy when receivers are presented with sketches drawn by corresponding senders at 1, 3, 5, and 7 time steps,
respectively. These sketches are collected in a standalone roll-out after each iteration, where early decision is disabled; agents are trained
with the complete setting, where ealy decision is enabled.

success rate in Fig. 3a in the former converges a bit more
slowly, which is reasonable since the senders can explore to
change the way of drawing. In comparison, if the receiver
cannot make early decisions, it has no intention to relate
sketches (i.e., Ct´1 and Ct) at consecutive timesteps. The
sender is thus unaware of each stroke’s marginal informa-
tion gain, which in return makes their learning harder. This
might explain the relatively low success rate in the max-step
setting. The failure of the one-step pairs reveals the irre-
placable roles of sequential decision-making and observing
complex sketches in emergent graphical communication.

To further inspect how our proposed modeling and
learning on sequential decision-making facilitate the de-
sired evolution in the sketches, we conduct an abla-
tion study by comparing our proposed learning surro-
gate (Eq. (5)) and a vanilla policy gradient baseline, RE-
INFORCE [43] with Monte Carlo cumulative rewards
EπS ,πR

r
ř

tr∇ log πRpaRt|X̂tq
řT
n“t γ

n´trnss.
Our comparison spans three axes. First, the REIN-

FORCE baseline converges much more slowly than the pro-
posed surrogate; see cumulative vs complete in Fig. 3a. Sec-
ond, we check the robustness under variation of decay fac-
tor γ. As shown in Fig. 3b, while the proposed method
shows stable convergence in the communication steps under
γ“ 0.85 and γ“ 0.95, the REINFORCE baseline exhibits

high-variance behavior under certain setup (γ“ 0.95). Fi-
nally, we check if agents’ early terminations are caused
by their awareness of the indistinguishable performance
in longer and shorter episodes. Given a precondition that
the longer the episodes are, the earlier the success rate in-
creases, it should be the increase in the average performance
of shorter episodes that causes the average timesteps to de-
crease. Taking 1-step and 3-step communication for exam-
ple, in the complete setting, we shall see the success rate
of the 3-step to achieve high earlier, which is then caught
up but not exceeded by the 1-step. The not exceeding con-
dition is a crucial cue to validate that the communicating
partners were actively pursuing the Pareto front [21] / ef-
ficiency bound [46] of accuracy and complexity. This is
exactly what our proposed method emerges as shown in
Fig. 3c. In contrast, in the REINFORCE baseline, under
the same decay factor, the performance of 1-step surpasses
3-step communication. It seems as if the incapability of
learning long episodes caused the agents to avoid them.

All our results on success rate and communication steps
are consistent with predictions based on our hypotheses,
which justifies our environments and models. However, a
high success rate does not necessarily imply high conven-
tion quality. Another essential property for conventions is
stability [27]: There should exist common patterns in the re-
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peated usage of conventions to convey similar concepts. We
take the viewpoint of representation learning and concretize
the vague stability with three formally defined properties:
iconicity, symbolicity and semanticity. In the following, we
introduce our experiments to measure these properties.

5.2.2 Iconicity: generalizing to unseen images

We start from iconicity since it is the most distinctive prop-
erty in visual communication. We define iconicity as the
drawings exhibiting high visual resemblance with the cor-
responding images, such that they are proximal to the latter
when measured on the high-level embedding of a general-
purpose visual system. Based on this definition, a more
iconic drawing should facilitate more generalizable graphi-
cal conventions. Namely, in more naturalistic open-domain
communication, agents would always see novel scenes con-
taining known or unknown concepts. They should still be
able to communicate with established conventions or with
unconventionalized iconic drawings. Such generalizability
can be measured in two test cases: unseen instances of seen
classes and unseen classes. A successful generalization to
unseen instances implies senders’ ways of drawing preserve
iconicity in the evolution. A successful generalization to
unseen classes (i.e., zero-shot generalization) is more dif-
ficult than unseen instances; hence, partners may increase
the conversation length and communicate with more com-
plex sketches. This requires both the senders to preserve
iconicity in drawings and the receivers to be sensitive to the
information change in the communicated sketches.

Tab. 1 reports the success rates and average timesteps in
our generalization tests. The retrieve setting is the baseline,
since there is no evolution at all and the sketches should
resemble the original images the most (i.e., possessing the
highest iconicity). Unsurprisingly, its generalization per-
formance upper-bounds all other settings. Among the ex-
perimental and controlled settings, the complete, the max-
step, and the sender-fixed agents generalize relatively well
in unseen instances (70.37˘0.04, 67.93˘0.02, 71.80˘
0.02) and generalize above chance (39.40˘0.05, 38.40˘
0.04, 45.40˘0.02ą25.00) in unseen classes. Interestingly,
complete and sender-fixed communicating partners intelli-
gently turn to longer episodes for better generalization, bet-
ter than the max-step agents. This finding implies the part-
ners may turn to more iconic communication when there is
no established conventions/symbols, just as we humans do.
Strikingly, the max-step conventions seem to loose more
iconicity, possibly due to confusion on marginal informa-
tion gains. The one-step drawings seem to lack iconicity.

5.2.3 Symbolicity: separating evolved sketches

Next, we measure symbolicity to evaluate the graphical con-
ventionalization. We define symbolicity as the drawings be-

Figure 4. Testing results of classifiers trained with sketches
from different settings. img denotes images, and retrieve denotes
unevolved sketches.

ing consistently separable in the high-level visual embed-
ding, which facilitates new communication partners to eas-
ily distinguish between categories without grounding them
to referents. Based on this definition, a more symbolic draw-
ing should be more easily separable into their correspond-
ing categories. To measure such separability, we use a pre-
trained VGG16 as the new learner and finetune the last fully
connected layer to classify evolved sketches into the 30 cat-
egories. Technically, we first get the 300 final canvases from
the communication game, 10 for each category. Among
them, we use 70% for training and 30% for testing.

The bar plot in Fig. 4 shows the classification results.
Since agents in the one-step setting do not play the game
successfully, they may not form a consistent way to commu-
nicate. Agents in the complete setting achieve the highest
accuracy, higher even compared with the result of the orig-
inal images. This finding indicates that agents in the com-
plete setting agree on a graphical convention that consis-
tently highlights some features across all training instances
in each category, which are also distinguishable between
categories. Comparing the max-step with the complete set-
ting, we know that early decision is an important factor
for more symbolic conventions. Comparison between the
sender-fixed setting and the complete setting suggests that
the sender’s evolution also contributes to high symbolicity.

5.2.4 Semanticity: correlating category embedding

The last desired property of graphical conventions is that
the evolved sketches can preserve the perceptual metric in
images [47]. We define semanticity as the topography of
the high-level visual embedding space of drawings being
strongly correlated to that of images, such that semantically
similar instances and categories lie close to each other in
the embedding space. To examine such topographic cor-
relation, we project the embeddings obtained in Sec. 5.2.3
to a 2D space via t-SNE [41]. Fig. 5 show the visualiza-
tion of the original images and the sketches in the retrieve
and complete settings; please refer to supplementary for re-
sults of other settings. Images/drawings from the same cat-
egory are marked in the same color. As shown, boundaries
between categories are clearer in the evolved drawings in
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Figure 5. t-SNE of visual embedding of the original images (left), unevolved sketches in the retrieve setting (middle), and evolved
sketches in the complete setting (right). These embeddings are from the finetuned VGGNets in Sec. 5.2.3. The evolved sketches have
clearer boundaries due to the discrimination game. But they still maintain the topography that similar concepts are close to each other.

Figure 6. Sketch evolution of rabbit and giraffe through game iterations. For each example, sketches from the left to the right show
the change of the final-step canvas from iteration 0 to 30,000. Please refer to Supp for more results.

the complete setting than the unevolved sketches in retrieve
or original images; but semantically similar categories are
still close to each other. For example, cow, deer, horse, and
camel are proximal to each other, while burger and apple are
far from them. These results highlight another uniqueness
of visual communication over its symbolic counterpart: The
similarity in the visual cues in the conventions may hint the
semantic correlation between the referents.

5.2.5 Visualizing sketch evolution

To better understand the nature of the emerged conventions,
we inspect the intermediate sketches in the evolution pro-
cesses. Specifically, we choose to visualize the process un-
der the complete setting. Fig. 6 shows three instances in two
categories. For each example, drawings from the left to the
right show the change of the final-step canvas from iteration
0 to 30,000. Sketches’ complexity gradually decreases after
an initial increase, echoing the trend of reduction described
in Sec. 5.2.1. For rabbit, at the beginning, the strokes may
depict instances from different perspectives; through itera-
tions, they converge to highlight the rabbit’s long ear. As
for giraffe, the agents gradually learn to emphasize the long
neck. Particularly, in the third example, although the gi-
raffe lowers its head, we can still see an exaggerated verti-
cal stroke for the neck, similar to the first example where
the giraffe’s head is raised. These examples show how the

sender gradually unifies drawings of the same category. It
can also be seen that after evolution, the sender is inclined
to use the first several strokes to depict the most salient parts
of visual concepts.

6. Conclusion

In this work, we present the first step of modeling and
simulating the evolution of graphical conventions between
two agents in a visual communication game. Agents mod-
eled in the proposed framework can successfully com-
municate visual concepts using sketches as the medium.
We measure the emergent graphical conventions over three
carefully defined properties, iconicity, symbolicty, and se-
manticity. The experimental results under different controls
suggest that early decision, mutual adaptation, and sequen-
tial decision-making can encourage symbolicity while pre-
serving iconicity and semanticity. However, there are some
limitations regarding the two-stage pretrained senders. An
ideal sender would not need to convert the images to a
sketches before it starts sketching. The limitations in the
pretrained sketching module also constrain the discrimina-
tive need among the selected classes in our game. We will
investigate and resolve these limitations in future research.
With the uniqueness of visual conventions demonstrated,
we hope our work can invoke the study of emergent com-
munication in the unexplored modality of sketches.
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A. Category list

training categories

apple axe bell blimp camel
cannon car (sedan) chicken cow cup

deer dolphin duck frog giraffe
guitar hamburger horse knife mushroom

pig pistol pizza rabbit sailboat
seal shark sheep snail turtle

unseen categories

pear hammer pickup truck songbird violin
sword elephant fish penguin swan

Table 2. Categories used in our game

We include 30 categories for training and 10 held-out
categories for testing in our game; see Tab. 2.

B. Category embedding for other game settings

Fig. 7 shows the t-SNE visualization for other game set-
tings. Agents under max-step, sender-fixed, and one-step
settings fail to form clear boundaries between different cat-
egories, which makes it hard to observe semantic relations.

C. Visualizing sketch evolution

Visualizing the evolution process helps us understand
what the agents have learned through communication re-
garding different categories. By comparing the evolved
sketches with the intermediate results, we can know (i) how
the agents abstract the sketch, (ii) which parts of the vi-
sual concept they highlight, and (iii) which parts are de-
emphasized. Figs. 8 to 10 show some evolution examples
under different settings. Agents under max-step seem to
abstract their drawings by repeatedly placing new strokes
near old strokes, resulting in bold drawings. The number of
strokes under sender-fixed gradually decreases, but the way
of drawing will not change. Senders under one-step changes
more wildly, but cannot form a consistent drawing behavior.
Overall, compared with the complete setting, agents under
the control settings do not form patterns to draw sketches,
which echoes their relatively low classification results.

D. Learning objectives and training algorithm

Agents are trained jointly to maximize the objective:

π˚S , π
˚
R“ argmax

πS ,πR

Eτ∼pπS ,πRqr
ÿ

t“0

γtrts, (8)

where τ “tC0, aS0, C1, aR1, aS1, ...u is the simulated
episodic trajectory. To further expand the objective,

EpπS ,πRqr
ÿ

t“0

γtrts

“

ż

ppISqppI
1
Rq...ppI

M
R qppC0q

¨

ż

πSpaS0|IS , C0qπRpaR1|C0, GpC0, aS0q, I
1
R, ..., I

M
R q

¨

«

r0`EpπS ,πRq

«

ÿ

t“1

γtrt

ffff

daS0daR1dISdI
1
R...dI

M
R dC0

“EIS ,I1R,...,IMR ,C0

«

EpπS ,πRq

«

r0`EpπS ,πRq

«

ÿ

t“1

γtrt

ffffff

(9)

We calculate EIS ,I1R,...,IMR ,C0
r¨s by sampling IS , IR, and

initializing C0 to blank at each round. We represent the
EpπS ,πRqr¨s as VpX0q and use VλpX1q to estimate the re-
ward expectation EpπS ,πRqr

ř

t“1 γ
trts:

VpX0q“EpπSpaS0|IS ,C0q,πRpaR1|C0,GpC0,aS0q,I1R,...,I
M
R qq

¨ rpr0`γδpaR1qVλpX1qs,
(10)

where Xt“rIS , I
1
R, ..., I

M
R , Ct, Ct`1s, t“ 0, 1..., δp¨q is

the Dirac delta function that returns 1 when the action is
wait and 0 otherwise.

The sender policy is parametrized as a Gaussain distri-
bution,

πS “N pµt, σ2q, µt“hSpIS , Ctq, σ2“ c ¨I, (11)

such that aS0 can be written as

aS0“µ0`σε, ε∼N p0, Iq. (12)

Therefore, we can expand VpX0q as,

VpX0q“

ż

πSpaS0|C0, ISqEπRpaR1|C0,GpC0,aS0q,I1R,...,I
M
R q

¨ rr0`γδpaR1qVλpX1qsdaS0

“

ż

ppεqEπRpaR1|C0,GpC0,µ0`σεq,I1R,...,I
M
R q

¨ rr0`γδpaR1qVλpX1qsdε

“EεrEπR
rr0`γδpaR1qVλpX1qss

(13)
Eεr¨s is approximated with a point estimate. Since πR is a
categorical distribution, we expand EπR

as

EπR
rr0`γδpaR1qVλpX1qs

“

M`1
ÿ

j“1

ppajR1qrr
j
0`γδpaR1qVλpX1qs.

(14)

VλpXtq in Eq. (5) is an eligibility trace approximation of
the ground-truth value function [39]. Considering the early
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Figure 7. t-SNE of visual embedding. These embeddings are extracted from the finetuned VGGNet used for evolved sketch classification
under the max-step (left), sender-fixed (middle), and one-step (right) setting, respectively. Neither of them forms a clear boundary between
different categories.

termination in our setting, we set the time step when the re-
ceiver makes the prediction as Tchoice. When t is the time
step less or equal than Tchoice, Vλ mixes Monte Carlo esti-
mate at different roll-out lengths. Otherwise, we only have
an estimated value vφpXtq.

VλpXtq“

$

’

&

’

%

p1´λq
řH´1
n“1 λ

n´1V nN pXtq`λ
H´1V HN pXtq

if tďTchoice

vφpXtq otherwise
(15)

where H “Tchoice´ t`1, and V kN pXtq is the Monte
Carlo estimate at k roll-out lenghts. V kN pXtq“

EπS ,πR
r
řh´1
n“t γ

n´trn`γ
h´tδpaRhqυφpXhqs, with h“

minpt`k, Tchoiceq being the maximal timestep. Due to the
error reduction property [39], the eligibility trace estimation
Vλp¨q is less biased than vφp¨q. When regressing vφpXtq to-
wards the bootstrapped VλpXtq,

φ˚“ argmax
φ

EπS ,πR
r
ÿ

t

1

2
||vφpXtq´VλpXtq||

2s. (16)

vφpXtq will be improved towards the fixed point. The train-
ing algorithm is shown in Algorithm 1.

Algorithm 1: Training Algorithm
Initialization: Initialize neural network parameters θ, ρ, φ for

πS , πR and vφ respectively
1 for game round l“ 1, ..., L do
2 for time step t“ 0, ..., T do
3 aSt ∼πSpaSt|Ct, ISq
4 Ct`1“GpCt, aStq

5 aRt`1 ∼πRpaRt`1|Ct, Ct`1, I1R, ..., I
M
R q

6 if aRt`1 is not wait then
7 Tchoice“ t

8 end
9 end

10 Compute tVλpXtquTt“1 via Eq. (15)
11 Compute tVpXtquTt“1 via Eq. (10)
12 Update θÐ θ`αS∇θ

ř

t VpXtq
13 Update ρÐ ρ`αR∇ρ

ř

t VpXtq
14 Update φÐφ´αv∇φ

ř

t
1
2
||vφpXtq´VλpXtq||

2

15 end
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(a) complete example 1

(b) max-step example 1

(c) sender-fixed example 1

(d) one-step example 1

Figure 8. Evolution of rabbit and giraffe under different settings. Compared to other settings, agents under complete setting consistently
highlight the ears of rabbit and the neck of giraffe.
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(a) complete example 2

(b) max-step example 2

(c) sender-fixed example 2

(d) one-step example 2

Figure 9. Evolution of cow and deer under different settings. The sketches of cow all form a “horn” shape at the left under complete
setting, whereas others do not form this pattern. In complete setting, the sketches of deer converge to emphasize the antler of the deer.
Some sketches under other settings also show a vertical line, but ones in the complete are more consistent.

14



(a) complete example 3

(b) max-step example 3

(c) sender-fixed example 3

(d) one-step example 3

Figure 10. Evolution of horse and pig under different settings. In the complete setting, sketches of horse all show three vertical lines.
For different instances of pig, agents all draw a single line on the right. We do not obverse obvious patterns in other settings.
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