
Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEALWADHWA, RAHULGARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT
CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY,
Google Research

(a) Input image with detected face (d) Our output synthetic shallow depth-of-�eld image

(b) Person segmentation mask

(c) Mask + disparity from DP

Fig. 1. We present a system that uses a person segmentation mask (b) and a noisy depth map computed using the camera’s dual-pixel (DP) auto-focus
hardware (c) to produce a synthetic shallow depth-of-field image (d) with a depth-dependent blur on a mobile phone. Our system is marketed as “Portrait
Mode” on several Google-branded phones.

Shallow depth-of-field is commonly used by photographers to isolate a sub-
ject from a distracting background. However, standard cell phone cameras
cannot produce such images optically, as their short focal lengths and small
apertures capture nearly all-in-focus images. We present a system to com-
putationally synthesize shallow depth-of-field images with a single mobile
camera and a single button press. If the image is of a person, we use a person
segmentation network to separate the person and their accessories from the
background. If available, we also use dense dual-pixel auto-focus hardware,
effectively a 2-sample light field with an approximately 1 millimeter baseline,
to compute a dense depth map. These two signals are combined and used to
render a defocused image. Our system can process a 5.4 megapixel image in
4 seconds on a mobile phone, is fully automatic, and is robust enough to be
used by non-experts. The modular nature of our system allows it to degrade
naturally in the absence of a dual-pixel sensor or a human subject.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image processing;

Additional Key Words and Phrases: depth-of-field, defocus, stereo, segmen-
tation

Authors’ address: Neal Wadhwa; Rahul Garg; David E. Jacobs; Bryan E. Feldman; Nori
Kanazawa; Robert Carroll; Yair Movshovitz-Attias; Jonathan T. Barron; Yael Pritch;
Marc Levoy Google Research, 1600 Amphitheater Parkway, Mountain View, CA, 94043.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/8-ART64
https://doi.org/10.1145/3197517.3201329

ACM Reference Format:
NealWadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feldman, Nori Kanazawa,
Robert Carroll, Yair Movshovitz-Attias, Jonathan T. Barron, Yael Pritch,
and Marc Levoy. 2018. Synthetic Depth-of-Field with a Single-Camera Mo-
bile Phone. ACM Trans. Graph. 37, 4, Article 64 (August 2018), 13 pages.
https://doi.org/10.1145/3197517.3201329

1 INTRODUCTION
Depth-of-field is an important aesthetic quality of photographs. It
refers to the range of depths in a scene that are imaged sharply in
focus. This range is determined primarily by the aperture of the
capturing camera’s lens: a wide aperture produces a shallow (small)
depth-of-field, while a narrow aperture produces a wide (large)
depth-of-field. Professional photographers frequently use depth-of-
field as a compositional tool. In portraiture, for instance, a strong
background blur and shallow depth-of-field allows the photographer
to isolate a subject from a cluttered, distracting background. The
hardware used by DSLR-style cameras to accomplish this effect also
makes these cameras expensive, inconvenient, and often difficult
to use. Therefore, the compelling images they produce are largely
limited to professionals. Mobile phone cameras are ubiquitous, but
their lenses have apertures too small to produce the same kinds of
images optically.

Recently, mobile phone manufacturers have started computation-
ally producing shallow depth-of-field images. The most common
technique is to include two cameras instead of one and to apply
stereo algorithms to captured image pairs to compute a depth map.
One of the images is then blurred according to this depthmap. How-
ever, adding a second camera raises manufacturing costs, increases

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201329
https://doi.org/10.1145/3197517.3201329

64:2 • Wadhwa et al.

Input Mask Output
(a) A segmentation mask obtained from the front-facing camera.

Input Disparity Output
(b) The dual-pixel (DP) disparity from a scene without people.

Fig. 2. Our system gracefully falls back to one of the two inputs depending
on availability. On the front-facing camera (which lacks dual-pixels), the
image is almost always of a person in front of a distant background, so
using the segmentation alone is sufficient (a). For close-up shots of objects,
disparity data from dual-pixels alone is often sufficient to produce a high-
quality output (b).

power consumption during use, and takes up space in the phone.
Some manufacturers have instead chosen to add a time-of-flight
or structured-light direct depth sensor to their phones, but these
also tend to be expensive and power intensive, in addition to not
working well outdoors. Lens Blur [Hernández 2014] is a method of
producing shallow depth-of-field images without additional hard-
ware, but it requires the user to move the phone during capture to
introduce parallax. This can result in missed photos and negative
user experiences if the photographer fails to move the camera at the
correct speed and trajectory, or if the subject of the photo moves.
We introduce a system that allows untrained photographers to

take shallow depth-of-field images on a wide range of mobile cam-
eras with a single button press. We aim to provide a user experience
that combines the best features of a DSLR and a smartphone. This
leads us to the following requirements for such a system:

(1) Fast processing and high resolution output.
(2) A standard smartphone capture experience—a single button-

press to capture, with no extra controls and no requirement
that the camera is moved during capture.

(3) Convincing-looking shallow depth-of-field results with plau-
sible blur and the subject in sharp focus.

(4) Works on a wide range of scenes.
Our system opportunistically combines two different technologies

and is able to function with only one of them. The first is a neural
network trained to segment out people and their accessories. This

network takes an image and a face position as input and outputs a
mask that indicates the pixels which belong to the person or objects
that the person is holding. Second, if available, we use a sensor
with dual-pixel (DP) auto-focus hardware, which effectively gives
us a 2-sample light field with a narrow ∼1 millimeter baseline. Such
hardware is increasingly common on modern mobile phones, where
it is traditionally used to provide fast auto-focus. From this new
kind of DP imagery, we extract dense depth maps.

Modern mobile phones have both front and rear facing cameras.
The front-facing camera is typically used to capture selfies, i.e., a
close up of the photographer’s head and shoulders against a distant
background. This camera is usually fixed-focused and therefore
lacks dual-pixels. However, for the constrained category of selfie
images, we found it sufficient to only segment out people using
the trained segmentation model and to apply a uniform blur to the
background (Fig. 2(a)).
In contrast, we need depth information for photos taken by the

rear-facing camera. Depth variations in scene content may make a
uniform blur look unnatural, e.g., a person standing on the ground.
For such photos of people, we augment our segmentation with a
depthmap computed from dual-pixels, and use this augmented input
to drive our synthetic blur (Fig. 1). If there are no people in the photo,
we use the DP depthmap alone (Fig. 2(b)). Since the stereo baseline
of dual-pixels is very small (∼1 mm), this latter solution works only
for macro-style photos of small objects or nearby scenes.
Our system works as follows. We run a face detector on an in-

put color image and identify the faces of the subjects being pho-
tographed. A neural network uses the color image and the identified
faces to infer a low-resolution mask that segments the people that
the faces belong to. The mask is then upsampled to full resolution
using edge-aware filtering. This mask can be used to uniformly blur
the background while keeping the subject sharp.

If DP data is available, we compute a depthmap by first aligning
and averaging a burst of DP images to reduce noise using themethod
of Hasinoff et al. [2016]. We then use a stereo algorithm based on
Anderson et al. [2016] to infer a set of low resolution and noisy
disparity estimates. The small stereo baseline of the dual-pixels
causes these estimates to be strongly affected by optical aberrations.
We present a calibration procedure to correct for them. The corrected
disparity estimates are upsampled and smoothed using bilateral
space techniques [Barron et al. 2015; Kopf et al. 2007] to yield a high
resolution disparity map.

Since disparity in a stereo system is proportional to defocus blur
from a lens having an aperture as wide as the stereo baseline, we can
use these disparities to apply a synthetic blur, thereby simulating
shallow depth of field. While this effect is not the same as optical
blur, it is similar enough in most situations that people cannot tell
the difference. In fact, we deviate further from physically correct
defocusing by forcing a range of depths on either side of the in-
focus plane to stay sharp; this “trick” makes it easier for novices
to take compelling shallow-depth-of-field pictures. For pictures of
people, where we have a segmentation mask, we further deviate
from physical correctness by keeping pixels in the mask sharp.

Our rendering technique divides the scene into several layers at
different disparities, splats pixels to translucent disks according to
disparity and then composites the different layers weighted by the

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

Synthetic Depth-of-Field with a Single-Camera Mobile Phone • 64:3

actual disparity. This results in a pleasing, smooth depth-dependent
rendering. Since the rendered blur reduces camera noise which
looks unnatural adjacent to in-focus regions that retain that noise,
we add synthetic noise to our defocused regions to make the results
appear more realistic.

The wide field-of-view of a typical mobile camera is ill-suited for
portraiture. It causes a photographer to stand near subjects leading
to unflattering perspective distortion of their faces. To improve
the look of such images, we impose a forced 1.5× digital zoom. In
addition to forcing the photographer away from the subject, the
zoom also leads to faster running times as we process fewer pixels
(5.4 megapixels instead of the full sensor’s 12 megapixels). Our
entire system (person segmentation, depth estimation, and defocus
rendering) is fully automatic and runs in ∼4 seconds on a modern
smartphone.

2 RELATED WORK
Besides the approach of Hernández [2014], there is academic work
on rendering synthetic shallow depth-of-field images from a single
camera. While Hernández [2014] requires deliberate up-down trans-
lation of the camera during capture, other works exploit parallax
from accidental hand shake [Ha et al. 2016; Yu and Gallup 2014].
Both these approaches suffer from frequent failures due to insuffi-
cient parallax due to the user not moving the camera correctly or
the accidental motion not being sufficiently large. Suwajanakorn et
al. [2015] and Tang et al. [2017] use defocus cues to extract depth
but require capturing multiple images that increases the capture
time. Further, these approaches have trouble with non-static scenes
and are too compute intensive to run on a mobile device.
Monocular depth estimation methods may also be used to infer

depth from a single image and use it to render a synthetic shallow
depth-of-field image. Such techniques pose the problem as either
inverse rendering [Barron and Malik 2015; Horn 1975] or supervised
machine learning [Eigen et al. 2014; Hoiem et al. 2005; Liu et al.
2016; Saxena et al. 2009] and have seen significant progress, but
this problem is highly underconstrained compared to multi-image
depth estimation and hence difficult. Additionally, learning-based
approaches often fail to generalize well beyond the datasets they
are trained on and do not produce the high resolution depth maps
needed to synthesize shallow depth-of-field images. Collecting a
diverse and high quality depth dataset is challenging. Past work has
used direct depth sensors, but these only work well indoors and
have low spatial resolution. Self-supervised approaches [Garg et al.
2016; Godard et al. 2017; Xie et al. 2016; Zhou et al. 2017] do not
require ground truth depth and can learn from stereo data but fail
to yield high quality depth.

Shen et al. [2016a] achieve impressive results on generating syn-
thetic shallow depth-of-field from a single image by limiting to
photos of people against a distant background. They train a convo-
lutional neural network to segment out people and then blur the
background assuming the person and the background are at two
different but constant depths. In [Shen et al. 2016b], they extend the
approach by adding a differentiable matting layer to their network.
Both these approaches are computationally expensive taking 0.2 and
0.6 seconds respectively for a 800 × 600 output on a NVIDIA Titan

Fig. 3. Person Segmentation Network. RGB image (top-left) and face
location (bottom-left) are the inputs to a three stage model with pose and
segmentation losses after each stage.

X, a powerful desktop GPU, making them infeasible for a mobile
platform. Zhu et al. [2017] use smaller networks, but segmentation
based approaches do not work for photos without people and looks
unnatural for more complex scenes in which there are objects at the
same depth as the person, e.g., Fig. 1(a).

3 PERSON SEGMENTATION
A substantial fraction of images captured on mobile phones are
of people. Since such images are ubiquitous, we trained a neural
network to segment people and their accessories in images. We
use this segmentation both on its own and to augment the noisy
disparity from DP data (Sec. 4.3).
The computer vision community has put substantial effort into

creating high-quality algorithms to semantically segment objects
and people in images [Girshick 2015; He et al. 2017]. While Shen
et al. [2016a] also learn a neural network to segment out people in
photos to render a shallow depth-of-field effect, our contributions
include: (a) training and data collection methodologies to train a fast
and accurate segmentation model capable of running on a mobile
device, and (b) edge-aware filtering to upsample the mask predicted
by the neural network (Sec. 3.4).

3.1 Data Collection
To train our neural network, we downloaded 122k images from
Flickr (www.flickr.com) that contain between 1 to 5 faces and anno-
tated a polygon mask outlining the people in the image. The mask
is refined using the filtering approach described in Sec. 3.4. We
augment this with data from Papandreou et al. [2017] consisting of
73k images with 227k person instances containing only pose labels,
i.e., locations of 17 different keypoints on the body. While we do
not infer pose, we predict pose at training time which is known to
improve segmentation results [Tripathi et al. 2017]. Finally, as in
Xu et al. [2017], we create a set of synthetic training images by com-
positing the people in portrait images onto different backgrounds
generating an additional 465k images. Specifically, we downloaded
30,974 portraits images and 13,327 backgrounds from Flickr. For
each of the portraits images, we compute an alpha matte using Chen
et al. [2013], and composite the person onto 15 randomly chosen
background images.

We cannot stress strongly enough the importance of good training
data for this segmentation task: choosing a wide enough variety
of poses, discarding poor training images, cleaning up inaccurate

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

www.flickr.com

64:4 • Wadhwa et al.

polygon masks, etc. With each improvement we made over a 9-
month period in our training data, we observed the quality of our
defocused portraits to improve commensurately.

3.2 Training
Given the training set, we use a network architecture consisting
of 3 stacked U-Nets [Ronneberger et al. 2015] with intermediate
supervision after each stage similar to Newell et al. [2016] (Fig. 3).
The network takes as input a 4 channel 256 × 256 image, where 3 of
the channels correspond to the RGB image resized and padded to
256 × 256 resolution preserving the aspect ratio. The fourth chan-
nel encodes the location of the face as a posterior distribution of
an isotropic Gaussian centered on the face detection box with a
standard deviation of 21 pixels and scaled to be 1 at the mean lo-
cation. Each of the three stages outputs a segmentation mask —
a 256 × 256 × 1 output of a layer with sigmoid activation, and a
64 × 64 × 17 output containing heatmaps corresponding to the loca-
tions of the 17 keypoints similar to Tompson et al. [2014].
We use a two stage training process. In the first stage, we train

with cross entropy losses for both segmentation and pose, which
are weighted by a 1 : 5 ratio. After the first stage of training has
converged, we remove the pose loss and prune training images for
which the model predictions had large L1 error for pixels in the
interior of the mask, i.e., we only trained using examples with errors
near the object boundaries. Large errors distant from the object
boundary can be attributed to either annotation error or model
error. It is obviously beneficial to remove training examples with
annotation error. In the case ofmodel error, we sacrifice performance
on a small percentage of images to focus on improving near the
boundaries for a large percentage of images.

Our implementation is in Tensorflow [Abadi et al. 2015]. We use
660k images for training which are later pruned to 511k images by
removing images with large prediction errors in the interior of the
mask. Our evaluation set contains 1700 images. We use a batch size
of 16 and our model was trained for a month on 40 GPUs across 10
machines using stochastic gradient descent with a learning rate of
0.1, which was later lowered to 10−4. We augment the training data
by applying a rotation chosen uniformly between [−10, 10] degrees,
an isotropic scaling chosen uniformly in the range [0.4, 1.2] and a
translation of up to 10% of each of the image dimensions. The values
given in this section were arrived through empirical testing.

3.3 Inference
At inference time, we are provided with an RGB image and face rect-
angles output by a face detector. Our model is trained to predict the
segmentation mask corresponding to the face location in the input
(Fig. 3). As a heuristic to avoid including bystanders in the segmen-
tation mask, we seed the network only with faces that are at least
one third the area of the largest face and larger than 1.3% the area of
the image. When there are multiple faces, we perform inference for
each of the faces and take the maximum of each face’s real-valued
segmentation mask Mi (x) as our final mask M(x) = maxi Mi (x).
M(x) is upsampled and filtered to become a high resolution edge-
aware mask (Sec. 3.4). This mask can be used to generate a shallow
depth-of-field result, or combined with disparity (Sec. 4.3).

(a) RGB Image (b) Coarse Mask (c) Filtered Mask

Fig. 4. Edge-aware filtering of a segmentation mask.

3.4 Edge-Aware Filtering of a Segmentation Mask
Compute and memory requirements make it impractical for a neural
network to directly predict a high resolution mask. Using the prior
that mask boundaries are often aligned with image edges, we use
an edge-aware filtering approach to upsample the low resolution
maskM(x) predicted by the network. We also use this filtering to
refine the ground truth masks used for training—this enables human
annotators to only provide approximate mask edges, thus improving
the quality of annotation given a fixed human annotation time.
Let Mc (x) denote a coarse segmentation mask to be refined. In

the case of a human annotated mask,Mc (x) is the same resolution
as the image and is binary valued with pixels set to 1 inside the
supplied mask and 0 elsewhere. In the case of the low-resolution
predicted mask, we bilinearly upsample M(x) from 256 × 256 to
image resolution to get Mc (x), which has values between 0 and 1
inclusive (Fig. 4(b)). We then compute a confidence map, C(x), from
Mc (x) using the heuristic that we have low confidence in a pixel if
the predicted value is far from either 0 or 1 or the pixel is spatially
near the mask boundary. Specifically,

C(x) =
(
Mc (x) − 1/2

1/2

)2
⊖ 1k×k (1)

where ⊖ is morphological erosion and 1k×k is a k × k square struc-
turing element of 1’s, with k set to 5% of the larger of the dimensions
of the image. GivenMc (x), C(x) and the corresponding RGB image
I (x), we compute the filtered segmentation mask Mf (x) by using
the fast bilateral solver [Barron and Poole 2016], denoted as BS(·), to
do edge-aware smoothing. We then push the values towards either
0 or 1 by applying a sigmoid function. Specifically,

Mf (x) =
1

1 + exp (−k(BS(Mc (x),C(x), I (x)) − 1/2))
. (2)

Running the bilateral solver at full resolution is slow and can gener-
ate speckling in highly textured regions. Hence, we run the solver
at half the size of I (x), smooth any high frequency speckling by
applying a Gaussian blur toMf (x), and upsample via joint bilateral
upsampling [Kopf et al. 2007] with I (x) as the guide image to yield
the final filtered mask (Fig. 4(c)). We will use the bilateral solver
again in Sec. 4.4 to smooth noisy disparities from DP data.

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

Synthetic Depth-of-Field with a Single-Camera Mobile Phone • 64:5

Table 1. Comparison of our model with PortraitFCN+ model from [Shen
et al. 2016a] on their evaluation data.

Model Training data Mean IoU
PortraitFCN+ [Shen et al. 2016a] 95.91%

Our model [Shen et al. 2016a] 97.01%
Our training data 97.70%

Table 2. Comparison of our model with Mask-RCNN [He et al. 2017] on
our evaluation dataset.

Model Training data Mean IoU
Mask-RCNN Our training data 94.63%
Our model Our training data 95.80%

3.5 Accuracy and Efficiency
We compare the accuracy of our model against the PortraitFCN+
model from Shen et al. [2016a] by computing the mean Intersection-
over-Union (IoU), i.e., area(output ∩ ground truth) / area(output
∪ ground truth), over their evaluation dataset. Our model trained
on their data has a higher accuracy than their best model, which
demonstrates the effectiveness of our model architecture. Our model
trained on only our training data has an even higher accuracy,
thereby demonstrating the value of our training data (Table 1).

We also compare against a state-of-the-art semantic segmentation
model Mask-RCNN [He et al. 2017] by training and testing it on
our data (Table 2). We use our own implementation of Mask-RCNN
with a backbone of Resnet-101-C4. We found that Mask-RCNN gave
inferior results when trained and tested on our data while being a
significantly larger model. Mask-RCNN is designed to jointly solve
detection and segmentation for multiple classes and may not be
suitable for single class segmentation with known face location and
high quality boundaries.
Further, our model has orders of magnitude fewer operations

per inference — 3.07 Giga-flops compared to 607 for PortraitFCN+
and 3160 for Mask-RCNN as measured using the Tensorflow Model
Benchmark Tool [2015]. For PortraitFCN+, we benchmarked the Ten-
sorflow implementation of the FCN-8s model from Long et al. [2015]
on which PortraitFCN+ is based.

4 DEPTH FROM A DUAL-PIXEL CAMERA
Dual-pixel (DP) auto-focus systems work by splitting pixels in half,
such that the left half integrates light over the right half of the
aperture and vice versa (Fig. 5). Because image content is optically
blurred based on distance from the focal plane, there is a shift, or
disparity, between the two views that depends on depth and on
the shape of the blur kernel. This system is normally used for auto-
focus, where it is sometimes called phase-detection auto-focus. In this
application, the lens position is iteratively adjusted until the average
disparity value within a focus region is zero and, consequently, the
focus region is sharp. Many modern sensors split every pixel on the
sensor, so the focus region can be of arbitrary size and position. We
re-purpose the DP data from these dense split-pixels to compute
depth.

DP sensors effectively create a crude, two-view light field [Gortler
et al. 1996; Levoy and Hanrahan 1996] with a baseline the size of

Position on Sensor

In
te

ns
ity

Disparity

L

Main
lens

Object
 plane

Focal
plane

Position on Sensor

Sensor

D Di
zi

b

Blur size

d

(a) Lens diagram

(b) DP data (c) Image data

Blur sizeb Blur size

b

Fig. 5. A thin lens model showing the relationship between depth D , blur
diameter b , and disparity d . An out-of-focus object emits light that travels
through the camera’s main lens with aperture diameter L, focuses in-front
of the sensor at distance Di from the lens and then produces a three-pixel
wide blur (a). The left and right half-pixels see light from opposite halves of
the lens. The images from the left and right pixels are shifted with disparity
proportional to the blur size (b). When summed together, they produce an
image that one would expect from a sensor without dual pixels (c).

the mobile camera’s aperture (∼1 mm). It is possible to produce a
synthetically defocused image by shearing and integrating a light
field that has a sufficient number of views, e.g., one from a Lytro
camera [Ng et al. 2005]. However, this technique would not work
well for DP data because there are only two samples per pixel and the
synthetic aperture size would be limited to the size of the physical
aperture. There are also techniques to compute depth from light
fields [Adelson and Wang 1992; Jeon et al. 2015; Tao et al. 2013], but
these also typically expect more than two views.
Given the two views of our DP sensor, using stereo techniques

to compute disparity is a plausible approach. Depth estimation
from stereo has been the subject of extensive work (well-surveyed
in [Scharstein and Szeliski 2002]). Effective techniques exist for
producing detailed depth maps from high-resolution image pairs
[Sinha et al. 2014] and there are even methods that use images from
narrow-baseline stereo cameras [Joshi and Zitnick 2014; Yu and
Gallup 2014]. However, recent work suggests that standard stereo
techniques are prohibitively expensive to run on mobile platforms
and often produce artifacts when used for synthetic defocus due
to poorly localized edges in their output depth maps [Barron et al.
2015].We therefore build upon the stereowork of Barron et al. [2015]
and the edge-aware flow work of Anderson et al. [2016] to construct
a stereo algorithm that is both tractable at high resolution and well-
suited to the defocus task by virtue of following the edges in the
input image.
There are several key differences between DP data and stereo

pairs from standard cameras. Because the data is coming from a
single sensor, the two views have the same exposure and white
balance and are perfectly synchronized in time, making them robust

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

64:6 • Wadhwa et al.

1 px-1 px
High con�dence
Low con�dence

(d) A�er calibration (f) Bilateral smoothing +
upsampling

(a) Input image (c) Coarse matches +
 con�dences

(e) A�er mask
 integration

(b) Normalized crop and slices
of input DP data

In
te

ns
ity

Relative Vertical Position (pixels)
0 15 30

View 1 View 2

In
te

ns
ity 1 px

View 1
View 2

Fig. 6. The inputs to and steps of our disparity algorithm. Our input data is a color image (a) and two single-channel DP views that sum to the green channel
of the input image. For the purposes of visualization, we normalize the DP data by making the two views have the same local mean and standard deviation.
We show pixel intensity vs. vertical position for the two views at two locations marked by the green and red lines in the crops (b). We compute noisy matches
and a heuristic confidence (c). Errors due to the lens aberration (highlighted with the green arrows in (c)) are corrected with calibration (d). The segmentation
mask is used to assign the disparity of the subject’s eyes and mouth to the textureless regions on the subject’s shirt (e). We use bilateral space techniques to
convert noisy disparities and confidences to an edge-aware dense disparity map (f).

to camera and scenemotion. In addition, standard stereo rectification
is not necessary because the horizontally split pixels are designed
to produce purely horizontal disparity in the sensor’s reference
frame. The baseline between DP views is much smaller than most
stereo cameras, which has some benefits: computing correspondence
rarely suffers due to occlusion and the search range of possible
disparities is small, only a few pixels. However, this small baseline
also means that we must compute disparity estimates with sub-
pixel precision, relying on fine-image detail that can get lost in
image noise, especially in low-light scenes. While traditional stereo
calibration is not needed, the relationship between disparity and
depth is affected by lens aberrations and variations in the position
of the split between the two halves of each pixel due to lithographic
errors.

Our algorithm for computing a dense depth map under these chal-
lenging conditions is well-suited for synthesizing shallow depth-of-
field images. We first temporally denoise a burst of DP images, using
the technique of Hasinoff et al. [2016]. We then compute correspon-
dences between the two DP views using an extension of Anderson et
al. [2016] (Fig. 6(c)). We adjust these disparity values with a spatially
varying linear function to correct for lens aberrations, such that
any given depth produces the same disparity for all image locations
(Fig. 6(d)). Using the segmentation computed in Sec. 3, we flatten
disparities within the masked region to bring the entire person in
focus and hide errors in disparity (Fig. 6(e)). Finally, we use bilateral
space techniques [Barron and Poole 2016; Kopf et al. 2007] to obtain
smooth, edge-aware disparity estimates that are suitable for defocus
rendering (Fig. 6(f)).

4.1 Computing Disparity
To get multiple frames for denoising, we keep a circular buffer of
the last nine raw and DP frames captured by the camera. When
the shutter is pressed, we select a base frame close in time to the
shutter press. We then align the other frames to this base frame and
robustly average them using techniques from Hasinoff et al. [2016].
Like Hasinoff et al. [2016], we treat the non-demosaiced raw frames

as a four channel image at Bayer plane resolution. The sensor we use
downsamples green DP data by 2× horizontally and 4× vertically.
Each pixel is split horizontally. That is, a full resolution image of
size 2688 × 2016 has Bayer planes of size 1344 × 1008 and DP data
of size 1344× 504. We linearly upsample the DP data to Bayer plane
resolution and then append it to the four channel Bayer raw image
as its fifth and sixth channel. The alignment and robust averaging
is applied to this six channel image. This ensures that the same
alignment and averaging is applied to the two DP views.
This alignment and averaging significantly reduces the noise

in the input DP frames and increases the quality of the rendered
results, especially in low-light scenes. For example, in an image of a
flower taken at dusk (Fig. 7), the background behind the flower is too
noisy to recover meaningful disparity from a single frame’s DP data.
However, if we align and robustly average six frames (Fig. 7(c)), we
are able to recover meaningful disparity values in the background
and blur it as it is much further away from the camera than the
flower. In the supplemental, we describe an experiment that shows
disparity values from six aligned and averaged frames are two times
less noisy than disparity values from a single frame for low-light
scenes (5 lux).
To compute disparity, we take each non-overlapping 8 × 8 tile

in the first view and search a range of −3 pixels to 3 pixels in the
second view at DP resolution. For each integer shift, we compute
the sum of squared differences (SSD). We find the minimum of these
seven points and fit a quadratic to the SSD value at the minimum and
its two surrounding points. We use the location of the quadratic’s
minimum as our sub-pixel minimum. Our technique differs from
Anderson et al. [2016] in that we perform a small one dimensional
brute-force search, while they do a large two dimensional search
over hundreds of pixels that is accelerated by the Fast Fourier Trans-
form (FFT) and sliding-window filtering. For our small search size,
the brute-force search is faster than using the FFT (4 ms vs 40 ms).

For each tile we also compute a confidence value based on several
heuristics: the value of the SSD loss, the magnitude of the horizontal
gradients in the tile, the presence of a close second minimum, and

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

Synthetic Depth-of-Field with a Single-Camera Mobile Phone • 64:7

2 px-2 px
High
conf.

Low
conf.

(b) One frame (c) Six frames merged(a) Input image crop

Disparity + Con�dence Disparity + Con�dence

Rendered image Rendered image

Fig. 7. Denoising a burst of DP frames prior to disparity computation im-
proves results in low-light scenes. A crop of a picture taken at dusk (a). The
background’s disparity is not recoverable from a single frame’s DP data, so
the background doesn’t get blurred (b). When a burst of frames are merged,
the SNR is high enough to determine that the background is further than
the flower. The background is therefore blurred (c).

the agreement of disparities in neighboring tiles. Using only hori-
zontal gradients is a notable departure from Anderson et al. [2016],
which uses two dimensional tile variances. For our purely horizontal
matching problem the vertical gradients are not informative, due to
the aperture problem [Adelson and Bergen 1985]. We upsample the
per-tile disparities and confidences to a noisy per-pixel disparities
and confidences as described in Anderson et al. [2016].

4.2 Imaging Model and Calibration
Objects at the same depth, but different spatial locations can have
different disparities due to lens aberrations and sensor defects. Un-
corrected, this can cause artifacts, such as parts of the background
in a synthetically defocused image remaining sharp (Fig. 8(a)). We
correct for this by applying a calibration procedure (Fig. 8(b)).

To understand how disparity is related to depth, consider imaging
an out of focus point light source (Fig. 5). The light passes through
the main lens and focuses in front of the sensor, resulting in an out-
of-focus image on the sensor. Light that passes through the left half
of the main lens aperture hits the microlens at an angle such that it
is directed into the right half-pixel. The same applies to the right
half of the aperture and the left half-pixel. The two images created
by the split pixels have viewpoints that are roughly in the centers of
these halves, giving a baseline proportional to the diameter of the
aperture L and creating disparity d that is proportional to the blur
size b (Fig. 5(b)). That is, there is some α such that d = αb̄, where b̄
is a signed blur size that is positive if the focal plane is in front of
the sensor and negative otherwise.
If we assume the paraxial and thin-lens approximations, there

is a straight-forward relationship between signed blur size b̄ and
depth D. It implies that

d = αb̄ = αLf

(
1
z
−

1
D

)
(3)

where z is focus distance and f is focal length (details in the supple-
mental). This equation has two notable consequences. First, disparity

(a) Without calibration (b) With calibration

Fig. 8. Synthetic shallow depth-of-field renderings of Fig. 6(a) without and
with calibration. Notice the uneven blur and sharp background in the top
left of (a) that is not present in (b).

depends on focus distance (z) and is zero when depth is equal to
focus distance (D = z). Second, there is a linear relationship between
inverse depth and disparity that does not vary spatially.
However, real mobile camera lenses can deviate significantly

from the paraxial and thin-lens approximations. This means Eq. 3 is
only true at the center of the field-of-view. Optical aberrations at
the periphery can affect blur size significantly. For example, field
curvature is an aberration where a constant depth in the scene
focuses to a curved surface behind the lens, resulting in a blur
size that varies across the flat sensor (Fig. 9(a)). Optical vignetting
blocks some of the light from off-axis points, reducing their blur
size (Fig. 9(b)). In addition to optical aberrations, the exact location
of the split between the pixels may vary due to lithographic errors.
In Fig. 9(c), we show optical blur kernels of the views at the center
and corner of the frame, which vary significantly.
To calibrate for variations in blur size, we place a mobile phone

camera on a tripod in front of a textured fronto-parallel planar test
target (Fig. 10(a-b)) that is at a known constant depth. We capture
images spanning a range of focus distances and target distances.
We compute disparity on the resulting DP data. For a single focus-
distance, we plot the disparities versus inverse depth for several
regions in the image (Fig. 10(c)). We empirically observe that the
relationship between disparity and inverse depth is linear, as pre-
dicted by Eq. 3. However, the slope and intercept of the line varies
spatially. We denote them as Sz (x) and Iz (x) and use least squares
to fit them to the data (solid line in Fig. 10(c)). We show these values
for every pixel at several focus distances (Fig. 10(d-e)). Note that
the slopes are roughly constant across focus distances (z), while
the intercepts vary more strongly. This agrees with the thin-lens
model’s theoretically predicted slope (−αLf), which is independent
of focus distance.

To correct peripheral disparities, we use Sz (x) and Iz (x) to solve
for inverse depth. Then we apply Sz (0) and Iz (0), where 0 is the
image center coordinates. This results in the corrected disparity

dcorrected (x) = Iz (0) +
Sz (0)(d(x) − Iz (x))

Sz (x)
. (4)

Since focus distance z varies continuously, we calibrate 20 different
focus distance and linearly interpolate Sz and Iz between them.

4.3 Combining Disparity and Segmentation
For photos containing people, we combine the corrected disparity
with the segmentation mask (Sec. 3). The goal is to bring the entire

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

64:8 • Wadhwa et al.

Lens

Object
 plane

Curved focal
surface

(a) Field Curvature (b) Vigne�ing (c) Spatially-varying
blur kernels

Sensor Multi-aperture
lens

Object
 plane

Focal
surface

Sensor

Center

Image View 1 View 2

Image View 1 View 2

Corner

b2

b1

b2

b1

Target: 0.43 m
Focus: 0.2 m

Fig. 9. Calibration of aberrations, while important for any stereo system,
is critical for dual-pixel systems. These aberrations cause blur size b and
therefore disparity d to vary spatially for constant depth objects. E.g., field
curvature can increase peripheral blur size b2 compared to central blur
size b1 (a). In (b), the green circled ray represents the most oblique ray that
survives vignetting, thereby limiting peripheral blur sizeb2. Real linear-space
blur kernels from the center and corner of images captured by a dual-pixel
camera (c). The image blur kernel is the sum of the two DP views and is
color-coded accordingly.

subject in to focus while still blurring out the background. This
requires significant expertise with a DSLR and we wish to make it
easy for consumers to do.

Intuitively, wewant tomap the entire person to a narrow disparity
range that will be kept in focus using the segmentation mask as
a cue. To accomplish this, we first compute the weighted average
disparity, dface over the largest face rectangle with confidences as
weights. Then, we set the disparities of all pixels in the interior of
the person-segmentation mask to dface , while also increasing their
confidences. The interior is defined as pixels where the CNN output
Mc (x) > 0.94. The CNN output is bilinearly upsampled to be at the
same resolution as the disparity. We choose a conservative threshold
of 0.94 to avoid including the background as part of the interior and
rely on the bilateral smoothing (Sec. 4.4) to snap the in-focus region
to the subject’s boundaries (Fig. 6).

Our method allows novices to take high quality shallow depth-of-
field images where the entire subject is in focus. It also helps hide
errors in the computed disparity that can be particularly objection-
able when they occur on the subject, e.g., a blurred facial feature.
A possible but rare side effect of our approach is that two people
at very different depths will both appear to be in focus, which may
look unnatural. While we do not have a segmentation mask for
photos without people, we try to bring the entire subject into focus
by other methods (Sec. 5.1).

4.4 Edge-Aware Filtering of Disparity
We use the bilateral solver [Barron and Poole 2016] to turn the
noisy disparities into a smooth edge-aware disparity map suitable
for shallow depth-of-field rendering. This is similar to our use of
the solver to smooth the segmentation mask (Sec. 3.4). The bilateral
solver produces the smoothest edge-aware output that resembles
the input wherever confidence is large, which allows for confident
disparity estimates to propagate across the large low-confidence
regions that are common in our use case (e.g., the interior of the

0 5 10
Target Distance (1/m)

D
is

pa
rit

y
(p

x) 0

-4

-8

(b) Sample DP View

Locally �t line
Samples

0 5 10
Target Distance (1/m)

0 5 10
Target Distance (1/m)

(c) Disparity vs. Inverse Depth (Focus Distance: 0.43 1/m)

(d) Slopes
-0.9-1.8

(a) Calibration setup
(Focus: 0.43 1/m, Target: 0.23 1/m)

(e) Intercepts
7.9-0.1

Focus: 0.43 1/m Focus: 4.2 1/m Focus: 0.43 1/m Focus: 4.2 1/m

Fig. 10. Results from our calibration procedure. We use a mobile camera
to capture images of a fronto-parallel textured target sweeping through
all focus and target distances (a). One such image (b). Disparity vs. target
distance and best-fit lines for several spatial locations for one focus setting
(c). All disparities are negative for this focus distance of 2.3m, which is
past the farthest target. The largest magnitude disparity of 8 pixels is an
extreme case of a target at 10cm. The best fit slopes (d) and intercepts (e)
for linear functions mapping inverse target distance to disparity for every
spatial location and two focus distances. The 1.5x crop is marked by the red
rectangle corners in each plot.

tree in Fig. 6(e)). As in Sec. 3.4, we apply the solver at one-quarter
image resolution. We apply a 3 × 3 median filter to the smoothed
disparities to remove speckling artifacts. Then, we use joint bilateral
upsampling [Kopf et al. 2007] to upsample the smooth disparity to
full resolution (Fig. 6(f)).

5 RENDERING
The input to our rendering stage is the final smoothed disparity
computed in Sec. 4.4 and the unblurred input image, represented
in a linear color space, i.e., each pixel’s value is proportional to the
count of photons striking the sensor. Rendering in a linear color
space helps preserve highlights in defocused regions.

In theory, using these inputs to produce a shallow depth-of-field
output is straightforward—an idealized rendering algorithm falls
directly out of the image formation model discussed in Sec. 4.2.
Specifically, each scene point projects to a translucent disk in the
image, with closer points occluding those farther away. Producing
a synthetically defocused image, then, can be achieved by sorting
pixels by depth, blurring them one at a time, and then accumulating
the result with the standard “over” compositing operator.

To achieve acceptable performance on a mobile device, we need
to approximate this ideal rendering algorithm. Practical approxima-
tions for specific applications are common in the existing literature
on synthetic defocus. The most common approximation is to quan-
tize disparity values to produce a small set of constant-depth sub-
images [Barron et al. 2015; Kraus and Strengert 2007]. Even Jacobs
et al. [2012], who use real optical blur from a focal stack, decompose

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

Synthetic Depth-of-Field with a Single-Camera Mobile Phone • 64:9

(a) Physically correct mapping (b) Our mapping

Fig. 11. Using a physically correct mapping (a) keeps the dog’s eye in sharp
focus but blurs her nose. Our mapping (b), which creates an extended region
of forced-zero blur radius around the in-focus plane, keeps the entire subject
in focus.

the scene into discrete layers. Systems with real-time requirements
will also often use approximations to perfect disk kernels to improve
processing speed [Lee et al. 2009]. Our approach borrows parts of
these assumptions and builds on them for our specific case.
Our pipeline begins with precomputing the disk blur kernels

needed for each pixel. We then apply the kernels to sub-images
covering different ranges of disparity values. Finally, we composite
the intermediate results, gamma-correct, and add synthetic noise.
We provide details for each stage below.

5.1 Precomputing the blur parameters
As discussed in Sec. 4.2, zero disparity corresponds to the focus
plane and disparity elsewhere is proportional to the defocus blur
size. In other words, if the photograph is correctly focused on the
main subject, then it already has a defocused background. However,
to produce a shallow depth of field effect, we need to greatly increase
the amount of defocus. This is especially true if we wish the effect
to be evident and pleasing on the small screen of a mobile phone.
This implies simulating a larger aperture lens than the camera’s
native aperture, hence a larger defocus kernel. To accomplish this,
we can simply apply a blur kernel with radius proportional to the
computed disparity (Fig. 11(a)). In practice, the camera may not be
accurately focused on the main subject. Moreover, if we simulate an
aperture as large as that of an SLR, parts of the subject that were in
adequate focus in the original picture may go out of focus. Expert
users know how to control such shallow depths-of-field, but novice
users do not. To address both of these problems, we modify our
procedure as follows.

We first compute the disparity to focus at, dfocus . We set it to the
median disparity over a subject region of interest. The region is the
largest detected face output by the face detector that is well-focused,
i.e., its disparity is close to zero. In the absence of a usable face,
we use a region denoted by the user tapping-to-focus during view-
finding. If no cues exist, we trust the auto-focus and set dfocus = 0.

To make it easier for novices to make good shallow-depth-of-field
pictures, we artificially keep disparities within d∅ disparity units of
dfocus sharp by mapping them to zero blur radius, i.e., we leave pixels
with disparities in [dfocus − d∅,dfocus + d∅] unblurred. Combining,

Blurred result, B |I − B |

Pr
op

os
ed

N
aï
v e

ga
th
er

Si
ng

le
pa
ss

Fig. 12. Color halos. We illustrate how our proposed method (top row)
prevents different types of color halos by selectively removing components
of our approach. The right column shows the image difference between each
technique’s result and the unblurred input image. A naïve gather-based blur
(middle row) causes the foreground to bleed into the background—note the
yellow halo. Blurring the image in a single pass (bottom row) causes the
defocused background to blur over the foreground—note the darkened petal
edge, most clearly visible in the difference inset.

we compute blur radius as:

r (x) = κ(z)max
(
0,
��d(x) − dfocus

�� − d∅

)
, (5)

where κ(z) controls the overall strength of the blur as a function of
focus distance z—larger focus distance scenes have smaller disparity
ranges, so we increase κ(·) to compensate. Fig. 11(b) depicts the
typical shape of this mapping. Because rendering large blur radii is
computationally expensive, we cap r (x) to rmax = 30 pixels.

5.2 Applying the blur
When performing the blur, we are faced with a design decision
concerning the shape and visual quality of the defocused portions
of the scene. This property is known as bokeh in the photography
community, and is a topic of endless debate about what makes for
a good bokeh shape. When produced optically, bokeh is primarily
determined by the shape of the aperture in the camera’s lens—e.g.,
a six-bladed aperture would produce a hexagonal bokeh. In our
application, however, bokeh is a choice. We choose to simulate an
ideal circular bokeh, as it is simple and produces pleasing results.
Efficiently creating a perfect circular bokeh with a disk blur is

difficult because of a mismatch between defocus optics and fast
convolution techniques. The optics of defocus blur are most easily
expressed as scatter operations–each pixel of the input scatters its
influence onto a disk of pixels around it in the output. Most convo-
lution algorithms, however, are designed around gather operations—
each pixel of the output gathers influence from nearby pixels in the
input. Gather operations are preferred because they are easier to

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

64:10 • Wadhwa et al.

Distance Ideal Kernel
Discretized
Kernel

Derivative
in y

Fig. 13. Large disk blur kernels are generated by offseting and truncating
a distance function. These ideal kernels can be well approximated by a
discretized disk. The sparsity of the discrete kernel’s gradient in y—shown
with red and blue representing positive and negative values, respectively—
allows us to perform a scatter blur with far fewer operations per pixel.

parallelize. If the blur kernel is constant across the image, the two
approaches are equivalent, but when the kernel is spatially varying,
as it is in depth-dependent blur, naive convolution implementations
can create unacceptable visual artifacts, as shown in Fig. 12.

One obvious solution is to simply reexpress the scatter as a gather.
For example, a typical convolution approach defines a filtered image
B from an input image I and a kernel K as

Bgather (x) =
∑
∆x

I (x + ∆x)K(∆x). (6)

If we set the kernel to also be a function of the pixel it is sampling,
we can express a scatter indirectly:

Bscatter (x) =
∑
∆x

I (x + ∆x)Kx+∆x(−∆x). (7)

The problem with such an approach is that the range of values that
∆xmust span is the maximum possible kernel size, since we have to
iterate over all pixels that could possibly have non-zero weight in
the summation. If all the blur kernels are small, this is a reasonable
solution, but if any of the blur kernels are large (as is the case for
synthetic defocus), this can be prohibitively expensive to compute.
For large blurs, we instead use a technique inspired by summed

area tables and the two observations of disk kernels illustrated
in Fig. 13: 1) large, anti-aliased disks are well-approximated by
rasterized, discrete disks, and 2) discrete disks are mostly constant in
value, which means they also have a sparse gradient iny (or, without
loss of generality, x). The sparsity of they-gradient is useful because
it means we can perform the blur in the gradient domain with fewer
operations. Specifically, each input pixel scatters influence along
a circle rather than the solid disk, and that influence consists of
a positive or negative gradient, as shown in the rightmost image
of Fig. 13. For a w × h pixel image, this accelerates the blur from
O(w ×h×r2

max) to O(w ×h×rmax). Once the scatter is complete, we
integrate the gradient image along y to produce the blurred result.

Another way we increase speed is to perform the blur at reduced
resolution. Before we process the blurs, we downsample the image
by a factor of 2× in each dimension, giving an 8× speedup (blur
radius is also halved to produce the equivalent appearance) with
little perceptible degradation of visual quality. We later upsample
back to full resolution during the finish stage described in Sec. 5.3.
An additional aspect of bokeh that we need to tackle is realism.

Specifically, we must ensure that colors from the background do
not “leak” into the foreground. We can guarantee this if we process

pixels ordered by their depth as described at the start of Sec. 5.
The computational cost of such an approach can be high, however,
so instead we compute the blur in five passes covering different
disparity ranges. The input RGB image I (x) = [IR (x), IG (x), IB (x)]
is decomposed into a set of premultiplied RGBA sub-images Ij (x).
For brevity, we will omit the per-pixel indices for the remainder of
this section. Let {dj } be a set of cutoff disparities (defined later) that
segment the disparity range into bands such that the j-th sub-image,
Ij , spans disparities dj−1 to dj . We can then define

Ij = α j [IR , IG , IB , 1], (8)

where α j is a truncated tent function on the disparities in that range:

α j =

(
1 + 1

η
min(d − dj−1,dj − d)

)����
[0,1]
, (9)

where (·)|[a,b] signifies clamping a value to be within [a,b]. α j is
1 for pixels with disparities in [dj−1,dj] and tapers down linearly
outside the range, hitting 0 after η disparity units from the bounds.
We typically set η so that adjacent bands overlap 25%, i.e., η =
0.25 × (dj − dj−1), to get a smoother transition between them.
The disparity cutoff values {dj } are selected with the following

rules. First let us denote the disparity band containing the in-focus
parts of the scene as I0. Its bounds, d−1 and d0, are calculated to
be the disparities at which the blur radius from Eq. 5 is equal to
rbrute (see supplemental material for details). The remaining cutoffs
are chosen such that the range of possible disparities is evenly
divided between the remaining four bands. This approach allows
us to optimize for specific blur kernel sizes within each band. For
example, I0 can be efficiently computed with a brute-force scatter
blur (see Eq. 7). The other, more strongly blurred sub-images use the
accelerated gradient image blur algorithm described earlier. Fig. 12
shows the effect of a single pass blur compared to our proposed
method.
The above optimizations are only necessary when we have full

disparity information. If we only have a segmentation maskM , the
blur becomes spatially invariant, so we can get equivalent results
with a single-pass, gather-style blur over the background pixel sub-
image Ibackground = (1 −M)[IR , IG , IB , 1]. In this case, we simulate a
depth plane by doing a weighted average of the input and blurred
images with spatially-varying weight that favors the input image at
the bottom and the blurred image at the top.

5.3 Producing the final image
After the individual layers have been blurred, they are upsampled to
full-resolution and composited together, back to front. One special
in-focus layer is inserted over the sub-image containing dfocus , taken
directly from the full resolution input, to avoid any quality loss from
the downsample/upsample round trip imposed by the blur pipeline.

The final stage of our rendering pipeline adds synthetic noise to
the blurred portions of the image. This is somewhat unusual, as post-
processing algorithms are typically designed to reduce or eliminate
noise. In our case, we want noise because our blur stages remove
the natural noise from the blurry portions of the scene, creating
a mismatch in noise levels that yields an unrealistic “cardboard
cutout” appearance. By adding noise back in, we can reduce this
effect. Fig. 14 provides a comparison of different noise treatments.

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

Synthetic Depth-of-Field with a Single-Camera Mobile Phone • 64:11

Blurred w/o
synth. noise

Blurred w/
synth. noise

Unblurred
input image

Im
ag
e

H
ig
h-
pa
ss

Fig. 14. Our synthetic defocus removes naturally appearing noise in the
image. This causes visual artifacts at the transitions between blurred and
sharp parts of the frame. Adding noise back in can hide those transitions,
making our results appear more realistic. The effect is subtle in print, so we
emphasize the noise in the bottom row with a high-pass filter. This figure is
best viewed digitally on a large screen.

Our noise function is constructed at runtime from a set of periodic
noise patches Ni of size li ×li (see supplemental material for details).
li are chosen to be relatively prime, so that we can combine the
patches to get noise patterns that are large, non-repeating, and
realistic, with little data storage overhead. Let us call our composited,
blurred image so far Bcomp . Our final image with synthetic noise
Bnoisy , then, is

Bnoisy(x) = Bcomp(x) + σ (x)Mblur (x)
∑
i

Ni (x mod li), (10)

where σ (x) is an exposure-dependent estimate of the local noise
level in the input image provided by the sensor chip vendor and
Mblur is a mask corresponding to all the blurred pixels in the image.

6 RESULTS
As described earlier, our systemhas three pipelines. Our first pipeline
is DP + Segmentation (Fig. 1). It applies to scenes with people
taken with a camera that has dual-pixel hardware and uses both
disparity and a mask from the segmentation network. Our second
pipeline, DP only (Fig. 2(b)), applies to scenes of objects taken with
a camera that has dual-pixel hardware. It is the same as the first
pipeline except there is no segmentation mask to integrate with dis-
parity. Our third pipeline, Segmentation only (Fig. 2(a)), applies to
images of people taken with the front-facing (selfie) camera, which
typically does not have dual-pixel hardware. The first two pipelines
use the full depth renderer (Sec. 5.2). The third uses edge-aware
filtering to snap the mask to color edges (Sec. 3.4) and uses the less
compute-intensive two-layer mask renderer (end of Sec. 5.2).
We show a selection of over one hundred results using all three

pipelines in the supplemental materials. We encourage the reader
to look at these examples and zoom-in on the images. To show how
small disparity between the DP views is, we provide animations

Table 3. The results of our user study, in which we asked 6 participants to
select the algorithm (or ablation of our algorithm) whose output they pre-
ferred. Here we accumulate votes for each algorithm used across 64 images,
and highlight the most-preferred algorithm in red and the second-most
preferred algorithm in yellow. All users consistently prefer our proposed
algorithm, with the “segmentation only” algorithm being the second-most
preferred.

User
Method A B C D E F mean +− std.
Barron et al. [2015] 0 2 0 0 0 0 0.3 +− 0.8
Shen et al. [2016a] 7 6 9 3 0 7 5.3 +− 3.3
DP only (ours) 10 11 16 15 14 8 12.3 +− 3.1
Segmentation only (ours) 13 22 17 19 18 22 18.5 +− 3.4
DP + Segmentation (ours) 34 23 22 27 32 27 27.5 +− 4.8

that switch between the views. We also show the disparity and
segmentation mask for these results as appropriate.
We also conducted a user-study for images that have both DP

data and a person. We ran these images through all three versions
of our pipeline as well as the person segmentation network from
Shen et al. [2016a] and the stereo method of Barron et al. [2015].
We used our renderer in both of the latter cases. We chose these
two works in particular to compare against because they explicitly
focus on the problem of producing synthetic shallow depth-of-field
images.
In our user study, we asked 6 people to compare the output of 5

algorithms (ours, two ablations of ours, and the two aforementioned
baseline algorithms) on 64 images using a similar procedure as
Barron et al. [2015]. All users preferred our method, often by a
significant margin, and the ablations of our model were consistently
the second and third most preferred. See the supplement for details
of our experimental procedure, and selected images from our study.
Two example images run through our pipeline are shown in

Fig. 15. For the first example in the top row, notice how the cushion
the child is resting on is blurred in the segmentation-only methods
(Fig. 15(b-c)). In the second example, the depth-based methods pro-
vide incorrect depth estimates on the textureless arms. Using both
the mask and disparity makes us robust to both of these kinds of
errors.
Our system is in production and is used daily by millions of

people. That said, it has several failuremodes. Face-detection failures
can cause a person to get blurred with the background (Fig. 16(a)).
DP data can help mitigate this failure as we often get reasonable
disparities on people at the same depth as themain subject. However,
on cameras without DP data, it is important that we get accurate
face detections as the input to our system. Our choice to compress
the disparities of multiple people to the same value can result in
artifacts in some cases. In Fig. 16(b), the woman’s face is physically
much larger than the child’s face. Even though she is further back,
both her and the child are selected as people to segment resulting
in an unnatural image, in which both people are sharp, but scene
content between them is blurred.We are also susceptible tomatching
errors during the disparity computation, themost prevalent of which
are caused by the well-known aperture problem in which it is not
possible to find correspondences of image structures parallel to the
baseline. The person segmentation mask uses semantics to prevents

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

64:12 • Wadhwa et al.

(a) Input w/ face (green) (b) Shen et al. [2016a] (c) Seg. only (ours) (d) Barron et al. [2015] (e) DP only (ours) (f) DP + Seg. (ours)

Fig. 15. Output images and insets (in yellow) produced using our three pipelines and two other methods. In all cases, we use our renderer. In the top example,
the segmentation networks (b-c) are unable to determine that the cushion is at nearly the same depth as the child and it gets blurred. In the bottom example,
the algorithms that use DP (d-e) compute an incorrect disparity on the woman’s dark, untextured arm causing it to get blurred with the background. In both
cases, our combined result (f) blurs the background and keeps the subject sharp.

Table 4. Running time in milliseconds of parts of our algorithm on a high-
end mobile phone. The three totals correspond to different variants of our
algorithm. The standard deviation σ are shown next to the running times.
All stages were run on over 100 images.

Stage DP only Seg. only DP + Seg.
Face detection 143 143 143 σ = 46 ms
Person segmentation – 1612 1612 σ =729 ms
Denoise DP burst 190 – 190 σ = 45 ms
Disparity computation 817 – 817 σ =153 ms
Depth renderer 1241 – 1241 σ =152 ms
Edge-aware mask filtering – 1048 – σ =339 ms
Mask renderer – 546 – σ = 67 ms
Total 2134 3343 3854

these errors from causing problem on the subject’s body. However,
they can still show up on images without people (Fig. 16(c)) or in
the backgrounds behind people.
We measured the performance of our system on a modern high-

end mobile phone. The CPU had eight cores, four running at 2.35
GHz and the rest at 1.9 GHz. Our code was implemented in Halide
[Ragan-Kelley et al. 2013], then manually scheduled for the CPU.
We ran our system on 325 examples of resolution 2688 × 2016 using
all three pipelines. They all take less than 4 seconds (Table 4).

7 DISCUSSION AND FUTURE WORK
We have presented a system to compute synthetic shallow depth-
of-field images on mobile phones. Our method combines a person
segmentation network and depth from dense dual-pixels. This choice
of technologies means that our method is able to run on mobile

phones that have only a single camera. We show results on a wide
variety of examples and compare our method to other papers that
produce synthetic shallow depth-of-field images. Our system is
marketed as “Portrait Mode” on the Google Pixel and Pixel XL
smartphones.

One extension to this work is to expand the range of subjects that
can be segmented to pets, food and other objects people photograph.
In addition, since the rendering is already non-photorealistic, and
its purpose is to draw attention to the subject rather than to real-
istically simulate depth-of-field, it would be interesting to explore
alternative ways of separating foreground and background, such as
desaturation or stylization. In general, as users accept that compu-
tational photography loosens the bonds tieing us to strict realism, a
world of creative image-making awaits us on the other side.

ACKNOWLEDGMENTS
Shipping our system to millions of users would not have been possi-
ble without our close collaboration with the Android camera team.
We thank them for integrating our system into the Google Camera
app and for their product and engineering effort. We also thank
Alireza Fathi, Sam Hasinoff and Ben Weiss for their helpful feed-
back and technical advice. We give a special thanks to photographer
Michael Milne for taking thousands of test photographs for us.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, et al. 2015. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.
org/

Edward H Adelson and James R Bergen. 1985. Spatiotemporal energy models for the
perception of motion. JOSA A (1985).

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

https://www.tensorflow.org/
https://www.tensorflow.org/

Synthetic Depth-of-Field with a Single-Camera Mobile Phone • 64:13

(a) Child’s face not detected in segmentation-only pipeline

(b) People at very di�erent depths compressed to same disparity

(c) Matching errors from aperture problem

D
is

pa
rit

y
D

ire
ct

io
n

Fig. 16. Failure modes of our system. Face detection failures in the
segmentation-only pipeline can cause people to get blurred with the back-
ground (a). Keeping all people with large-enough faces sharp can look
unnatural (b). In this extreme case, the child and woman’s faces have within
a factor of three the same number of pixels, but the woman is much fur-
ther back. Vertical structures parallel to the disparity direction in (c) are
incorrectly assigned the disparity of the background and get blurred (c).

Edward H Adelson and John YAWang. 1992. Single lens stereo with a plenoptic camera.
TPAMI (1992).

Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen, Noah Snavely,
Carlos Hernández, Sameer Agarwal, and Steven M Seitz. 2016. Jump: Virtual Reality
Video. SIGGRAPH Asia (2016).

Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. 2015. Fast
bilateral-space stereo for synthetic defocus. CVPR (2015).

J. T. Barron and J. Malik. 2015. Shape, illumination, and reflectance from shading.
TPAMI (2015).

Jonathan T Barron and Ben Poole. 2016. The fast bilateral solver. ECCV (2016).
Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. 2013. KNN matting. TPAMI (2013).
David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth Map Prediction from a

Single Image Using a Multi-scale Deep Network. NIPS (2014).
Ravi Garg, Vijay Kumar B.G., Gustavo Carneiro, and Ian Reid. 2016. Unsupervised CNN

for Single View Depth Estimation: Geometry to the Rescue. ECCV (2016).
Ross Girshick. 2015. Fast R-CNN. ICCV (2015).
Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. 2017. Unsupervised Monoc-

ular Depth Estimation with Left-Right Consistency. CVPR (2017).
Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The

lumigraph. SIGGRAPH (1996).
Hyowon Ha, Sunghoon Im, Jaesik Park, Hae-Gon Jeon, and In So Kweon. 2016. High-

quality Depth from Uncalibrated Small Motion Clip. CVPR (2016).
Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T Barron,

Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for high

dynamic range and low-light imaging on mobile cameras. SIGGRAPH (2016).
Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask R-CNN.

ICCV (2017).
Carlos Hernández. 2014. Lens Blur in the new Google Camera app. http://research.

googleblog.com/2014/04/lens-blur-in-new-google-camera-app.html.
Derek Hoiem, Alexei A. Efros, and Martial Hebert. 2005. Automatic Photo Pop-up.

SIGGRAPH (2005).
B. K. P. Horn. 1975. Obtaining shape from shading information. The Psychology of

Computer Vision (1975).
David E. Jacobs, Jongmin Baek, and Marc Levoy. 2012. Focal Stack Compositing for

Depth of Field Control. Stanford Computer Graphics Laboratory Technical Report
2012-1 (2012).

H. G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. W. Tai, and I. S. Kweon. 2015. Accurate
depth map estimation from a lenslet light field camera. CVPR (2015).

Neel Joshi and Larry Zitnick. 2014. Micro-Baseline Stereo. Technical Report.
Johannes Kopf, Michael F Cohen, Dani Lischinski, and Matt Uyttendaele. 2007. Joint

bilateral upsampling. ACM TOG (2007).
M. Kraus and M. Strengert. 2007. Depth-of-Field Rendering by Pyramidal Image

Processing. Computer Graphics Forum (2007).
Sungkil Lee, Gerard Jounghyun Kim, and Seungmoon Choi. 2009. Real-Time Depth-of-

Field Rendering Using Anisotropically Filtered Mipmap Interpolation. IEEE TVCG
(2009).

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. SIGGRAPH (1996).
Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. 2016. Learning Depth from

Single Monocular Images Using Deep Convolutional Neural Fields. TPAMI (2016).
Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully Convolutional Net-

works for Semantic Segmentation. CVPR (2015).
Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked Hourglass Networks for

Human Pose Estimation. ECCV (2016).
Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan.

2005. Light field photography with a hand-held plenoptic camera. (2005).
George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tompson,

Chris Bregler, and Kevin Murphy. 2017. Towards Accurate Multi-person Pose
Estimation in the Wild. CVPR (2017).

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN
Notices (2013).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. MICCAI (2015).

Ashutosh Saxena, Min Sun, and Andrew Y. Ng. 2009. Make3D: Learning 3D Scene
Structure from a Single Still Image. TPAMI (2009).

Daniel Scharstein and Richard Szeliski. 2002. A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms. IJCV (2002).

Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris, Brian Price, Eli Shecht-
man, and Ian Sachs. 2016a. Automatic portrait segmentation for image stylization.
Computer Graphics Forum (2016).

Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and Jiaya Jia. 2016b. Deep Auto-
matic Portrait Matting. ECCV (2016).

Sudipta N. Sinha, Daniel Scharstein, and Richard Szeliski. 2014. Efficient High-
Resolution Stereo Matching using Local Plane Sweeps. CVPR (2014).

S. Suwajanakorn, C. Hernandez, and S. M. Seitz. 2015. Depth from focus with your
mobile phone. CVPR (2015).

H. Tang, S. Cohen, B. Price, S. Schiller, and K. N. Kutulakos. 2017. Depth from Defocus
in the Wild. CVPR (2017).

Michael W Tao, Sunil Hadap, Jitendra Malik, and Ravi Ramamoorthi. 2013. Depth from
combining defocus and correspondence using light-field cameras. ICCV (2013).

Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. 2014. Joint Training
of a Convolutional Network and a Graphical Model for Human Pose Estimation.
NIPS (2014).

Subarna Tripathi, Maxwell Collins, Matthew Brown, and Serge J. Belongie. 2017.
Pose2Instance: Harnessing Keypoints for Person Instance Segmentation. CoRR
abs/1704.01152 (2017).

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Deep3D: Fully Automatic 2D-to-3D
Video Conversion with Deep Convolutional Neural Networks. ECCV (2016).

N. Xu, B. Price, S. Cohen, and T. Huang. 2017. Deep Image Matting. CVPR (2017).
Fisher Yu and David Gallup. 2014. 3D Reconstruction from Accidental Motion. CVPR

(2014).
Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. 2017. Unsupervised

Learning of Depth and Ego-Motion from Video. CVPR (2017).
Bingke Zhu, Yingying Chen, Jinqiao Wang, Si Liu, Bo Zhang, and Ming Tang. 2017. Fast

Deep Matting for Portrait Animation on Mobile Phone. ACM Multimedia (2017).

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

http://research.googleblog.com/2014/04/lens-blur-in-new-google-camera-app.html
http://research.googleblog.com/2014/04/lens-blur-in-new-google-camera-app.html

	Abstract
	1 Introduction
	2 Related Work
	3 Person Segmentation
	3.1 Data Collection
	3.2 Training
	3.3 Inference
	3.4 Edge-Aware Filtering of a Segmentation Mask
	3.5 Accuracy and Efficiency

	4 Depth from a Dual-Pixel Camera
	4.1 Computing Disparity
	4.2 Imaging Model and Calibration
	4.3 Combining Disparity and Segmentation
	4.4 Edge-Aware Filtering of Disparity

	5 Rendering
	5.1 Precomputing the blur parameters
	5.2 Applying the blur
	5.3 Producing the final image

	6 Results
	7 Discussion and Future Work
	Acknowledgments
	References

