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ABSTRACT

While mobile applications have greatly benefited from 2D computer

vision algorithms such as object detection and classification, there

is limited research on exploring 3D vision that is enabled by the

increasing availability of depth cameras and LiDAR scanners on

mobile devices. In this paper, we propose a hybrid mobile vision

system that intelligently combines 2D and 3D vision for improv-

ing the performance of emerging applications such as augmented

and mixed reality and volumetric content analytics. Our research

is motivated by and explores the key observation of the crucial

latency-accuracy tradeoff between 2D and 3D vision. We present a

research agenda with two principles for enhancing mobile vision

stack, complementing 3D vision with its 2D counterpart by lever-

aging their diverse resource/accuracy profiles and processing 3D

data (e.g., point clouds) with 2D vision cues for mitigating the high

computation and storage costs.
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1 INTRODUCTION
Breakthroughs in computer vision (CV), particularly deep neu-

ral networks (DNN) that significantly boost the accuracy of tasks

such as object detection & classification, scene recognition, and

semantic segmentation [2, 16, 32], have enabled various emerg-

ing applications including augmented and mixed reality (AR/MR),

video analytics, and autonomous driving [6, 20, 22]. As a pivotal

building block of the aforementioned applications, the run-time

performance of those CV algorithms and DNN models, in terms

of accuracy and latency (i.e., execution/inference time), is of the

utmost importance. Due to the high computation complexity of CV

algorithms/models, most existing work splits the pipeline of their

applications between resource-constrained end devices (e.g., smart-

phones, AR/MR headsets, and surveillance cameras) and powerful

cloud/edge servers [20, 22, 49, 50].

Recent advances in 3D data capturing techniques (e.g., com-

modity depth cameras and LiDAR scanners) make the creation of

volumetric content that consists of 3D models of the real-world sur-

roundings feasible on commercial off-the-shelf (COTS) devices such

as smartphones and tablets. The CV community has also developed
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efficient deep learning models for 3D object detection & classifi-

cation (i.e., generating 3D bounding boxes for objects of interest)

using point cloud data as the input [29, 34]. The depth information

in volumetric data offers unique opportunities for emerging mobile

applications [42]. For example, we can determine the spatial rela-

tionship between virtual and physical objects to correctly handle

occlusions and create realistic AR/MR systems with more semantic

meanings [7], especially when users freely move in 3D space and

cause dynamic changes of the occlusion relationship. Intelligent

video analytics systems of volumetric content such as point clouds

can leverage depth information for fall detection [39], the separa-

tion of occluded objects [48], accurate people counting [8], human

behavior recognition [18], etc.

In this paper, we start with a pilot study that explores the strengths

and weaknesses of 2D and 3D vision algorithms (§3). Our prelimi-

nary experimental results on a public dataset reveal a fundamental

accuracy-latency tradeoff between 2D and 3D object detection &

classification. While benefiting from the depth information in volu-

metric data, 3D vision offers higher accuracy than its 2D counterpart

by detecting occluded and farther away objects in a scene, it con-

sumes more computation resources and incurs a longer execution

time (∼10×). Moreover, volumetric data such as point clouds is

large due to its 3D nature and its compression is compute-intensive

owing to its sparsity and irregularity [12].

Motivated by the above observations, we propose a hybridmobile

vision system that strategically combines the strengths of 2D and

3D vision with two key principles. First, by leveraging the latency-

accuracy tradeoff, we complement 3D vision with 2D visual cues

for enhancing the efficiency of object detection & classification

(§4.1). More specifically, we propose hybrid input data that explores

diverse factors (e.g., the distance of objects and potential occlusion

of objects), hybrid vision tasks that fuse 2D objection detection

and 3D object classification and reduce 3D vision workload with

preprocessing using 2D vision, and hybrid computation locations

that dynamically split the execution of 2D and 3D vision models

between the client and the server. Second, we facilitate 3D vol-

umetric data processing with 2D vision features to optimize the

computation and storage overhead for volumetric content analytics,

retrieval, and compression (§4.2). For example, we index volumet-

ric content based on detected 2D bounding boxes to speed up its

analytics tasks, accelerate on-device point cloud retrieval using

2D visual features, and improve the efficacy of volumetric content

compression with inexpensive 2D vision primitives.

To the best of our knowledge, we are the first to propose a hybrid

mobile vision system that effectively combines 2D and 3D vision

to neutralize their weaknesses. Thus, our primary contribution

is to bring to the attention of mobile application developers our

key insights on the efficiency of dealing with different input data

formats for various mobile vision tasks, especially object detection

& classification and volumetric content analytics, retrieval, and
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Figure 1: The system models for mobile devices equipped with a depth camera (a) or a LiDAR scanner (b). Point clouds will

be generated directly from a LiDAR scanner or by combining RGB and depth streams. 2D/3D vision tasks and point cloud

generation can be performed by either the mobile device (Local) or the server (Remote). The vision tasks can also be split

between the device and the server (Hybrid).

compression. Our second contribution is to highlight the technical

challenges of realizing such a hybrid mobile vision system.

2 SYSTEM MODEL
We show the abstracted system models of hybrid mobile vision

in Figure 1 for devices with a depth camera or LiDAR scanner.

For Android devices (e.g., Samsung Galaxy S20 Ultra) that include

a depth camera, we can generate point clouds as 3D models for

surrounding scenes and objects from the RGB and depth streams.

Given that this operation is usually compute-intensive, it is typically

offloaded to a remote server (e.g., at the network edge) for real-time

mobile applications. Newly released iOS devices such as iPhone 12

Pro include a LiDAR 3D scanner that can directly create point clouds

on-device, although the color information could not be captured

by LiDAR. Thus, we still need to use the RGB stream to color the

points when necessary.

As shown in Figure 1, to take advantage of the latency-accuracy

tradeoff between 2D and 3D vision (§3), our proposed hybrid mobile

vision utilizes the output of 2D vision to reduce the complexity of

3D vision for tasks such as object detection & classification and

volumetric content analytics. 2D and 3D vision can be executed in

different locations by considering different application scenarios

and performance requirements, as explained in §4.1. We show three

execution modes, remote, hybrid, and local, in Figure 1 (a), for

mobile devices with a depth camera. The same partition methods

apply to devices with a LiDAR scanner as well.

3 OBJECT DETECTION & CLASSIFICATION: 2D
IMAGE VS. 3D POINT CLOUD

To motivate our proposed hybrid mobile vision, we compare the in-

ference accuracy of the state-of-the-art deep learning models for 2D

and 3D object detection & classification. We select the YOLOv4 [2]

and PV-RCNN [34] models for 2D and 3D object detection and clas-

sification, respectively. We choose the widely-used KITTI Vision

Benchmark Suite [9] that offers both 2D front-view camera images

and volumetric LiDAR point clouds for the same scenes for an apple-

to-apple comparison of the accuracy of those models. Using the

KITTI dataset, we train the YOLOv4 model released by its authors

and the PV-RCNN model released in the OpenPCDet [26] toolbox.

OpenPCDet reports the accuracy of the 2D bounding boxes gen-

erated by projecting the corresponding 3D bounding boxes to the

front-view images, which makes the comparison between YOLOv4

and PV-RCNN fair. Thus, we measure the detection accuracy of the

projected 2D bounding boxes of PV-RCNN, instead of the original

3D boxes, and compare it with YOLOv4.

Table 1 reports the inference accuracy of YOLOv4 and PV-RCNN

for three object classes, car, pedestrian, and cyclist. The KITTI

dataset classifies objects using three difficulty levels, easy, moderate,

and hard. The difficulty level is defined by considering the following

metrics, minimum bounding box height in pixel (40, 25, and 25

pixels), maximum occlusion level (fully visible, partly occluded,

and difficult to see), and maximum truncation ratio (15%, 30%, and

50%). The accuracy is calculated using the 40-point Interpolated

Average Precision metric [37]. As we can see from this table, PV-

RCNN outperforms YOLOv4, especially for the moderate and hard

difficulty levels. The only exception is the easy difficulty level for

pedestrians (71.35% vs. 74.53%). PV-RCNN performs better than

YOLOv4 mainly due to its capability of detecting occluded and

further away objects, thanks to the depth information provided in

volumetric data. As shown in Figure 2, YOLOv4 fails to detect the

car occluded by the cyclists and the cars that are further away in

the scene. YOLOv4 cannot detect the jeep, probably due to the fact

that there are only a few jeeps in the training set.

We next compare the computation resource utilization of 2D and

3D vision models. In the KITTI dataset, each point cloud contains

∼130K points, on average. To make the comparison fair, we re-scale

the 2D images to have a similar amount of pixels. Compared to

YOLOv4, PV-RCNN consumes both more main memory (12.9% vs.

6.0%) and more GPU memory (2.1 vs. 1.6 GB). Moreover, the infer-

ence time of PV-RCNN is about 10× higher than that of YOLOv4

(525 vs. 44 ms for each inference).

Summary. The above preliminary results demonstrate that 3D

vision on volumetric content offers better object detection and clas-

sification than 2D vision on images, at the cost of higher computa-

tion resource utilization. This observation motivates our proposed

hybrid mobile vision. For example, we can first conduct 2D object

detection on images to identify potential areas of interest, and then

perform 3D object detection on points that belong to those areas to

further improve the accuracy (e.g., detecting occluded objects).
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Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

YOLOv4 [2] 86.43 60.52 55.82 74.53 62.99 55.81 80.93 56.04 54.05

PV-RCNN [34] 97.78 93.38 91.60 71.35 64.63 61.07 93.59 77.12 74.14

Hybrid 97.91 93.40 91.63 69.59 62.77 58.02 93.08 76.98 72.84

Table 1: Accuracy of 2D and 3D object detection & classification models on the KITTI dataset [9]. The accuracy of PV-RCNN

(3D model) is measured using the corresponding 2D bounding boxes projected on the same images for YOLOv4 (2D model).

PV-RCNN performs much better than YOLOv4 for most categories. The last row shows the preliminary experimental results

of our proposed hybrid mobile vision that leads to similar performance compared to PV-RCNN.

Figure 2: Comparison of object detection and classification,

2D (YOLOv4 on the top) vs. 3D (PV-RCNN at the bottom). PV-

RCNN can detect more occluded and further away objects

(with red labels) than YOLOv4.

4 RESEARCH AGENDA
While the 2D/3D vision synergy has been recently explored in

robotics and autonomous driving [21], it still remains largely un-

tapped for mobile applications. To enhance the mobile vision stack,

we propose the following two principles. (1) For object detection

& classification, we complement 3D with 2D vision by exploiting

their diverse resource/accuracy profiles; (2) For volumetric content

processing, we enhance 3D point clouds with 2D vision cues for

mitigating the high computation and storage costs.

4.1 Enhancing 3D Mobile Vision with 2D for
Object Detection & Classification

The measurement findings in §3 reveal the critical latency-accuracy

tradeoff between 2D and 3D vision tasks such as object detection

and classification. Balancing this tradeoff is particularly important

on mobile devices that bear limited compute power and battery life.

To realize this goal, we next describe strategies that combine 2D

and 3D mobile vision in a principled manner.

Hybrid Input Data. This approach feeds separate input data to

2D vs. 3D models. The underlying idea is to use 2D vision to handle

“easy” content and use 3D vision to tackle more challenging content.

Based on our preliminary study, we have identified several factors

that can facilitate such hybrid input data for mobile vision. (1) Dis-

tance: we can apply 2D vision to nearby content and 3D vision to

content with a further distance. Nearby objects have more details

appearing in the camera view, making their detection easier; the

missing details for far-away objects can be compensated by 3D

vision that improves the detection accuracy. Note that the distance

information is provided by depth data. The depth information can

be overlayed onto 2D images with R, G, B channels to reveal the

distance of each pixel. (2) Occlusion: we can apply 3D vision to

possibly occluded objects to improve the system performance, as

motivated by the observations in §3. Specifically, we can first run

lightweight 2D object detection that produces a series of bounding

boxes as exemplified in Figure 2. The detected 2D bounding boxes

indicate potential occlusions. For example, in the top subfigure of

Figure 2, there is an undetected car that is occluded by the two

cyclists detected by YOLOv4. We can thus feed only 3D data belong-

ing to the 2D bounding boxes to 3D object detection models. (3)

Confidence Score: similar to the procedure above, we can first run

2D vision, and then apply 3D vision to detected bounding boxes

with low confidence scores.

Our recent work DeepMix [10] takes a different approach to

effectively combine 2D images and depth data for facilitating real-

time 3D object detection on mobile headsets. After getting the

depth information of objects identified by a 2D detection & classifi-

cation model, instead of applying 3D object detection, we leverage

lightweight measurement to estimate the 3D bounding boxes of

objects of interest. By doing this, we can drastically reduce the

on-device computation overhead and make DeepMix suitable for

mobile headsets.

Hybrid Vision Tasks. Another dimension of fusing 2D and 3D

vision is to apply different vision tasks, whose synergy is expected

to achieve the desired balance between accuracy and computation

latency. Specifically, there are two opportunities that we can ex-

ploit. (1) Detection vs. Classification. In applications that require

fine-grained object detection & classification, we can use 2D con-

tent for detection (e.g., identifying the existence of an object) and

3D data for classification (e.g., inferring the detected object is a car).

Compared to directly applying 3D vision for fine-grained object

detection & classification, this approach substitutes a significant

amount of 3D vision overhead with a lightweight 2D vision work-

load, with (hopefully) little degradation of the overall classification

performance. (2) Preprocessing vs. Detection/Classification. Another

opportunity is to apply preprocessing (e.g., ground removal and

preliminary semantic segmentation) on 2D content. The result will

then be overlaid onto volumetric content to reduce the 3D vision
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workload. For example, for the scene in Figure 2, if the objects of

interest consist of pedestrians, cyclists, and vehicles, we can first per-

form ground detection using 2D semantic segmentation [24, 25, 36]

to identify the ground, and then identify a space (using the depth

channel) with up to a certain height above the ground as the candi-

date region for the objects of interest. Only data belonging to this

region will be processed by 3D vision.

Hybrid Computation Locations. 2D and 3D computer vision

tasks can be executed in different locations to balance the key

latency-accuracy tradeoff. We consider three options as illustrated

by different partition lines in Figure 1(a). (1) Local Execution where

both 2D and 3D models are executed locally on mobile devices.

In this scenario, we can leverage heterogeneous local compute

resources including CPU, GPU, DSP, and NPU that may exhibit

diverse performance for different model structures [19, 45]. (2) Hy-

brid Execution where 2D and 3D inferences take place on either

mobile devices or a nearby edge node respectively. While selec-

tive offloading [17, 43] is not a completely new idea, a challenge

here is to strategically partition the workload at the appropriate

granularity (e.g., model-level, layer-level, or frame-level partition).

Another unique challenge is to observe the dependency of 2D and

3D tasks as described above (e.g., 3D input is pruned/filtered based

on the 2D output). (3) Remote Executionwhere both 2D and 3D tasks

are performed on an edge or a remote cloud for computationally

weak devices. This scenario brings a new challenge of potentially

excessive network bandwidth for uploading both 2D and 3D data.

On most mobile devices, the 2D image stream with (R, G, B) chan-

nels and the depth stream are generated by separate cameras with

different resolutions and frame rates (Figure 1(a)), and the former

can usually produce (2D) images with higher quality and/or frame

rate than the latter. Given the high correlation between the two

streams, it is beneficial to judiciously merge the output streams

of both 2D and 3D cameras by considering the cross-stream com-

pression opportunities. On other devices equipped with a LiDAR

scanner that produces point clouds (Figure 1(b)), merging the 3D

point cloud and 2D image streams is more challenging and requires

more research. An alternative approach is to upload 2D and 3D

streams separately, and use the 2D stream as cues to facilitate 3D

stream compression, as to be elaborated in §4.2.

Additional Challenges. It is worth mentioning that the above

three dimensions (hybrid input data, vision tasks, and computa-

tion locations) can be jointly exploited. Given the large decision

space and a wide spectrum of dynamics (content, network/compute

resources, and vision models), it may be highly challenging to estab-

lish an analytical framework to decide which hybrid approach(es)

and their configurations/parameters to use. Instead, a promising

direction is a learning-based framework that makes informed deci-

sions of when, what, and how to fuse 2D and 3D vision.

4.2 Optimizing Volumetric Content Processing
with 2D Vision Features

The principle of hybrid mobile vision also applies to the processing

of volumetric content such as point clouds, which has important

use cases. (1) Volumetric content analytics. As described in §2, point

clouds are derived from RGB and depth streams and can be con-

sumed by training or fine-tuning of 3D vision models for analytics

tasks. The training recurs from time to time in order to adjust to

scene changes and data distribution shifts and incurs computation

overhead. (2) On-device retrieval for localization. Once constructed,

point clouds can be distributed to mobile devices and stored as

3D maps. At run time, the mobile device matches a point cloud of

its surrounding environment with stored point clouds for precise

6DoF localization [30]. (3) Compression of volumetric content. In

video streaming, volumetric content should be compressed before

delivery [12]. However, 3D data is known to be difficult to compress

due to its large size and irregularity [33].

The challenges are twofold: (1) Point clouds are large, e.g., tens

of MB per frame if uncompressed. This situation is exacerbated by

some recent VR apps storing large 3D scenes on devices, e.g., 20M

points in 200MB compressed [35]. While point cloud compression

is vital, it is computationally expensive. (2) Random access patterns.

For instance, training often requires to access specific object classes

in point clouds; retrieval needs to search in a large repository of

point clouds.

IndexingVolumetricContent byProjected Frustums.To speed

up content analytics, indexing has been common wisdom, where

“indexes” refer to early results that are computed at low cost and

stored alongside the full-fledged data.

The principle can be applied to volumetric content with 2D vision

as a new twist. As the server-side point cloud store ingests RGB

and depth data, it reconstructs unlabeled volumetric content while

avoiding analyzing the volumetric content for efficiency. Instead,

the system periodically samples RGB images and executes object

detection on the sampled 2D images as indexes. The 2D images

may come from the same source as the volumetric content (e.g., one

RGB-D camera) or a separate source (e.g., one LIDAR and one RGB

camera). The detected 2D objects serve as indexes, which help filter

point clouds for human analysts to inspect and label. Specifically,

from the detected 2D bounding boxes, the system extrudes viewing

frustums in the 3D space [28]. Hence, for a point cloud, our system

builds index 𝐼 = {〈𝑓1, 𝑐1〉, ..., 〈𝑓𝑛, 𝑐𝑛〉}, where 𝑓 ⊂ 𝑅3 is a 3D viewing

frustum and 𝑐 is an object class. We can store 3D points keyed by

viewing frustums and the remaining points as the scene background.

Given an object class (e.g., cyclists) requested in model training, our

system can retrieve the point clouds in viewing frustums without

loading unneeded points.

On-device Point Cloud Retrieval. A mobile device can localize

itself by matching the point cloud of its surrounding environment

with on-device 3D maps. The initial match is often the most ex-

pensive stage, where the device needs to quickly narrow down to

a small set of candidate point clouds. Exhaustive search is slow,

as it would decompress a large number of point cloud frames and

run point cloud registration algorithms such as iterative closest

point (ICP) for a pairwise match. The system may use GPS signal

as geofence, which, however, is not always available, for example,

in urban canyons where GPS signal is weak.

To speed up the initial match, 2D images offer rich visual cues,

which can be extracted with inexpensive vision primitives. The

resultant 2D features can be used for rough yet valuable estimation.

Localization with 2D features (e.g., SIFT) is well understood. When

our system constructs point clouds for 3D maps, it also samples 2D

images with their SIFT features. By aggregating the 2D features

(e.g., using bag-of-words), the system constructs global descriptors

for individual point clouds. To localize, it collects both images and
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point clouds and uses the 2D descriptors to filter candidate point

clouds for the match, therefore reducing the overhead.

Volumetric Content Compression with 2D Cues. Since volu-

metric content usually exhibits high data redundancy, it shall be

compressed where it was captured or constructed. The efficacy of

compression schemes, notably the compression ratio and speed,

hinges on a good estimation of point cloud characteristics, such

as camera motion and scene planes. Often, such information is ex-

tracted from the raw point clouds. To ensure information accuracy,

the compressor periodically samples a point cloud stream as it is

being captured. Doing so incurs substantial overhead because of

the large data volume and irregularity. To this end, we can estimate

compression parameters by processing 2D images captured near

the same time, forgoing deep processing of point clouds for estima-

tion. Fundamentally, 2D images are projections of point cloud to

a lower-dimensional space; many point cloud properties needed

for compression can be estimated by well-established 2D vision

primitives.

The 2D cues can assist multiple compression schemes:

• Cheap Plane Detection. It is common for point cloud compression

schemes such as G-PCC [33] in MPEG to store points as space

partitioning trees such as Octree where leaf nodes represent points

that fit in a 2D plane. The compressor can estimate planes from 2D

images with low-cost segmentation operators and project planes

to the 3D space.

• Adapting Voxel Granularities. Some compression schemes store

a point cloud frame as spatial cells (“voxels”) that are compressed

individually [33]. The granularities can be heterogeneous across

a frame, where “hotspots” regions such as foreground objects are

covered with smaller voxels for higher spatial resolution, catering

to deeper analytics. To this end, 2D vision can classify the scene

and detect objects for hotspot regions.

• Key Frame Selection. A compressed point cloud stream consists

of key frames and inter-coded frames in between; the inter-coded

frames only store the difference between key frames. The intervals

of key frames depend on the estimation of camera motions and

scene changes. Without analyzing the point cloud, such estimations

can be done by low-cost processing of 2D images such as optical

flow, which guides the key frame selection for point cloud streams.

It is worth noting that compressing volumetric content with 2D

cues differs from prior work of projecting volumetric content to

2D for compression. Such techniques project point clouds to 2D

space using spherical projection [41] or orthogonal projection (V-

PCC [33] in MPEG) and compress the 2D images. The information

loss is significant, since they only store the resultant 2D frames in

lieu of 3D point clouds.

5 PRELIMINARY EXPERIMENTAL RESULTS
To validate the effectiveness of our proposed hybrid mobile vision,

we implement part of the hybrid input data scheme in §4.1 and

evaluate its performance.

Our implementation includes the following. Given an input point

cloud, we first use a pre-trained YOLOv4 2D object detection model

to get the bounding boxes of detected objects on its corresponding

2D image. Since we have the camera parameters of the 2D image,

we can project 3D points onto it and check whether a specific point

falls in the detected 2D bounding boxes. By doing this, we can get

not only points that map to detected objects in these 2D bounding

boxes, but also points that belong to objects occluded by these

detected ones. Besides facilitating the detection of occluded objects,

we identify points that are 20 meters away from the origin of the

input point cloud, where the 2D image is taken. The goal is to detect

further away objects that appear to be small in the 2D image. We

then construct a new point cloud by combining the points that are

mapped to the detected 2D bounding boxes and those of remote

objects. Finally, We perform 3D object detection using a pre-trained

PV-RCNN model on this newly constructed point cloud, instead

of the original one, which could potentially decrease the inference

time due to the reduced number of points.

We report the preliminary experimental result of inference accu-

racy in the last row of Table 1, using the same KITTI dataset. Overall,

the accuracy of our proposed hybrid input data scheme is similar

or slightly worse than that of PV-RCNN, but outperforms YOLOv4

for most categories. More specifically, the inference accuracy of

the hybrid scheme for cars is almost the same as PV-RCNN, and

11.48%, 32.88%, and 35.81% higher than that of YOLOv4. The hybrid

inference accuracy for pedestrians is worse than YOLOv4 for the

easy difficulty level (69.59% vs. 74.53%), but better than YOLOv4 for

the hard difficulty level (58.02% vs. 55.81%). Finally, for the cyclist

category, the inference accuracy of our hybrid input data schemes

outperforms YOLOv4 for all three difficulty levels.

While the above implementation achieves comparable perfor-

mance with PV-RCNN in terms of inference accuracy and performs

better than YOLOv4 in general, its inference time is significantly

reduced. As mentioned in §3, PV-RCNN takes about 525ms for each

inference. It takes only around 419ms for the hybrid input data

scheme, reducing the inference time by about 20%. The reason is

that PV-RCNN’s inference time can be drastically reduced when

there are fewer points to process.

6 RELATEDWORK
RGB-Dbased 3DObject Detection.Whilemost existing schemes

of 3D object detection leverage either point clouds [29, 34] or 2D

images [4, 5] as input, there do exist schemes that combine RGB

images and depth data for 3D object detection [28, 38, 40]. For ex-

ample, DSS [38] proposes the first 3D region proposal network that

takes a 3D scene from RGB-D data to generate a 3D object proposal

and the first 2D+3D object recognition network that predicts the

object label and regresses the 3D bounding box. F-PointNet [28]

leverages 2D object detection to narrow down the 3D space and

utilizes PointNet [29] to conduct segmentation on selected 3D frus-

tums for estimating the 3D bounding box. To improve F-PointNet,

Trans3D [40] proposes a 3D object detection network to help la-

bel 3D bounding boxes with 2D box labels, by transferring the

information learned from classes that have both 2D and 3D bound-

ing boxes. Although these approaches can reduce the amount of

to-be-processed 3D data, their accuracy is usually not as good as

point-cloud-based schemes.

Augmented and Mixed Reality. Mobile AR/MR depends on

CV algorithms such as object detection, classification, recognition,

and tracking [22, 50, 52]. For example, Jaguar [50] utilized GPU-

accelerated edge to achieve accurate, low-latency object recognition

and robust, context-aware object tracking. Liu et al. [22] improved
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the accuracy and latency of object detection for mobile AR by de-

coupling the rendering pipeline from edge offloading. Existing work

also leveraged collaborations among multiple users for improving

socialization [52], recognition accuracy [23], user experience [30],

and scalability [51]. Existing work also leveraged collaborations

among multiple users for improving socialization, recognition accu-

racy, and user experience [52]. More recent work on mobile AR/MR

started to investigate the 3D effects of virtual content and the im-

plications of 3D models on our daily life [30, 53]. For example,

Xihe [53] is an edge-assisted framework that provided accurate

omnidirectional lighting estimation using mobile 3D vision for AR

applications. Our proposed hybrid mobile vision facilitates the un-

derstanding of 3D surroundings for mobile AR/MR applications by

intelligently combining 2D and 3D object detection & classification.

Video Analytics. A typical video analytics pipeline [6, 20, 46, 49]

consists of a data transmission scheduler and a vision process-

ing engine. The scheduler determines what data will be sent to

the server and how frequently to send these data. The decision is

made by applying binary classification models, motion and object

detection [49], or low-level vision features [20], all of which are

typically lightweight. The back-end of those systems benefits from

various deep-learning-based 2D object detection and classification

models. For example, DSS [6] used Faster R-CNN [32], whereas AW-

Stream [46] employed YOLOv2 [16]. Existing systems usually focus

on one (or more) of the following optimization objectives, query

latency (e.g., Focus [13]), scalability (e.g., Jain et al. [14]), server

resource utilization (e.g., VideoStorm [47] and Chameleon [15]),

inference accuracy (e.g.,DDS [6]), and bandwidth consumption (e.g.,

AWStream [46]). To the best of our knowledge, there is no existing

work on video analytics of volumetric content. In this paper, we

propose hybrid mobile vision that explores the accuracy-latency

tradeoff between 2D and 3D vision to facilitate video analytics of

volumetric content.

Video Storage. Existing systems focus on 2D visual data, such

as Facebook’s Haystack [1] and Intel’s VDMS [11, 31] that store

images rather than videos. NVIDIA’s Video Loader [3] optimizes

random loads of encoded video frames. Scanner [27] organizes

video collections and raster data as tables and executes pixel-level

computations in parallel. Our own work VStore [44] controls 2D

video formats for queries. All these 2D video systems are inadequate,

as they are oblivious to volumetric data structures and therefore

incapable of coping with high data volume and computation cost.

We are unaware of any prior analytics systems designed specifically

for volumetric content.

7 CONCLUSION
In this paper, we proposed a research agenda for hybrid mobile

vision that complements 3D vision tasks such as object detection

and classification with its 2D counterpart and optimizes 3D data

processing with 2D vision cues for reducing the computation and

storage overhead. Our research is motivated by the observation

that although 3D vision bears better accuracy than 2D vision, it

leads to higher resource utilization and computation latency due to

the 3D nature of volumetric data. Given the increasing popularity

of depth cameras and LiDAR scanners on mobile devices, we hope

our proposed research can inspire more work for advancing the

mobile vision stack.
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