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Figure 1. Given one or several sketch-image pairs as training data, our CustomSketching can learn a novel sketch concept into a text token
[v] and specific sketches. We decompose a sketch into shape lines (blue strokes) and detail lines (red strokes) to reduce the ambiguity in a
sketch. Users may input a text prompt and a dual-sketch to re-create or edit the concept at a fine-grained level.

Abstract

Personalization techniques for large text-to-image (T2I)
models allow users to incorporate new concepts from ref-
erence images. However, existing methods primarily rely
on textual descriptions, leading to limited control over cus-
tomized images and failing to support fine-grained and lo-
cal editing (e.g., shape, pose, and details). In this paper, we
identify sketches as an intuitive and versatile representation
that can facilitate such control, e.g., contour lines captur-
ing shape information and flow lines representing texture.
This motivates us to explore a novel task of sketch concept

extraction: given one or more sketch-image pairs, we aim
to extract a special sketch concept that bridges the corre-
spondence between the images and sketches, thus enabling
sketch-based image synthesis and editing at a fine-grained
level. To accomplish this, we introduce CustomSketching, a
two-stage framework for extracting novel sketch concepts.
Considering that an object can often be depicted by a con-
tour for general shapes and additional strokes for internal
details, we introduce a dual-sketch representation to reduce
the inherent ambiguity in sketch depiction. We employ a
shape loss and a regularization loss to balance fidelity and
editability during optimization. Through extensive experi-



ments, a user study, and several applications, we show our
method is effective and superior to the adapted baselines.

1. Introduction

The recent advent of large text-to-image (T2I) models
[44, 47, 49] has opened up new avenues for image synthesis
given text prompts. Based on such models, personalization
techniques like [21, 31, 48] have been proposed to learn
novel concepts on unseen reference images by fine-tuning
the pre-trained models. Users can employ text prompts to
create novel images containing the learned concepts in di-
verse contexts by leveraging the significant semantic priors
of these powerful generative models.

However, the existing personalization methods fail to
accurately capture the spatial features of target objects in
terms of their geometry and appearance. This limitation
arises due to their heavy reliance on textual descriptions
during the image generation process. While some following
works like [3, 15] have attempted to address this issue by in-
corporating explicit masks or additional spatial image fea-
tures, they are still limited to providing precise controls and
local editing on fine-grained object attributes (e.g., shape,
pose, details) for the target concept solely through text.

To achieve fine-grained controls, sketches can serve as
an intuitive and versatile handle for providing explicit guid-
ance. T2I-Adapter [36] and ControlNet [70] have enabled
the T2I models to be conditioned on sketches by incorpo-
rating an additional encoder network for sketch-based im-
age generation. Such conditional methods perform well
when an input sketch depicts the general contour of an ob-
ject (e.g., the blue strokes in Figure 2 (b)). However, we
observed they struggle to interpret and differentiate other
types of sketches corresponding to specific local features
in realistic images. As illustrated in Figure 2, these meth-
ods fail to correctly interpret detail lines for clothing folds
and flow lines for hair texture (the red strokes in (b)). The
primary reason behind the issue is that the sketch dataset
used to train the conditional networks [36, 70] is inherently
ambiguous since it is generated automatically through edge
detection on photo-realistic images. Consequently, directly
incorporating a pre-trained sketch encoder with personal-
ization techniques proves challenging when attempting to
customize a novel concept guided by sketches.

Based on the aforementioned observation, we propose
a novel task of sketch concept extraction for image syn-
thesis and editing to tackle the issue of sketch ambiguity.
The key idea is to empower users to define personalized
sketches corresponding to specific local features in photo-
realistic images. Users can sketch their desired concepts by
first tracing upon one or more reference images and then
manipulating the learned concepts by sketching, as shown
in Figure 1.
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Figure 2. Given a text prompt (a, bottom) and a sketch (b) depict-
ing specific semantics (e.g., clothing folds and hair), T2I-adapter
(c) and ControlNet (d) could not correctly interpret the out-of-
domain sketch types, while our method can extract such a novel
sketch concept and reconstruct the reference image (a, top). Note
that the reference image is not used by (c) and (d), and their results
are for reference only.

To achieve sketch-based editability and identity preser-
vation, we propose a novel personalization pipeline called
CustomSketching for extracting sketch concepts. This
pipeline is built upon a pretrained T2I model and incorpo-
rates additional encoders to extract features from the sketch
input. Since a single image may exhibit diverse local fea-
tures corresponding to different types of sketches, we em-
ploy a dual-sketch representation via two sketch encoders
to decouple shape and detail depiction. Our pipeline con-
sists of two stages: in Stage I, we optimize a textual token
for global semantics but freeze the weights of the sketch en-
coders; in Stage II, we jointly fine-tune the weights of the
sketch encoders and the learned token to reconstruct the ref-
erence images in terms of local appearance and geometry.
To prevent overfitting, we perform data augmentation and
introduce a shape loss for sketch-guided shape constraint
and a regularization loss for textual prior preservation.

To the best of our knowledge, our method is the first
work to extract sketch concepts using large T2I models,
thus providing users with enhanced creative capabilities for
editing real images. To evaluate our method, we collect
a new dataset including sketch-image pairs and the edited
sketches, where each sketch comprises a dual representa-
tion. Through qualitative and quantitative experiments, we
demonstrate the superiority and effectiveness of CustomS-
ketching, compared to the adapted baselines. Given the ab-
sence of a definitive metric to measure the performance of
image editing, we conduct a user study to gather user in-



sights and feedback. Additionally, we showcase several ap-
plications enabled by our work.

The contributions of our work can be summarized as fol-
lows. 1) We propose the novel task of sketch concept ex-
traction. 2) We introduce a novel framework that enables a
large T2I model to extract and manipulate a sketch concept
via sketching, thereby improving its editability and control-
lability. 3) We create a new dataset for comprehensive eval-
uations and demonstrate several sketch-based applications
enabled by CustomSketching.

2. Related Work

Text-to-Image Synthesis and Editing. Text-to-image gen-
eration has made significant strides in recent years, achiev-
ing remarkable performance. Early works [45, 64, 67-09]
employed RNN [17, 27] and GANs [6, 24, 29] to control
image generation, processing, and editing in specific sce-
narios, such as human faces [62], fashion [33], and coloriza-
tion [73]. These works rely on well-prepared datasets tai-
lored to the target scenarios, posing a bottleneck in dataset
availability. To alleviate this limitation, subsequent studies
[1,5, 19,22, 34, 39] adopted CLIP [43], a large language-
image representation model based on Transformer [56], to
align image-text features and achieve robust performance
in text-driven image manipulation tasks. Nonetheless, these
approaches are still confined to limited domains, challeng-
ing their extension to other domains.

The emergence of diffusion models [20, 26, 44, 47, 52,
53] trained with large-scale image-text datasets allows for
universal image generation from open-domain text, surpass-
ing previous works based on GANs. Leveraging the power
of diffusion models, several approaches have been proposed
to manipulate images globally using text [7, 8, 18, 30, 55]
and locally using masks [37, 40, 60]. For example, Mokady
et al. [35] proposed an inversion method that first inverts
a real image into latent representations, given which the
method enables text-based image editing (e.g., changing lo-
cal objects or modifying global image styles) by manipulat-
ing cross-attention maps [25]. Blended Diffusion [2, 4] can
merge an existing object into a real image. However, these
approaches face challenges in modifying the fine-grained
object attributes of real images due to the abstract nature of
the text. Building upon Stable Diffusion [47], our method
addresses this issue by incorporating sketches as an intuitive
handle to manipulate real images. Inspired by [25], we in-
troduce a shape loss that leverages cross-attention maps to
provide guidance based on sketches.

Personalization Techniques. The personalization task
is to produce image variations of a given concept in refer-
ence images. GAN-based methods for this task only focus
on the same category (e.g., aligned faces) [38, 46] or on a
single image [57], and thus could not manipulate images
in a new context. Most recently, diffusion-based methods

based on text-to-image models optimize a new [21] or rare
[48] textual token to learn the novel concept and generate
the concept in diverse contexts via text prompting. For fast
personalization, many researchers [14, 15, 23, 28, 51, 61]
introduce a prior encoder with local and global mapping to
save optimization time. For multi-concept personalization,
Avrahami et al. [3] fine-tuned a set of new tokens and the
weights of a denoising network from a single image given
masks, while Kumari et al. [31] optimized only several lay-
ers of the network based on a few images. Unlike these two
methods, which need to fine-tune simultaneously the multi-
concepts that are desired in generation, our method can sep-
arately extract sketch concepts for diverse targets and then
work for multi-concept generation by plug-and-play with-
out extra optimization (see Figure 8 (c)).

However, the existing personalization works do not al-
low precise control for novel concept generation and thus
could not work for local or detailed editing (e.g., addition,
removal, modification) of the learned concept. To address
the issue, we introduce a new task of sketch concept ex-
traction by optimizing sketch encoder(s) given one or more
sketch-image pairs.

Sketch-based Image Synthesis and Editing. As an in-
tuitive and versatile representation, sketch has been exten-
sively explored to achieve fine-grained geometry control in
realistic image synthesis and editing. For instance, Sangk-
loy et al. [50] utilized colored scribbles to depict geome-
try and appearance and synthesized images of various cat-
egories such as bedrooms, cars, and faces. Similarly, Chen
and Hays [13] employed freehand sketches to learn shape
knowledge for diverse objects. Chen et al. [11, 12] and Liu
et al. [32] utilized line drawings for image synthesis, edit-
ing, and video editing of human faces. In SketchHairSalon
[63], flow lines are used to represent unbraided hair, while
contour lines depict braided hair. For local editing, a par-
tial sketch has been adopted for minor image editing, e.g.,
FaceShop [42], Sketch2Edit [66], Draw2Edit [65]. Unlike
the previous works that train dedicated networks for specific
domains or limited object categories, our method is generic
and few-shot, which can handle versatile sketches for im-
age synthesis and editing using a pre-trained text-to-image
model.

Recently, sketch-based text-to-image diffusion models
have also been explored [16, 41, 59]. Voynov et al. [58]
utilized sketches as a shape constraint for optimizing the la-
tent map in a diffusion model, while T2I-Adapter [36] and
ControlNet [70] are two concurrent works that train an ex-
ternal sketch encoder connected to a pre-trained diffusion
model to enable sketch control. However, directly integrat-
ing these methods with personalization techniques may not
accurately extract sketch concepts for all types of sketches
(Figure 2), since the models [36, 70] are biased towards
training data, specifically edge maps automatically detected
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Figure 3. The pipeline of our CustomSketching, which extracts novel sketch concepts for fine-grained image synthesis and editing via a
two-stage framework. During training, given one or a few sketch-image pairs, Stage I only optimizes a textual embedding of a newly added
token [v] to represent the global semantics of the reference image(s), while Stage II jointly fine-tunes the token and two sketch encoders to
reconstruct the concept in terms of local appearance and geometry. We adopt a dual-sketch representation to differentiate shape lines S¢
and detail lines Sp. During inference, users may provide a text prompt and a dual-sketch to manipulate the learned concept.

from images. We will establish this setup for the existing
personalization methods as baselines to compare with our
method, though we are the first to customize novel sketch
concepts.

3. Method

Based on a pre-trained T2I diffusion model, our goal is to
embed a new sketch concept into the model, enabling the
synthesis and manipulation of diverse semantics in refer-
ence images through sketching and prompting (see Figure
1). To this end, we propose a novel framework, CustomsS-
ketching, which extracts a sketch concept from one or more
reference images I and their corresponding sketches S. As
illustrated in Figure 3, the framework comprises two train-
ing stages to reconstruct the reference image. During in-
ference, users can flexibly control the generation of a target
image that satisfies the context described by a text and faith-
fully reflects the input sketch in terms of geometry. In the
following, we will describe the method details.

Two-stage Optimization. To leverage the robust textual
prior of a large T2I model, following TI [21], we introduce
a newly added textual token [v] to capture global semantics
while utilizing sketch representations through sketch en-
coder(s) to capture local features. Directly incorporating the
personalization method [2 1] with a pre-trained encoder like
[36] could not fully restore the local geometry and appear-
ance of the target image (see the results by TI-E in Figure
4). It is because it fine-tunes merely textual embedding v
for the token [v]. However, through joint optimization of the

textual embedding and the weights of the sketch encoder(s),
we encountered challenges in disentangling the global and
local representations, resulting in unsatisfactory reconstruc-
tion (see Supp). To focus on learning separate features, in-
spired by [3], we adopt a two-stage optimization strategy. In
Stage I, we optimize the textual embedding while freezing
the weights of a pre-trained sketch encoder [36], establish-
ing a pivotal initialization for the next stage. In Stage II, we
jointly fine-tune the embedding and two sketch encoders to
recover the target identity. Note that, in both stages, we
freeze the denoising network of the pre-trained model to
preserve its prior knowledge for editing.

Dual Sketch Representations. In Stage I, we fix the
local features from sketches to guide the learning of the
global textual embedding. To employ the prior knowl-
edge of the sketch encoder [36], which was pre-trained
on a large-scale sketch dataset, we input a binary sketch
(where blue and red lines in Figure 3 are represented as
black and the background as white) similar to the input used
during pre-training. However, this single sketch represen-
tation inherently contains ambiguity since it combines the
major contour sketch (blue lines, denoted as S¢) indicat-
ing the general shape with other minor types of sketches
(red lines, denoted as Sp) capturing internal details (e.g.,
hair flow, clothes fold, wrinkles). This inherent ambiguity
is the primary factor that biases the pre-trained sketch en-
coder [36, 70] towards general shape, as illustrated in Figure
2. Therefore, in Stage II, optimizing the weights of a sketch
encoder using the single-sketch representation would still



result in ambiguous image editing (see Section 4.2).

To address this issue, we propose using a dual-sketch
representation that decomposes a given sketch .S into two
distinct types of sketches, namely S¢ and Sp as mentioned
above, for Stage II. Instead of merging S and Sp into a
single map and feeding it into a single encoder (see Supp),
we employ two separate sketch encoders to extract features
corresponding to each type of sketch individually. This con-
figuration enables us to capture more distinct and recogniz-
able features for S¢ and Sp, resulting in plausible perfor-
mance in decomposing shape and details, compared to the
setting of the single-sketch representation. The features ex-
tracted from both types of sketches are aggregated through
summation before being injected into the pre-trained T2I
model.

Masked Encoder. As our focus is sketching the concept
in the foreground, the sketch map .S often contains signif-
icant blank areas representing the background. Therefore,
fine-tuning the sketch encoder(s) on the entire map would
lead to overfitting the background regions not represented
in the sketch, consequently undermining the text-guided ed-
itability of the T2I model (see Figure 7). To address it, we
apply a foreground mask M to remove the background fea-
tures extracted from the encoder(s). The foreground mask
can either be generated automatically by filling a convex
polygon following S¢, or be manually drawn by users. In
summary, the sketch features are passed into the T2I model
Fm along with a prompt p,, containing the token [v] to de-
rive the fused features F. For Stage I, we denote it as:

Fi=FNS) M+ Fi(py).i€{1,2,3,4}, (1)
while for Stage II:
F' = (FiSc) + FalSp)) - M' + Fiu(po), ()

where F:(9) is the i-th layer sketch feature extracted by
the pre-trained encoder [36], while F¢(S¢) and Fi(Sp) are
dual sketch representations from the fine-tuned encoders,
and M is the resized mask fit to the feature size. We adopt
four layers of the features as used in [36].

Loss Function. To optimize the sketch concept, which
involves the embedding v and the weights of F. and F4, we
combine three types of losses for the text- and sketch-based
problem. Firstly, we utilize a classic diffusion loss with the
foreground mask M to reconstruct the target image regard-
ing appearance and geometry. This loss encourages the op-
timization to concentrate on the foreground object depicted
by the sketches, formulated as

‘Crec = Ez,t,v,fs,e H|6 - M — 60(Zt>t’pv’]:5) . Mm 5 (3)

where Fg denotes the sketch features in the two stages, and
€p is the denoising network of the T2I model. At each opti-
mization step, we randomly sample a timestep ¢ from [0, T']
and add noise € ~ N (0, 1) to the image latent 2 to be z; .

However, relying solely on the masked diffusion loss
may not provide sufficient constraints to ensure the faith-
fulness between the sketch and the generated image. For
example, certain parts depicted by the sketch would be lost,
or unexpected elements would be produced in the gener-
ated results, as shown in Figure 6. Motivated by previous
works [3, 10, 25] that leverage cross-attention maps of the
T2I model to control the layout and semantics of the target,
we propose a shape loss based on the cross-attention map
of the token [v]. The shape loss Lspqpe comprises a fore-
ground loss for guiding the concept shape to align with the
sketch depiction via M, and a background loss for penal-
izing foreground pixels that violate the background region.
We denote the shape loss as:

Lyg = [lnorm(Ag(z,v)) - M — M|, )
Lpg = mean(Ag(z¢,v) - (1 — M)), )
Eshape = ‘Cfg + Ebga (6)

where Ag(z;,v) is the cross-attention maps given the la-
tent z; and token [v]. norm(-) is to normalize the attention
map to [0, 1], while mean(-) computes the average attention
value of background pixels.

In addition, the two-stage optimization may cause the
fine-tuned embedding v to increase too large so that it over-
fits the reference shape, thus damaging the sketch editability
(see Figures 6 & 7). We, therefore, introduce a regulariza-
tion loss for the embedding via an L2 norm:

Lreg = 0]l )
In total, the loss function for the two stages is:
£total = E'rec + )\shapecshape + /\regcregp (8)

where we set the weights Asnape as 0.01 and A4 as 0.001
empirically.

Implementation Details. To avoid the method overfit-
ting a few training images, we adopt on-the-fly augmen-
tation tricks (horizontal flip, translation, rotation) on the
sketch-image pairs during optimization. Please find more
implementation details in Supp.

4. Experiments

We have conducted extensive evaluations to quantitatively
and qualitatively evaluate our method CustomSketching.
We first show the comparisons between our method and
the personalization baselines adapted to our proposed task.
Then, we evaluate the effectiveness of our settings via an
ablation study. We further conduct a perceptive user study
on the edited results by the compared methods. In addition,
we implement several applications based on our method to
show the usefulness of the extracted sketch concepts. Please
find more details, comparisons, and results in Supp.



ShaH

"a photo of [v] with a city in the background"

Original Image : Sketch DB-E TI-E MC-E

L T Lt S

"a photo of [v] with the Eiffel tower in the background"

: Sketch DB-E TI-E MC-E Ours

Figure 4. Comparisons of the results generated by our method and three adapted baselines, given the same text prompt and sketch. In the
sketch column, the top one is the annotated sketch corresponding to the original image for training while the bottom one is an edited sketch.

Dataset. Before comparisons, we prepare a dataset of
image-sketch pairs covering diverse categories (e.g., toys,
human portraits, pets, buildings). We first collect images
from the personalization works [21, 31] and the sketch-
based work [63]. Next, we invite three normal users with-
out any professional training in drawing to trace the im-
ages with separate contour lines Sc and detail lines Sp
and then edit several sketches initialized with one of the
traced sketches to depict a target object by changing its
shape, pose, and/or details. Following the general instruc-
tion that S depicts a coarse shape while Sp is inside the
shape, users decided Sc and Sp by themselves and drew
them consistently for training and testing to personalize the
sketch concept. Finally, we obtain 35 groups of concept
data. Each concept has 1-6 image-sketch pair(s) and 3-5
edited sketches. In total, the dataset contains 102 traced
sketches with the corresponding images for training and 159
edited sketches without paired images. Moreover, we em-
ploy ten prompt templates for each concept, e.g., “a photo
of [v] at the beach”, similar to [3]. Thus, the dataset includes
2,610=(102+159) x 10 sketch-text pairs (see Supp) for eval-
uation.

Metrics. We utilize prompt similarity, identity similar-
ity, and perceptual distance as evaluation metrics. Follow-
ing the prior work [3], the prompt similarity assesses the
distance between a text prompt and the corresponding pro-
duced images using CLIP model [43]. For computing, the
learned token [v] in the prompt is replaced with its class,

e.g., “a [v] in the office” is modified to “a woman in the
office”. The identity similarity measures how the method
preserves the object identity of the original image when the
context by text or the structure by sketch is changed. We
compute the metrics via DINO [9] features as Ruiz et al.
[48] did. Additionally, we evaluate the perceptual distance
via the LPIPS metric [71] for the reconstruction error re-
garding appearance and geometry between the ground truth
and the generated images given the traced sketches. For
identity similarity and perceptual similarity, we adopt the
masked version of the results and ground truth to focus on
the foreground parts depicted by sketches. Note that we
evaluate prompt and identity similarity on all the sketch-
text pairs while computing perceptual similarity only on the
traced sketches with their paired images.

4.1. Comparison

To our knowledge, we are the first work to extract sketch
concepts for image synthesis and editing. To fairly compare
our method with the existing personalization techniques, we
adapt two methods, TI [21] and DB [48], to fit our proposed
task by introducing a pre-trained sketch encoder [36] into
their methods when training and testing. Note that we do
not optimize the weights of the encoder for the two meth-
ods to keep their method intact mostly, and we thus only use
a single masked encoder to preserve the pre-trained prior.
The two methods receive the dual-sketch representation en-
coded in one map (i.e., 255 for S¢ and 127 for Sp) with a



Table 1. Quantitative comparisons for diverse methods.
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DB-E 0.641 0.889 0.182
TI-E 0.642 0.867 0214
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Single-sketch 0.622 0.908 0.146
W/0 Lshape 0.639 0.906 0.150
W/0 Lireg 0.618 0.909 0.142
w/o Masked F 0.620 0911 0.141
Ours | 0.632 0.912 0.134

mask to have the same inputs as ours. Besides the tuning-
based methods, we also compare our method with a tuning-
free method, MasaCtrl [8], which can work for sketch-based
editing. We directly adopt their released code that integrates
the sketch encoder [36] for comparison. All the compared
methods are based on SD v1.5 [47]. For simplicity, we refer
to the three baselines as TI-E, DB-E, and MC-E.

Figure 4 shows a qualitative comparison between our
method and the baselines. Although the editing results by
the three baselines are generally faithful to the structure
of the edited sketches, they could not preserve the iden-
tity or style of the objects/subjects in the original images.
Specifically, DB-E can reconstruct the original images with
sketches generally (see Supp), but when editing, it often
loses the details depicted by the edited sketch and the cor-
respondence between the sketch and target concept defined
by the training sketch-image pairs. TI-E cannot recover the
original identity in both reconstruction and editing since it
merely optimizes high-level text embedding. MC-E tends
to drift the result’s style from the original one. It is because
a) MC adopts a pre-trained sketch encoder with domain bias
as discussed in Sec. 1, and thus it could not work well for
novel sketch concept; b) this training-free method edits a
real image by inverting it to a latent space to leverage the
generative prior of a T2I model, but there is a domain gap
between the generated images and real images. Our method
outperforms the three baselines and maintains the original
identity and the sketch-image correspondence defined in the
sketch concept.

Table 1 presents the quantitative evaluation results in the
three metrics. It demonstrates our method achieves the best
identity preservation (identity similarity) and reconstruction
quality (perceptual distance). However, our method sacri-
fices slightly the prompt similarity since we focus on the re-
construction of the foreground object with Lgpqpe (see the
ablation study without Lp,4p.). Such sacrifice is acceptable
to trade off the concept re-creation and sketch faithfulness,
as shown in Figures 4 and 5.

Perceptive User Study. We performed a perceptive user
study including two evaluations: text editability study and
sketch editability study. We first prepared a subset (30 ran-

Figure 5. Box plots of the ratings in the perceptive user study.
Each value above the median line is the average rate for each
method. The higher, the better.

domly picked concepts, 15 for prompt similarity, 15 for
sketch faithfulness) of our collected dataset. For text ed-
itability, we produced the results by the three baselines and
our method given a traced sketch and a prompt randomly
picked from one concept. A participant was given a refer-
ence image, a prompt (e.g., “a photo of the boots in the ref-
erence image in the snow”), and the four generated results
in random order. We asked the participants to rate “How
the result is consistent with the prompt” on a Likert scale
of 1-5 (the higher, the better). For sketch editability, we
presented each participant with a reference image with the
traced sketch, an edited sketch, and four results (in random
order) and required them to rate “How the result is faithful
to the edited sketch and consistent with the reference iden-
tity”. From 40 participants, we received 600 responses for
each method in each evaluation. As shown in Figure 5, the
user study reflects the superiority of our method to the base-
lines in both evaluations.

4.2. Ablation Study

We ablated one of the key settings of our method to validate
their effectiveness, including 1) w/ single-sketch represen-
tation; 2) w/o shape 10ss Lpqpe; 3) W/o regularization loss
Lycq; 4) w/o masked encoder F. As shown in Figure 6, us-
ing the single-sketch representation could not provide suf-
ficient constraints on shapes (e.g., the castle and bear toy)
and details (e.g., the woman’s clothes), damaging the iden-
tity preservation. Removing Lqp. Would produce redun-
dant parts and weaken the concept reconstruction. Without
Leq, the method would overfit to the original shape and
worsen the sketch editability (see Figures 6 & 7). Addition-
ally, removing either £,., or the masked 7 would affect a
lot the text editability for background, shown as Figure 7.
It is because L., can prevent the global embedding from
enlarging significantly to outweigh the background token,
while the masked F can filter out the local background fea-
tures from the empty region of the sketch. The quantitative
results in Table 1 further confirm the above conclusions.
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Figure 6. Comparisons of our results and those by the ablated variants, given the text prompt “A photo of [v] floating on top of water”.
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Figure 7. Comparisons of the results by ours and the ablated vari-
ants using one edited sketch and diverse prompts indicating differ-
ent contexts. The prefix of the prompt is “A photo of [v] ...”.

4.3. Applications

We implemented four applications enabled by our method:
local editing, concept transfer, multi-concept generation,
and text-based style variation. We showcase the applica-
tions in Figure 8 to demonstrate the effectiveness and ver-
satility of CustomSketching. Please refer to Supp for the
implementation details for each application.

Local Editing. After extracting a sketch concept from
reference image(s), we can perform local editing on the
original images, including modification, addition, and re-
moval. To keep the unedited region intact, we incorporate
our method with an off-the-shelf local editing method by
Avrahami et al. [4]. Users can edit the training sketch and
provide a mask for the region they want to manipulate for
fine-grained local editing (see Figure 8 (a)).

Concept Transfer. Given different concepts separately
learned from the corresponding sketch-image pairs, our
method can transfer between the concepts ([S;]={[v;], F:})
with similar semantics via sketches. Figure 8 (b) shows an
example of hairstyle transfer. Note that we also resort to [4]
for local transfer.

Multi-concept Generation. For multi-concept gener-
ation, prior works [3, 31] need to fine-tune the model on
all the concepts desired in generation jointly. Unlike these
works, which optimize the entire denoising network, we
only optimize [v] and F for one concept. This lightweight
setting enables our method to achieve plug-and-play multi-
concept generation by separately learning each concept and
then combining them freely without extra optimization.
Figure 8 (c) presents two cases of the combinations among
three extracted sketch concepts ([S1], [Sa], [S3])-

Text-based Style Variation. Our method decouples
global semantics and local features of a reference image
to a textual token [v] and a sketch encoder F. Thus, our
method can be used to produce diverse style variations of
the target object while preserving its geometry (shape and
details), as shown in Figure 8 (d). To this end, our method
takes as input the sketch (regarded as an intermediate rep-
resentation of object geometry) and a style prompt with-
out [v] (e.g., “a crayon drawing”) to control the target style.
We compare our method with PnP [54], a text-based image-
to-image translation method, by feeding a masked image
with the style prompt to this method. Thanks to the given
sketch, our method can better disentangle the geometry and
style, thus offering more user controllability and flexibility
via sketching.
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Training Data

(a) Local Editing

(b) Concept Transfer

(¢) Multi-concept Generation

’gald 3D "acrayon drawing" "flat cartoon
rendering style" illustration style"

NAX

PnP

(d) Style Variation

Figure 8. Four applications enabled by our CustomSketching. For
(c), the template of the prompt is “A photo of [S;] in an office”.

Prompt: "a photo of [v] in the jungle"

Figure 9. One failure case of our method. Our method could not
change the car’s tiny details by sketching thin strokes.

5. Conclusion and Discussion

We proposed CustomSketching, a novel approach to extract
sketch concepts for sketch-based image synthesis and edit-
ing based on a large T2I model. This method decouples
reference image(s) into global semantics in a textual token
and local features in two sketch encoders. We presented
a dual-sketch representation to differentiate the shape and
details of one concept. In this way, our method empow-

ers users with high controllability in local and fine-grained
image editing. Extensive experiments and several applica-
tions have shown the effectiveness and superiority of our
proposed method to the alternative solutions. We will re-
lease the dataset and code to the research community.
While our method improves the controllability and flex-
ibility of the personalization task, it has several limitations.
First, inherited from latent diffusion models, our method
processes images in a low-resolution latent space (64 x64).
It thus struggles to control an object’s tiny shape and details
by sketching thin strokes. As shown in Figure 9, the car’s
details could not be changed following the edited sketch.
Another limitation is the learning efficiency. Currently, our
method requires almost 30 mins to learn one concept for
two-stage optimization. In the future, we may use fast per-
sonalization techniques [23, 28] to address this issue.
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CustomSketching:
Sketch Concept Extraction for Sketch-based Image Synthesis and Editing

Supplementary Material

6. Dataset

Figure 19 shows a thumbnail of our created dataset, cov-
ering diverse object categories. For each object regarded
as one concept, we invited three normal users without any
professional training in drawing to trace separate contour
lines S¢ and details lines Sp over the reference images.
One training sketch traced over an image generally cost 30s-
2min for an amateur, while a testing one cost less than 1min.
The sketch-image pairs are with purple borders in Figure
19. Note that each concept has 1-6 image-sketch pair(s) for
training, where the concepts of human portrait and clothing
only have a single pair. Then, the users were asked to create
3-5 edited dual sketches (with yellow borders in Figure 19)
initialized from one of the traced sketches or drawn from
scratch. In this way, we created the concepts with different
fine-grained attributes (shape, pose, details) from the refer-
ence images, represented by the edited sketches. For each
traced or edited sketch, we used a polygon filling method
(implemented via OpenCV v3) to automatically generate a
foreground mask following S¢. The automatically gener-
ated masks were generally accurate but the annotators were
allowed to manually refine the masks if necessary. Finally,
we obtained 35 groups of concept data, with 102 traced
sketches with paired images, 159 edited sketches, as well
as foreground masks corresponding to both sketches. Sim-
ilar to [3], we set up ten prompt templates with the learned
textual token [v] as follows:

* “A photo of [v] at the beach”

* “A photo of [v] in the jungle”

* “A photo of [v] in the snow”

* “A photo of [v] in the street”

* “A photo of [v] on top of a wooden floor”

* “A photo of [v] with a city in the background”

* “A photo of [v] with a mountain in the background”

* “A photo of [v] with the Eiffel tower in the back-

ground”

* “A photo of [v] floating on top of water”

* “A photo of [v] in an office”

Therefore, we have 2,610 = (102+159)x 10 sketch-text
pairs for evaluation.

7. Implementation Details

Our method and all the compared baselines were based
on Stable Diffusion v1.5 [47]. A training image and its
corresponding sketch were both resized to 512x512. The
sketch features extracted from a sketch encoder F were in-
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jected into four layers of the encoder of the denoising U-
net, with resolutions of 64, 32, 16, and 8, following the
settings of [36]. For the optimization of Stage I, we only
fine-tuned a newly added textual token [v] with a learn-
ing rate of 5e~4. The token was initialized using the class
name of the target concept, e.g., “toy” for the toy ob-
ject. The sketch encoder for Stage I is a pre-trained model
(R2iadapter _sketch_sd15v2) from [36] with frozen weights
during optimization. For Stage II, we jointly optimized the
token [v] and two sketch encoders with a small learning
rate of 2e%, similar to [3]. The weights of the two sketch
encoders were initialized with those of the pre-trained one
[36] used in Stage I. During training, a text prompt as in-
put was randomly selected from the list of text templates
in [21], while during testing, the prompt was picked from
our created dataset. Empirically, we trained each stage
in our experiment for 400 steps (batch size=16) using the
Adam solver via the PyTorch framework. We randomly
augmented (with the probability of 0.5) the training data
by translating each sketch-image pair in the range of [-
0.2,0.2], rotating it in the range of [-45°,45°], and horizon-
tal flip. We trained and tested our method CustomSketch-
ing on a PC with Intel 19-13900K, 128GB RAM, and a sin-
gle NVIDIA GeForce RTX 4090. The two-stage optimiza-
tion took around 30 mins, while one pass inference (DDPM
sampling with 50 steps) cost around 3s.

We used cross-attention maps in each layer of the denois-
ing U-Net to compute shape loss Lspqp.. Following Hertz
etal. [25], we combined and averaged all the cross-attention
maps Ag(z:,v) of the token [v]. The different layers of
the attention maps with diverse resolutions were resized to
16 x 16 for computation.

8. Experiments

Comparisons with SOTAs. In the main text, we adapted
DB [48] and TI [21] with a pre-trained sketch encoder [36]
to fit the task of sketch concept extraction, refer to DB-E
and TI-E. Since DB learned a novel concept by binding a
unique identifier (e.g., “sks”) with a specific subject in a
text prompt, we provided a text prompt like “a photo of a
sks toy” for the toy category for training and testing. Note
that the weights of the sketch encoder in DB-E and TI-E
were frozen to keep the two methods intact mostly. In the
Supp, we further adapted DB and TI with two learnable
sketch encoders fed with the dual-sketch representation as
ours did, respectively referring to DB-FE and TI-FE. Con-
sidering vanilla DB might have enough capacity to learn a
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Figure 10. Qualitative comparison between ours and vanilla DB with a pre-trained sketch T2I-adapter (DB/E). The results show DB/E fails

in correctly reconstruction and editing the reference image.

concept without sketch condition, we also separately com-
pared our method with vanilla DB (denoted as DB/E), i.e.,
training vanilla DB for one concept and testing it with a pre-
trained T2I-adapter (without fine-tuning). Fig. 10 shows
two evaluation results on the sketch with only S (DB/E
(S¢)) and the sketch with both types (DB/E (.5)). It can be
easily found that DB/E fails to correctly reconstruct the con-
cept without sufficient sketch constraint and edit the concept
using detail strokes due to the domain gap existing in the
pre-trained sketch encoder. The above tuning-based meth-
ods (DB/E, DB-FE, DB-E, TI-FE, TI-E) had the same train-
ing parameters and augmentation tricks as ours.

For tuning-free methods, we compared our method with
MS-E [8] in the main text, but we found it often drifted the
original style of the reference images due to the gap be-
tween the generated images and real images. A follow-up
work, RIVAL [72], was proposed to alleviate such a gap.
RIVAL employed a pre-trained ControlNet [70] to enable
sketch-based editing for real images. We also compared
our method with the sketch-based version of RIVAL (de-
noted as RIVAL-E) by directly using their released code.
The tuning-based methods consist of an inversion step and
an inference step. For the inversion step, we provided a
reference image with the traced sketch and a text prompt
(e.g., “a photo of a toy” for the toy category), while for
the inference step, we provided an edited sketch with a tar-
get prompt (e.g., “a photo of a toy in the snow”). Note
that for the tuning-free methods, we used the single-sketch
representation for the sketch input to make the method com-
patible with the prior of the pre-trained sketch encoder. We
used the same random seed (seed=42) for our method and
all the above baselines during inference.

Figure 20 shows more qualitative comparisons. It
demonstrates that our method performs better in sketch- and
text-based editing while preserving the annotated object’s
original identity compared to all the baselines. DB-FE, TI-
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Table 2. Quantitative comparisons for diverse methods.

Method \ Prompt 1 Identity T Perceptual |
DB/E (S¢) 0.647 0.868 0.202
DBJ/E (S5) 0.647 0.870 0.196
DB-FE 0.642 0.879 0.192
DB-E 0.641 0.889 0.182
TI-FE 0.634 0.906 0.165
TI-E 0.642 0.867 0.214
RIVAL-E 0.627 0.899 0.151
MS-E 0.633 0.884 0.16
Single-encoder 0.623 0.910 0.142
Single-sketch 0.622 0.908 0.146
W/0 Lshape 0.639 0.906 0.150
W/0 Lyeg 0.618 0.909 0.142
w/o Masked F 0.620 0.911 0.141
w/o Stage | 0.632 0.904 0.164
Ours [ 0.632 0.912 0.134

FE, and RIVAL-E can improve the reconstruction quality
a little in appearance and geometry, respectively compared
to DB-E, TI-E, and MS-E. However, the three methods still
could not achieve satisfactory editing results. The quanti-
tative results could also reflect such a tendency (see Table
2).

Ablation Study. Figure 21 shows more results for com-
parisons between our method and the ablated ones men-
tioned in the main text. We show two more ablated vari-
ants here: 1) adopting a single encoder in Stage II with the
dual-sketch representation, i.e., merging Sc and Sp into
one sketch map as input; 2) w/o Stage I, i.e., only jointly op-
timizing a newly added token and the two sketch encoders.
As shown in Figure 21 and Table 2, the single-encoder set-
ting could not effectively differentiate shape and details,
thus causing worse sketch faithfulness and identity preser-
vation than ours. Removing Stage I results in unsatisfactory
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Figure 11. Diverse results given different sketches with the same text prompt and random seed.
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Figure 12. Multiple random seeds with the same text and sketch for sampling diverse results.

reconstruction since the setting would mislead the optimiza-
tion in disentangling the global semantics into [v] and local
features into F. Table 2 also confirms such a conclusion
(see the identity similarity and perceptual distance).

Robustness Evaluation. We show the robustness of our
method from two aspects: 1) Inputing sketches differ-
ent from the training samples. Our method can effec-
tively avoid the T2I-adapter overfitting on given sketches
thanks to our optimization settings, thus tolerating sketches
different from the training data. This is why our method
can be successfully applied to concept transfer (see Main-
text Figure 8 & Figure 16). Figure 11 shows more results
given two cases of different sketches, i.e., sketches from
other concepts and low-quality sketches. 2) Multiple Ran-
dom Seeds. We show diverse results given multiple random
seeds with the same text and sketch (Figure 12). Since the
foreground object is conditioned on the text and sketch, de-
noising with different seeds mainly varies the background
generation, and our method can perform stable to make sure
the foreground object is always faithful to the sketch given
diverse seeds.

9. Applications

We implemented four applications enabled by our CustomsS-
ketching. Below, we show more results and the implemen-
tation details.

Local Editing. Incorporating [4], our method can be
applied to local image editing, which allows users to edit
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a local region of a given real image via sketching while
keeping the unedited region intact. Figure 14 shows the
pipeline of such an application. After extracting a novel
concept [S]={[v], F} given reference sketch-image pair(s),
users can provide a blending mask Mp and a part sketch
inside the mask to indicate an editing input. Then, our
method blends the local sketch with the original sketch to
be an edited sketch S fed into the learned dual-encoder F.
Given the extracted sketch feature and a prompt “a photo
of a [v]”, the denoising U-Net produces a foreground latent,
which is blended with the background latent inverted from
the original image via Mp, to achieve the final editing re-
sult. The two latents are blended during all the inference
time steps (1'=50). Figure 15 presents more local editing
results for human portrait manipulation (Top) and virtual
try-on/clothing design (Bottom).

Concept Transfer. Our method can transfer the learned
concepts locally or globally to a target object with similar
semantics, as shown in Figure 16. Similar to the pipeline
of local editing (Figure 14), users may provide an editing
input to indicate local shape or structure to transfer a target
concept [S].

Multi-concept Generation. Given a set of the extracted
sketch concepts {S;}={[v;], F;}, our method can directly
combine them without extra optimization. Figure 17 shows
the pipeline of multi-concept generation implemented by
our method. Given an input sketch annotated with diverse
concepts, our method divides it into separate sketches fed



"[81] and [Sa] with a mountain
in the background"

" [S1]and [S2] and [Ss]
in an office"

.
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Figure 13. Additional results of multi-concept generation enabled
by our method. The prefix of the text prompt is “a photo of ...”.

into their corresponding dual-encoder F;. Then, the ex-
tracted features are masked respectively using M; and then
aggregated together by summation, finally injected into the
pre-trained T2I diffusion model. The given prompt is in
the format of “[v1] and [vs] ... and [v;]” to cover multiple
concepts. Figure 13 shows more results of multi-concept
generation.

Text-based Style Variation. Our method decouples
global semantics and local features of a reference image
to a textual token [v] and a sketch encoder F. Thus, our
method can be used to produce diverse style variations of
the target object while preserving its geometry (shape and
details), as shown in Figure 18. To this end, our method first
extracts a concept [S|={[v], F} from sketch-image pair(s).
Then, it takes as input the sketch (regarded as an inter-
mediate representation of object geometry) fed to F and a
style prompt without the learned [v] from the original image
(e.g., “a crayon drawing”) to control the target style. We
compared our method with PnP [54], a text-based image-to-
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image translation method, by feeding a masked image (only
with a foreground object) to this method. PnP consists of
an inversion step and an inference step. For comparison,
we provided an initial prompt (e.g., “a photo of a toy” for
the toy category) for inversion and a style prompt (e.g., “a
crayon drawing of a toy”) for inference to change the object
style. Thanks to the given sketch, our method better dis-
entangles the geometry and style, thus offering more user
controllability and flexibility via sketching.
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Figure 14. The pipeline of local editing enabled by our method.
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Training Sketch-image Pair Original Image Editing Input Editing Result Original Image Editing Input Editing Result

Figure 15. Additional results of local editing enabled by our method. The top row is for human portrait manipulation (removing the glasses
and changing the hair region), while the bottom row is for virtual try-on and clothing design.
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Target Concept Edited Sketch Transfer Result Target Concept Edited Sketch Transfer Result

Figure 16. Additional results of concept transfer enabled by our method. The left half shows examples of local concept transfer for adding

a beard (Top) and adding a hair bun (Bottom). The right half shows examples of global concept transfer for changing the object semantics
while preserving its shape and pose.
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Figure 17. The pipeline of multi-concept generation enabled by our method. Separately learning each concept (a), our method can directly
combine them for multi-concept generation during inference (b) without extra fine-tuning.

| "golden 3D "flat cartoon "golden 3D "flat cartoon

Input 1 "made in wooden" rendering style" "a crayon drawing" illustration style" Input "made in wooden" rendering style" "a crayon drawing" illustration style"

PnP
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Figure 18. Comparisons of the results by our method and PnP [54] for text-based style variation.
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Figure 19. A thumbnail of our created dataset for training and testing. The pairs of reference images and the corresponding traced sketches
are with purple borders, while the edited sketches are with yellow borders.
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Figure 20. Comparisons of the results generated by our method and the adapted state-of-the-art methods, given the same training data

(sketch-image pairs in Columns 1 & 2), edited sketch (Column 3), and text prompt (at the bottom of each group of results).
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"a photo of [v] at the beach"

"a photo of [v] in an office"

Figure 21. Comparisons of the results generated by our method and the ablated variants, given the same training data (sketch-image pairs
in Columns 1 & 2), edited sketch (Column 3), and text prompt (at the bottom of each group of results).
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