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Abstract. Region is a fundamental element of various cartoon anima-
tion techniques and artistic painting applications. Achieving satisfactory
region is essential to the success of these techniques. Motivated to assist di-
versiform region-based cartoon applications, we invite artists to annotate
regions for in-the-wild cartoon images with several application-oriented
goals: (1) To assist image-based cartoon rendering, relighting, and cartoon
intrinsic decomposition literature, artists identify object outlines and elim-
inate lighting-and-shadow boundaries. (2) To assist cartoon inking tools,
cartoon structure extraction applications, and cartoon texture processing
techniques, artists clean-up texture or deformation patterns and empha-
size cartoon structural boundary lines. (3) To assist region-based cartoon
digitalization, clip-art vectorization, and animation tracking applications,
artists inpaint and reconstruct broken or blurred regions in cartoon im-
ages. Given the typicality of these involved applications, this dataset is
also likely to be used in other cartoon techniques. We detail the chal-
lenges in achieving this dataset and present a human-in-the-loop workflow
namely Feasibility-based Assignment Recommendation (FAR) to enable
large-scale annotating. The FAR tends to reduce artist trails-and-errors
and encourage their enthusiasm during annotating. Finally, we present
a dataset that contains a large number of artistic region compositions
paired with corresponding cartoon illustrations. We also invite multiple
professional artists to assure the quality of each annotation.
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1 Introduction

Starting from the composition impression within traditional on-paper drawing
crafts, and popularized in fashion strategies beyond modern digital creation
workflows, the fundamental art element “region” continuously contributes to
the distinctive feeling and unique style beyond multifarious artworks. Nowadays,
diversified cartoon processing techniques and commercial cartoon animation
workflow facilitate the usage of such important regions.

Aimed at assisting various cartoon image processing techniques, we invite
artists to manually annotate regions in cartoon illustrations and digital arts. We
observe the demands of real-world cartoon creation workflows and diversiform
professional cartoon editing software, and our motivation is based on the demands
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Fig. 1. Example of our region annotating principles created manually by artists.

of related applications. To be specific, we encourage artists to achieve the following
application-oriented goals.

Firstly, artists are encouraged 3 to produce object outlines and objects’ surface
regions by distinguishing and eliminating lighting-and-shadow boundaries. The
motivation is to aid in a variety of cartoon rendering/relighting [47, 16] and
illumination decomposition [5, 2] applications that require the painted object
surfaces to be segmented into independent regions, whereas the edges of light and
shadow should not interfere the segmentation. Artists can identify these patterns
manually, e.g ., in Fig. 1-(a), artists outline the boy face and erase the shadow
edge, and these manual data are helpful for algorithms to identify object edges
and shadow edges.

Secondly, artists are encouraged to clean up texture or deformation patterns
and emphasize cartoon structural lines. The motivation is to help an increasing
number of line inking [43, 41, 42] and sketch-based editing [56, 48, 38] tools that
are dedicated to achieving cartoon lines faithful to artist perception, plus tex-
ture removal [54, 11] and structure extraction [28] scenarios that are aimed at
eliminating texture patterns and tones. Artists can determine salient structures
and texture patterns in illustrations, e.g ., in Fig. 1-(b), artists trace the cloth
structure and erase the folding texture, and these data created by artists manually
are technically useful.

Thirdly, artists are encouraged to reconstruct, reorganize, and inpaint vague,
broken, or missing regions in illustrations. The motivation is to assist a majority
of cartoon digitization [27], cartoon topology construction [14, 35], and cartoon
or clip-art vectorization [57] workflows, where the cartoon regions are required to
be separated as completely as possible, and simultaneously, the closure of these

3 Although we encourage artists to follow these suggestions, they are not absolutely
constrained to do so, in order to capture a realistic distribution of artistic region
compositions.
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regions has to be ensured. Many in-the-wild illustrations have missing, broken, or
blurred regions, e.g ., in Fig. 1-(c), the ambiguous hair structure is troublesome
for vision techniques to interpret, whereas artists can distinguish and manage
these regions from human perception.

More importantly, we would like to point out that, given the typicality
of the mentioned applications, our dataset is also likely to be used in many
other cartoon processing techniques. This is not only because that region is
an ubiquitous element in cartoon image processing and this dataset enables
many problems to be studied in a data-driven manner, but also because that
the availability of the manual data created by real artists is likely to facilitate
researches to study the artist perceptual vision in various scenarios, e.g ., to study
how artists compose the regions when creating their artworks.

To this end, we elaborate the challenges in achieving this dataset, and propose
the Feasibility-based Assignment Recommendation (FAR) workflow to enable
large-scale annotating. We also present a brief examination where we study the
performance of applications using this dataset in many tasks including animation
tracking, cartoon intrinsic decomposition, and sketch colorization.

2 Background

Related datasets. Many computer vision or graphics datasets exist in the field
of cartoon and creative arts. For example, [61] is a dataset with sketches of
semantic segmentations, [21] is a clip-art dataset with class labels, [52] provides
artistic images with attributes, [40] is for artistic renderings of 3D models with
computer-generated annotations. [36, 3] are existing tools and strategies to collect
large datasets of segmented images. [6] discusses how to combine crowd-sourcing
and computer vision to reduce the amount of manual annotations. [34, 19, 60] are
proposed as applications for these datasets.

Cartoon image segmentation. Previous cartoon image segmentation problems
are routinely solved within two paradigms. The first paradigm [57, 17, 12] is to
handcraft region priors and solve the regions using traditional algorithms. The
second paradigm [28, 20, 55] is to synthesize task-specific datasets and train neural
networks with the synthesized data. Our dataset enables the third paradigm:
addressing the cartoon image segmentation problem with full access to real data
from professional artists in a data-driven manner.

Region-based cartoon application. Various cartoon applications can benefit from
our artist annotated regions. Firstly, cartoon image segmentation methods [57] and
clip-art vectorizing applications [27] can use a learning-based backend trained on
our dataset. Then, manga structure extraction [28], cartoon inking [43, 41, 42], and
line closure [29, 30] literatures can also benefit from our region boundaries. Besides,
a data-driven region extraction model can be used in cartoon image editing and
animating [45]. Moreover, our regions can be used in proxy construction [47,
16] to achieve nonphotorealistic rendering. When applied to animations, our
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Fig. 2. Selected annotations from professional artists and the corresponding annotating
time. We show perceptually satisfying results that are carefully selected from the
dataset.

region data can benefit cartoon tracking problems like [59]. Our object boundary
annotations can assist cartoon intrinsic decomposition [5, 2]. Finally, artistic
region compositions can be applied to line drawing color filling applications [56,
48, 46], or cleaning up the color composition in existing illustrations [18].

Photography segmentation and region evaluation metrics. Although the other
“photography” segmentation problems are also extensively studied in non-cartoon
image processing works [53, 1, 12, 17, 32, 13, 39], a dominant majority of cartoon
processing literatures [30, 43, 41, 28, 42, 29] have reached the consensus that those
photography segmentation methods are far from satisfactory when handling
cartoons. Nevertheless, the photography region evaluation metrics are still techni-
cally rooted and effective when applied to cartoon region datasets. We build our
benchmark upon those standard region evaluation metrics and make it consistent
to previous region processing literatures.

3 The DanbooRegion Dataset

We introduce a dataset of illustration and region annotation pairs. Specifically,
each pair consists of an in-the-wild illustration downloaded from the Danbooru-
2018 [15], accompanied by a region map of all pixels marked with a limited number
of mutually exclusive indices indicating the structural regions in the original
illustration. All samples are provided as RGB images at 1024-px resolution and
8-bit depth, and the region maps are provided as int-32 index images.

The major uniqueness of the presented dataset is that our annotations are
carefully created by 12 professional artists. We show several cherry-picked ex-
amples in Fig. 2. Our annotations have achieved several results. Firstly, artists
produce object outlines and objects’ surface regions free from shadow or highlight
interference, as shown in Fig. 2-(a,f). Secondly, artists clean up the texture or
deformation patterns to obtain structural boundary lines, as shown in Fig. 2-(b,c).
Thirdly, artists reconstruct, reorganize, and inpaint the broken or vague regions in
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illustrations, as shown in Fig. 2-(d,e). As we have mentioned before, these results
can benefit various cartoon applications like cartoon intrinsic image, relighting,
coloring, inking, shading, vectorizing, tracking, and so on.

We take special care of the annotation quality. Our dataset consists of 5377
region annotation pairs, and the quality of each sample is assured by at least 3
professional artists. In general, 2577 annotations are acknowledged by 5 artists
as usable, 1145 annotations are assured by 4 artists, and the remaining 1655
annotations are assured by 3 artists. Furthermore, from the perspective of annota-
tion approach, 154 annotations are painted by artists manually, 146 annotations
are collected by aligning and refining publicly available online illustration and
line drawing pairs, and the remaining 5077 annotations are achieved using a
human-in-the-loop annotation approach. The high-quality region annotations
are perceptually satisfying and practically applicable to diversiform downstream
tasks related to illustration, cartoon, manga, and painting.

4 Feasibility-based Assignment Recommendation

The objective of our data collection is to gather a large number of illustrations
with paired region annotations. Those regions should be either created by artists
manually, or coarsely generated by algorithms and then carefully refined by artists.
All region annotations must be acknowledged by multiple professional artists
as practically usable. Our source illustrations are downloaded from Danbooru-
2018 [15] and 12 artists are invited as our annotators. To reduce artist labor, we
use a human-in-the-loop workflow: artists create annotations for neural networks
to learn, and neural networks estimate coarse annotations for artists to refine.

In order to benefit related applications by achieving our aforementioned goals,
we have to face several problems. Firstly, when annotating cartoon object outlines
and objects’ surface regions, we find many downloaded illustrations are of low
quality, and do not have decent and worthwhile object outlines for artists to
annotate. Secondly, when cleaning up the texture or deformation patterns and
emphasizing cartoon structural lines, we find many sampled images are not related
to cartoon, and their texture patterns or structure lines are not suitable for the
dataset. Thirdly, when reconstructing, reorganizing, and inpainting the broken
or vague regions, we find many illustrations have too many regions, which are
impractical and cannot be annotated within an acceptable amount of time. We
provide examples in later experiments, where we also show that these problems
can disable large-scale annotating because manually solving these problems can
significantly waste artists’ labor and discourage their enthusiasm.

These problems are non-trivial because of the following reasons. (1) These
problems are caused by a large number of intertwined factors, which require
huge efforts if engineered one-by-one independently. For example, to identify
low-quality or non-cartoon images, the intertwined factors may include color
distribution, shape geometry, texture style, semantic feature, and much more.
(2) It depends on human perception to determinate whether an illustration
can be annotated. For example, there is no fixed threshold to determine how
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many regions should be considered as impractical to annotate. (3) The involved
problem modeling requires assumptions or prior knowledge, making it foreseeably
challenging for feature engineering approaches to discriminate illustrations that
are not suitable for our dataset.

We present an interactive solution: neural networks learning artist behaviors.
Corresponding to the above reasons, our solution has several advantages: (1) It
is a joint solution that does not model the intertwined factors independently. (2)
It involves human perception. (3) It learns the dataset priors in a data-driven
manner. To be specific, we allow artists to give up several types of illustrations
during the annotating workflow, and train neural networks to learn artists’ giving-
up behavior. Firstly, we allow artists to give up low-quality illustrations with
no worthwhile object outlines and objects’ surface regions. Secondly, we allow
artists to give up non-cartoon images without cartoon texture and cartoon inking
lines. Thirdly, we allow artists to give up illustrations with too many regions that
are impractical to reconstruct, reorganize, or inpaint. Simultaneously, we label
these given-up illustrations as “infeasible” and the remaining illustrations as
“feasible”. We train neural networks with these “feasibility” labels to characterize
future illustrations. We name this workflow after Feasibility-based Assignment
Recommendation (FAR).

As shown in Fig. 3, the FAR architecture has unique purposes. Firstly, to
improve object outline and surface region annotation quality, we need to discard
low-quality illustrations as adequately as possible. Therefore, instead of applying
a fixed threshold to the CNN output, we rank a batch of illustrations and
only view the best one as feasible. Secondly, to aid in cartoon structural region
annotating and cartoon texture eliminating, the non-cartoon images should be
recognized accurately. Thus, we use the features from different convolutional
layers to achieve a reliable multiple-scale estimation. Thirdly, to assist artists to
reconstruct broken or vague regions, we need to avoid impractical images with
too many regions to annotate. Accordingly, we use the global average pooling to
approximate global counting operations in deep convolutional features.

Overview. As shown in Fig. 3, we use a CNN to rank the illustration feasibility
and give artists the best one. Then, we record whether that assignment is finished
(then labeled as positive) or given up (then labeled as negative), and train
the CNN with the recorded labels. In this way, the FAR model is optimized
progressively to recommend artists with feasible illustration assignments.

Generating assignment. Each time when an artist queries a new assignment,
we randomly sample 100 illustrations in Danbooru and rank their feasibility.
Then, we feed the best illustration to the Coarse CNN (Fig. 3) to get a coarse
annotation. After that, the illustration and coarse annotation are packaged into
an assignment for the awaiting artist. Herein, the Coarse CNN is a U-net [37]
trained with the region-from-normal approach.

Normal-from-region transform. As shown in Fig. 4, given an input region anno-
tation X, the normal-from-region transform is aimed at produce a transformed
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Fig. 3. Feasibility-based Assignment Recommendation (FAR) workflow. We show the
neural network architectures and the visualized components within the FAR workflow.

map Y , which is a concatenation of a normal map N and a watershed marker
W . The transform includes the following steps: Step 1: Compute the boundary
of the region annotation X to get the boundary map B. Step 2: Compute the
Zhang-Sun-Skeleton [58] of the region annotation X to get the skeleton map
S. Step 3: Initialize a random field Drand. If one pixel belongs to boundary in
B, that pixel will be marked as zero. If one pixel belongs to skeleton in S, that
pixel will be marked as one. The remaining pixels are be marked with random
value sampled from random uniform distribution between zero and one. Step 4:
Optimize the random field Drand to get the displacement map D. We uses a
routine Gaussian energy

Edisplacement =
∑
p

||(Drand)p − (g(Drand))p||1

+
∑

i∈{i|Bi=1}

||(Drand)i − 0||1

+
∑

j∈{j|Sj=1}

||(Drand)j − 1||1 (1)

where p, i, and j are possible pixel positions, g(·) is a Gaussian (sigma is 1.0)
filter, and || · ||1 is the L1 Euclidean distance. This energy can be flexibly solved
by gradient descent. Step 5: Compute the normal map N using the displacement
map D. We use a standard normal-from-height [25] algorithm to achieve the
normal. Step 6: Compute the watershed marker W by binarizing the displacement
map D. We use the threshold 0.618. Step 7: Concatenate the normal map N
and the watershed marker W into the final output Y .

Region-from-normal transform. Given the concatenated Y , we split it into
the normal map N and the watershed marker W . After that, we run the
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Random field ( Drand ) Displacement map ( D ) Normal map ( N ) Watershed marker ( W )Illustration Region annotation ( X ) Boundary map ( B ) Skeleton map ( S )

Fig. 4. Visualization of involved maps in the region-normal transform algorithms.

watershed [33] with the marker W filling the map N . The results are the
reconstructed regions. Note that when the marker W is predicted from neural
networks, e.g ., the Coarse CNN, we may use morphology methods to remove
some possible noise. In particular, we enforce all white regions in W to be bigger
than 64 connected pixels.

Handling assignment. Artists are allowed to give up any assignment, and in this
case, the assignment feasibility is labeled as “0”. Otherwise, the feasibility is
labeled as “1”, and artists refine the coarse annotations. Firstly, artists refine the
region estimation to outline object surface regions free from lighting-and-shadow
boundaries. Secondly, artists eliminate texture and emphasize cartoon structural
lines in the estimated coarse regions. Thirdly, artists retouch the region estimation
to reconstruct, reorganize, and inpaint broken or vague regions in the original
illustration.

Instructions given to the artists. We present an artist guidelines in the supple-
mentary material. The artists draw regions following their daily digital painting
region composition workflow and the principles in §1. Herein, the digital painting
region composition workflow refers to the workflow where artists compose there
regions before drawing an illustration or filling colors in an artwork. We provide
several on line resources of such workflow in the reference [7, 31].

Initialization. We manually collect 300 low-quality or non-cartoon images as
infeasible labels, and then collect another 300 feasible illustrations. In the feasible
illustrations, 154 are high-ranking artworks in Danbooru, and 12 artists annotate
them manually. The remaining 146 are cartoon images paired with line drawings
searched with Google Images, enabling artists to directly align and refine the
boundary lines into usable regions.

Detailed workflow. At the beginning, we use the initial 300 feasible labels and
300 infeasible labels to train the FAR ranking network for 25 epochs, and use
the 300 initial annotations to train the Coarse CNN for 20 epochs. After that,
we view 100 annotations as one loop. When each loop is finished, we train FAR
ranking network and Coarse CNN on the new data for 50 epochs, and train
them on all old-and-new data for 20 epochs. We use Adam [26] (lr = 5e− 4) for
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17m24s 22m13s 23m04s 14m57s
Artist#1:

15m04s 14m45s 5m 7m 32m41s 5m46s
Artist#2:

35m42s 15m55s 14m41s 8m34s
Artist#3:

time

New (or change) assignment Finish assignment Give up assignment Wasted time Effective time Other time

Artist Wasted time

#1 53m (70.13%)
#2 46m (58.97%)
#3 37m (51.39%)

Fig. 5. Visualization of a naive annotation workflow by simply asking artists to handle
all assignments one-by-one. Each time an artist finish or give up an assignment, a new
assignment is then automatically assigned to that artist.

optimization, with each batch containing 8 randomly cropped 256× 256 samples.
Artists refine regions by drawing or erasing region boundaries, and merging or
spiting region blocks. These editing strategy can be achieved using the software
including PhotoShop, ClipStudio, etc.

Quality assurance. After each loop, all 12 artists are invited to check the an-
notation quality in that loop. Artists are allowed to remove any annotations
when they find low-quality ones. This quality assurance stage finishes when each
annotation is assured by at least 3 artists as practically usable.

Significance of FAR As shown in Fig. 5, we compare FAR to a naive workflow
without the assignment recommendation but directly asking artists to annotate
illustrations one-by-one. Artists are also allowed to give up infeasible assignments,
and the configuration of the Coarse CNN remains unchanged. Our observation is
that the decision of whether to give up is much more difficult than it seems to be,
and even professional artists are likely to waste a significant amount of time in
trials-and-errors, supported by two evidences: (1) Artists need a period of time
to check each illustration assignment before they can judge whether to give up.
This checking time causes a huge waste within a large number of assignments,
e.g ., the artist #1 (Fig. 5) has given up (or change) more than 10 illustrations
in the visualized workflow. (2) Even if the artist has decided to cope with one
assignment, it is still possible that the assignment will be given up finally. In
many cases, only after trying can an artist determine whether the annotating is
feasible, e.g ., the artist #1 (Fig. 5) have wasted about 70% time (53 minutes) in
the workflow. This can cause even worse wastes, discourages artist enthusiasm,
and disable large-scale annotating.

On the contrary, by using FAR to recommend artists with feasible assignments,
the amount of wasted time can be significantly reduced. We present a recorded
workflow as shown in Fig. 6, and we focus on the behaviors of the artist #1.
We can see that only 10 minutes are wasted in the beginning 79 minutes. The
success of such effective workflow comes from the fact that many infeasible
assignments are discriminated by FAR, and the consecutive success also protect
artist enthusiasm and keep them encouraged.

Furthermore, we provide examples of infeasible illustrations discriminated
by FAR in Fig. 7, where we also visualize the heat-map computed with Grad-
Cam++ [8]. For example, as shown in Fig. 7-(b), several illustrations have too
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Artist#1:

Artist#2:

Artist#3:

Artist#4:

Artist#5:

time

New (or change) assignment Finish assignment Give up assignment Wasted time Effective time Other time

10m21s 28m48s 7m47s 10m05s 21m03s

14m35s 25m59s 8m08s 7m14s 7m54s

7m51s 35m26s 14m34s 5m 7m25s 7m10s

7m18s 10m45s 7m02s 40m55s 4m 10m41s

15m01s 25m56s 8m16s 5m 6m 23m22s

Artist Wasted time

#1 10m (13.15%)
#2 7m (11.47%)
#3 5m (6.67%)
#4 4m (5.13%)
#5 11m (13.41%)

Fig. 6. Visualization of the annotation workflow using the FAR technique. The statistics
are collected at the beginning of each artist’s workflow.

Fig. 7. Examples of the infeasible illustrations discriminated by FAR and the Grad-
Cam++ heat-map visualization.

many regions that are impractical to annotate, and the FAR model successfully
identifies those dense regions (marked with red in the heat-maps in Fig. 7-(b)).
These evidences show that the FAR model has learned functional features to
discriminate infeasible assignments.

Analysis of Dataset Quality We perform an user study to analyze the final
quality of the presented dataset. We invite the involved 12 artists to score
600 random region maps using the standards in Fig. 8. Each artist score 50
region maps. We also visualize the region quantity in each region map. A vast
majority (80%) of the annotations in our dataset is usable or only need minor
corrections, and about 20% annotations are aesthetically pleasing and can be used
in professional artwork production workflows. We also note that the elimination
of bad samples is still an unsolved open problem and this dataset still includes
many “unfinished” or even “bad” annotations. Besides, results show that most
region maps have more than 25 but less than 175 regions.

5 Benchmark

In this section, we first discuss the evaluation metrics for the presented dataset,
and then test the performance of several possible candidates. The benchmark is
presented in Table 1.

Metric. The metrics Average Precision (AP), Optimal Image Scale (OIS), and
Optimal Dataset Scale (ODS) are widely considered as the standard metrics
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Fig. 8. User study result on annotation quality. The x-axis is the quantity of regions in
each region map, while the y-axis is the user scoring with the above scoring standard.

in a dominant majority of region processing literature [53, 1, 12, 17, 32, 13, 39].
AP/OIS/ODS are mathematically rooted and particularly effective when eval-
uating region maps. It is notable that our problem is different from semantic
segmentation tasks, i.e., because the region classification labels are not available,
so that many well-known metrics (e.g ., IoU) are not applicable. The effectiveness
of AP/OIS/ODS has been proved by solid foundations including Holistically-
nested Edge Detection [53] (HED), NYU-ObjectRegion [32], Berkeley-BSDS500
[1], and so on.

CNN + Unet-decoder[37] + L2 loss

Encoder AP ↑ OIS ↑ ODS ↑
VGG16*[44] 0.710 0.744 0.731
VGG19*[44] 0.642 0.716 0.647
Resnet56*[22] 0.722 0.737 0.732
Resnet110*[22] 0.641 0.725 0.692
Densenet121*[23] 0.645 0.663 0.648

Image-to-image translation

Model AP ↑ OIS ↑ ODS ↑
Pix2Pix*[24] 0.562 0.663 0.642
CRN*[9] 0.546 0.606 0.548
Pix2PixHD*[51] 0.568 0.667 0.57

Traditional algorithm

Algorithm AP ↑ OIS ↑ ODS ↑
Mean Shift [12] 0.518 0.592 0.524
NCuts [13] 0.428 0.547 0.515
Felz-Hutt [17] 0.404 0.517 0.466
SWA [39] 0.377 0.568 0.538
Quad-Tree [1] 0.17 0.247 0.219
gPb-owt-ucm [1] 0.633 0.651 0.640
CartoonVec [57] 0.536 0.614 0.614

Dense instance segmentation

Method AP ↑ OIS ↑ ODS ↑
TensorMask [10] 0.454 0.519 0.495

Table 1. Benchmark
of region boundary pre-
cision. Scores are in or-
ange if below 0.65 and
in blue if above 0.65.
Best scores are marked
in bold with red back-
ground.
↑ refers to higher being
better.
* refers to region-from-
normal approaches.

We include a brief review on AP/OIS/ODS to aid in reproducibility. Given a
ground truth region map and an estimated one, AP is the average proportion
of the true-positive pixels (correct region boundary pixels) in all positive pixels
(all estimated region boundary pixels). We resize region maps to 256px when
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computing AP. It is obvious that AP is sensitive to image scale. Even computed
on same region maps, different resizing scale causes remarkable indeterminacy. To
address this problem, OIS searches all possible scales for each independent sample
and report the optimal precision, whereas ODS searches all possible scales for
the entire test set and report the optimal precision. Moreover, ODS is routinely
considered as the best metric by many typical region processing works including
HED [53], BSDS500 [1], and so on.

Experimental setting. In the 5377 annotations, the quality of 2577 annotations
are assured by 5 professional artists. In order to capture an accurate distribution
of artist perception beyond artwork regions, we use the first 1000 in those 2577
annotations as our test set, with the remaining 4377 annotations being the
training set. As to data augmentation, we use random left-and-right flipping and
random rotation. We then randomly crop image data into 256 × 256 samples
during the online training. It is notable that all non-deep-learning methods are
directly tested on our test set.

Algorithm candidate. We test the performance of traditional segmentation algo-
rithms [12, 13, 17, 39, 1], including Vectorizing Cartoon Animations (CartoonVec)
[57], by directly applying them to the test set. Then, using the aforementioned
region-from-normal approach, we test the performance of image-to-image transla-
tion methods [24, 51, 9] by training them to predict region normals and markers. In
the same way, we also include the baseline performance of VGG [44], Resnet [22],
and Densenet [23], by using them as the encoder of U-net [37], and we train them
with a standard L2 loss on region normals and markers. Instance segmentation
methods can also be applied to our problem. To the best of our knowledge,
TensorMask [10] is the only instance segmentation method that does not require
region classification labels and can be trained on arbitrary number of regions.
Therefore, we also train TensorMask on our dataset and report its performance.

Human performance. Different artists may produce slightly different region
annotations even for one same illustration. Therefore, we also invite the 12
involved artists to annotate 36 random test illustrations again (each artist with
3 illustrations), and report the human performance: 0.785(OIS), 0.782(ODS).

Result. We have several interesting discoveries in this benchmark: (1) Learning-
based models generally report higher scores than traditional algorithms. This
indicates that data-driven approaches seem to be more faithful to artist perception
when generating the regions. (2) Shallow models like VGG16 and Resnet56
outperform deep models like VGG19 and Resnet110. This may because deep
models tend to over-fit the dataset, and stronger data augmentation might be
necessary. (3) The instance segmentation method, TensorMask, does not report
impressive performances. This may because the regions in our dataset is denser
than most instance segmentation datasets, and instance segmentation methods
like TensorMask are not well-suited for our problem.
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Fig. 9. Intrinsic cartoon images. We show the reflectance maps and the illumination
maps decomposed using L1 smoothing with naive regions in [5] and our regions.

6 Application

Cartoon intrinsic images. We present a region-based L1 intrinsic decomposition
[5] as in Fig. 9. We can see that our data-driven region segmentation enables
L1 smoothing to achieve more adequate decomposition when compared to the
naive L1 smoothing. In particular, we directly train a Pix2PixHD [51] for this
application. After the training, the estimated normal maps and watershed marker
maps can be translated to regions using the normal-from-region approach. One
notice is that we use a special data augmentation method to augment the
luminance domain of the images to avoid luminance over-fitting, by converting
the RGB image into Lab image, and then randomly reduce the contrast of the L
channel. In particular, we reduce the L contrast by random scalar U(0.1, 0.9),
and then translate the Lab image back to RGB image. In order to make the
estimated region boundary a bit more smoother (regions produced by watershed
is not very smooth in most cases), we use the method [4] to simplify the topology
of our region boundary. This is achieved by translating the region map into a
vectorized map and then rasterize it back. We carefully tune the parameters of
[4] and the smoothing weights to achieve our results in Fig. 9.

Flat sketch colorization and color cleaning-up. Our dataset enables learning-based
sketch colorization solutions [56, 48] to be “cleaned-up” so as to adapt to the
flat “cel-colorization” workflows like LazyBrush [46], by enabling neural networks
to learn to reconstruct broken or vague regions. We present flat colorization
and cleaning-up examples as shown in Fig. 10. We train a Pix2PixHD [51]
for the application, and the estimation can be translated to regions using the
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Fig. 10. Sketch colorization cleaning-up. The regions in this figure are achieved interac-
tively by user. We use the estimated regions to clean up the sketch colorization results by
sampling median color in each region. (a) Colored with PaintsChainer [48]. (b) Colored
with Style2Paints [56]. The pointed hints are color indications for interactive coloring,
while the dotted hints indicates that its covered regions should be merged.

normal-from-region approach. For data augmentation, we use the high-frequency
augmentation. This is to encourage the neural networks to learn to reconstruct
broken or ambiguous regions, and avoid the neural networks to over-fit the
high-frequency edges in the input image. We apply a Bilateral Filter [49] to the
training input image with a random number in U(20, 1000) for the Bilateral
spacial sigma, and U(20, 1000) for the Bilateral color sigma. We also allow users
to merge some regions in the region map by drawing some “dotted” lines. We
use a fine-tuned selected search [50] to merge some small regions. The regions are
also processed with [4] to simplify the topology of region boundary and make the
resulting region looks smooth, by translating the region map into a vectorized
map and rasterize it back. The smoothing parameters are tuned for Fig. 10.

7 Conclusion

We presented a dataset of illustration and region composition pairs annotated by
real-life artists. Our dataset is unique in that it is faithful to artist perception,
and is costumed to benefit diversiform cartoon processing applications. All anno-
tations are created from in-the-wild cartoon illustrations, and the quality of each
annotation is assured by multiple artists. We provide the details of our data col-
lection pipeline, which leverages a novel human-in-the-loop annotation workflow,
namely Feasibility-based Assignment Recommendation (FAR), that is designed
to improve the feasibility of involved assignments and enable the large-scale
annotating. We demonstrate the usage of our dataset in a variety of applications
like cartoon tracking, cartoon intrinsic images, and sketch colorization. Finally,
we provide considerations for further researches in related avenue.
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