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Places: A 10 million Image Database for
Scene Recognition

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba

Abstract—The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-
human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places
Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse
list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs),
we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches.
Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene
classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a
novel resource to guide future progress on scene recognition problems.

Index Terms—Scene classification, visual recognition, deep learning, deep feature, image dataset.
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1 INTRODUCTION

If a current state-of-the-art visual recognition system would
send you a text to describe what it sees, the text might read
something like: “There is a sofa facing a TV set. A person
is sitting on the sofa holding a remote control. The TV is
on and a talk show is playing”. Reading this, you would
likely imagine a living-room. However, that scenery can
very well happen in a resort by the beach.

For an agent acting into the world, there is no doubt that
object and event recognition should be a primary goal of its
visual system. But knowing the place or context in which
the objects appear is as equally important for an intelligent
system to understand what might have happened in the past
and what may happen in the future. For instance, a table
inside a kitchen can be used to eat or prepare a meal, while
a table inside a classroom is intended to support a notebook
or a laptop to take notes.

A key aspect of scene recognition is to identify the place
in which the objects seat (e.g., beach, forest, corridor, office,
street, ...). Although one can avoid using the place category
by providing a more exhaustive list of the objects in the
picture and a description of their spatial relationships, a
place category provides the appropriate level of abstraction
to avoid such a long and complex description. Note that one
could avoid using object categories in a description by only
listing parts (i.e. two eyes on top of a mouth for a face).
Like objects, places have functions and attributes. They are
composed of parts and some of those parts can be named
and correspond to objects, just like objects are composed
of parts, some of which are nameable as well (e.g., legs,
eyes).
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Whereas most datasets have focused on object categories
(providing labels, bounding boxes or segmentations), here
we describe the Places database, a quasi-exhaustive repos-
itory of 10 million scene photographs, labeled with 434
scene semantic categories, comprising about 98 percent of
the type of places a human can encounter in the world.
Image samples are shown in Fig. 1 while Fig. 2 shows the
number of images per category, sorted in decreasing order.

Departing from Zhou et al. [1], we describe in depth the
construction of the Places Database, and evaluate the per-
formance of several state-of-the-art Convolutional Neural
Networks (CNNs) for place recognition. We compare how
the features learned in a CNN for scene classification be-
have when used as generic features in other visual recogni-
tion tasks. Finally, we visualize the internal representations
of the CNNs and discuss one major consequence of training
a deep learning model to perform scene recognition: object
detectors emerge as an intermediate representation of the
network [2]. Therefore, while the Places database does not
contain any object labels or segmentations, it can be used
to train new object classifiers.

1.1 The Rise of Multi-million Datasets
What does it take to reach human-level performance with
a machine-learning algorithm? In the case of supervised
learning, the problem is two-fold. First, the algorithm must
be suitable for the task, such as Convolutional Neural
Networks in the large scale visual recognition [1], [3] and
Recursive Neural Networks for natural language processing
[4], [5]. Second, it must have access to a training dataset
of appropriate coverage (quasi-exhaustive representation
of classes and variety of exemplars) and density (enough
samples to cover the diversity of each class). The optimal
space for these datasets is often task-dependent, but the
rise of multi-million-item sets has enabled unprecedented
performance in many domains of artificial intelligence.
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Fig. 1. Image samples from various categories of the Places Database (two samples per category). The dataset
contains three macro-classes: Indoor, Nature, and Urban.

Fig. 2. Sorted distribution of image number per category in the Places Database. Places contains 10,624,928
images from 434 categories. Category names are shown for every 6 intervals.

The successes of Deep Blue in chess, Watson in “Jeop-
ardy!”, and AlphaGo in Go against their expert human
opponents may thus be seen as not just advances in algo-
rithms, but the increasing availability of very large datasets:
700,000, 8.6 million, and 30 million items, respectively [6]–
[8]. Convolutional Neural Networks [3], [9] have likewise
achieved near human-level visual recognition, trained on
1.2 million object [10]–[12] and 2.5 million scene images
[1]. Expansive coverage of the space of classes and samples
allows getting closer to the right ecosystem of data that a
natural system, like a human, would experience. The history
of image datasets for scene recognition also sees the rapid
growing in the image samples as follows.

1.2 Scene-centric Datasets

The first benchmark for scene recognition was the Scene15
database [13], extended from the initial 8 scene dataset in
[14]. This dataset contains only 15 scene categories with
a few hundred images per class, and current classifiers are
saturated, reaching near human performance with 95%. The

MIT Indoor67 database [15] with 67 indoor categories and
the SUN (Scene Understanding, with 397 categories and
130,519 images) database [16] provided a larger coverage
of place categories, but failed short in term of quantity of
data needed to feed deep learning algorithms. To comple-
ment large object-centric datasets such as ImageNet [11],
we build the Places dataset described here.

Meanwhile, the Pascal VOC dataset [17] is one of the
earliest image dataset with diverse object annotations in
scene context. The Pascal VOC challenge has greatly ad-
vanced the development of models for object detection and
segmentation tasks. Nowadays, COCO dataset [18] focuses
on collecting object instances both in polygon and bounding
box annotations for images depicting everyday scenes of
common objects. The recent Visual Genome dataset [19]
aims at collecting dense annotations of objects, attributes,
and their relationships. ADE20K [20] collects precise dense
annotation of scenes, objects, parts of objects with a large
and open vocabulary. Altogether, annotated datasets further
enable artificial systems to learn visual knowledge linking
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parts, objects and scene context.

2 PLACES DATABASE

2.1 Coverage of the categorical space

The first asset of a high-quality dataset is an expansive
coverage of the categorical space to be learned. The strategy
of Places is to provide an exhaustive list of the categories of
environments encountered in the world, bounded by spaces
where a human body would fit (e.g. closet, shower). The
SUN (Scene UNderstanding) dataset [16] provided that
initial list of semantic categories. The SUN dataset was
built around a quasi-exhaustive list of scene categories with
different functionalities, namely categories with unique
identities in discourse. Through the use of WordNet [21],
the SUN database team selected 70,000 words and concrete
terms that described scenes, places and environments that
can be used to complete the phrase “I am in a place”, or
“let’s go to the/a place”. Most of the words referred to
basic and entry-level names ( [22]), resulting in a corpus
of 900 different scene categories after bundling together
synonyms, and separating classes described by the same
word but referring to different environments (e.g. inside
and outside views of churches). Details about the building
of that initial corpus can be found in [16]. Places Database
has inherited the same list of scene categories from the SUN
dataset, with a few changes that are described in section
2.2.4.

2.2 Construction of the database

The construction of the Places Database is composed of
four steps, from querying and downloading images, labeling
images with ground truth category, to scaling up the dataset
using a classifier, and further improving the separation of
similar classes. The detail of each step is introduced in the
following sections.

The data collection process of the Place Database is
similar to the image collection in other common datasets,
like ImageNet and COCO. The definition of categories
for the ImageNet dataset [11] is based on the synset of
WordNet [21]. Candidate images are queried from several
Image search engines using the set of WordNet synonyms.
Images are cleaned up through AMT in the format of the
binary task similar to the ours. Quality control is done by
multiple users annotating the same image. There are about
500-1200 ground-truth images per synset. On the other
hand, COCO dataset [18] focuses on annotating the object
instances inside the images with more scene context. The
candidate images are mainly collected from Flickr, in order
to include less iconic images commonly returned by image
search engines. The image annotation process of COCO is
split into category labeling, instance spotting, and instance
segmentation, with all the tasks done by AMT workers.
COCO has 80 object categories with more than 2 million
object instances.

2.2.1 Step 1: Downloading images using scene cate-
gory and attributes
From online image search engines (Google Images, Bing
Images, and Flickr), candidate images were downloaded
using a query word from the list of scene classes provided
by the SUN database [16]. In order to increase the diversity
of visual appearances in the Places dataset, each scene class
query was combined with 696 common English adjectives 1

(e.g., messy, spare, sunny, desolate, etc.). In Fig. 3) we show
some examples of images in Places grouped by queries.
About 60 million images (color images of at least 200×200
pixels size) with unique URLs were identified. Importantly,
the Places and SUN datasets are complementary: PCA-
based duplicate removal was conducted within each scene
category in both databases, so that they do not contain the
same images.

2.2.2 Step 2: Labeling images with ground truth cat-
egory
Image ground truth label verification was done by crowd-
sourcing the task to Amazon Mechanical Turk (AMT).
Fig.4 illustrates the experimental paradigm used. First,
AMT workers were given instructions relating to a par-
ticular category at a time (e.g. cliff), with a definition,
sample images belonging to the category (true images),
and sample images not belonging to the category (false
images). As an example, Fig.4.a shows the instructions for
the category cliff. Workers then performed a verification
task for the corresponding category. Fig.4.b shows the
AMT interface for the verification task. The experimental
interface displayed a central image, flanked by smaller
version of images the worker had just responded (on the
left), and the images the worker will respond to next (on
the right). Information gleaned from the construction of the
SUN dataset suggests that in the first iteration of labeling
more than 50% of the the downloaded images are not
true exemplars of the category. For this reason the default
answer in the interface the default answer was set to NO
(notice that all the smaller versions of the images in the left
are marked with a bold red contour, which denotes that the
image do not belong to the category). Thus, if the worker
just presses the space bar to move, images will keep the
default NO label. Whenever a true exemplar appears in the
center, the worker can press a specific key to mark it as a
positive exemplar (responding YES). As the response is set
to YES the bold contour of the image turns to green. The
interface also allows moving backwards to revise previous
annotations. Each AMT HIT (Human Intelligence Task, one
assignment for one worker), consisted of 750 images for
manual annotation. A control set of 30 positive samples
and 30 negative samples with ground-truth category labels
from the SUN database were intermixed in the HIT as well.
As a quality control measure, only worker HITs with an
accuracy of 90% or higher on these control images were
kept.

1. The list of adjectives used in querying can be found in https://github.
com/CSAILVision/places365/blob/master/adjectives download.csv

https://github.com/CSAILVision/places365/blob/master/adjectives_download.csv
https://github.com/CSAILVision/places365/blob/master/adjectives_download.csv
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Fig. 3. Image samples from four scene categories grouped by queries to illustrate the diversity of the dataset.
For each query we show 9 annotated images.

a) b)

Fig. 4. Annotation interface in the Amazon Mechanical
Turk for selecting the correct exemplars of the scene
from the downloaded images. a) instruction given to
the workers in which we define positive and negative
examples. b) binary selection interface.

The positive images resulting from the first cleaning
iteration were sent for a second iteration of cleaning. We
used the same task interface but with the default answer was
set to YES. In this second iteration, 25.4% of the images
were relabeled as NO. We tested a third cleaning iteration
on a few exemplars but did not pursue it further as the
percentage of images relabeled as NO was not significant.

After the two iterations of annotation, we collected one
scene label for 7,076,580 images pertaining to 476 scene
categories. As expected, the number of images per scene
category vary greatly (i.e. there are many more images of
bedroom than cave on the web). There were 413 scene
categories that ended up with at least 1000 exemplars, and
98 scene categories with more than 20,000 exemplars.

2.2.3 Step 3: Scaling up the dataset using a classifier
As a result of the previous round of image annotation, there
were 53 million remaining downloaded images not assigned
to any of the 476 scene categories (e.g. a bedroom picture
could have been downloaded when querying images for
living-room category, but marked as negative by the AMT
worker). Therefore, a third annotation task was designed
to re-classify then re-annotate those images, using a semi-
automatic bootstrapping approach.

A deep learning-based scene classifier, AlexNet [3], was

trained to classify the remaining 53 million images: We
first randomly selected 1,000 images per scene category as
training set and 50 images as validation set (for the 413
categories which had more than 1000 samples). AlexNet
achieved 32% scene classification accuracy on the valida-
tion set after training. The trained AlexNet was then used
to classify the 53 million images. We used the predicted
class score by the AlexNet to rank the images within one
scene category as follow: for a given category with too
few exemplars, the top ranked images with predicted class
confidence higher than 0.8 were sent to AMT for a third
round of manual annotation using the same interface shown
in Fig.4. The default answer was set to NO.

After completing this third round of AMT annotation, the
distribution of the number of images per category flattened
out: 401 scene categories had more than 5,000 images per
category and 240 scene categories had more than 20,000
images. In total, about 3 million images were added into
the dataset.

2.2.4 Step 4: Improving the separation of similar
classes

Despite the initial effort to bundle synonyms from Word-
Net, the scene list from the SUN database still contained a
few categories with very close synonyms (e.g. ‘ski lodge’
and ‘ski resort’, or ‘garbage dump’ and ‘landfill’). We
manually identified 46 synonym pairs like these and merged
their images into a single category.

Additionally, we observed that some scene categories
could be easily confused with blurry categorical boundaries,
as illustrated in Fig. 5. This means that, for images in these
blurry boundaries, answering the question “Does image I
belong to class A?” might be difficult. However, it can
be easier to answer the question “Does image I belong to
class A or B?”. With this question, the decision boundary
becomes clearer for a human observer and it also gets closer
to the final task that a computer system will be trained to
solve, which is actually separating classes even when the
boundaries are blurry.
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Field Forest

Fig. 5. Boundaries between place categories can be
blurry, as some images can be made of a mixture of
different components. The images shown in this figure
show a soft transition between a field and a forest.
Although the extreme images can be easily classified
as field and forest scenes, the middle images can be
ambiguous.

a) b)

Fig. 6. Annotation interface in Amazon Mechanical
Turk for differentiating images from two similar cate-
gories. a) instruction in which we give several typical
examples in each category. b) the binary selection
interface, in which the worker has to classify the shown
image into one of the classes or none of them.

After checking the annotations, we confirmed that in the
previous three steps of the AMT annotation, workers were
confused with some pairs (or groups) of scene categories.
For instance, there was an overlap between ‘canyon’ and
‘mountain’ or ‘butte’ and ‘mountain’. There were also
images mixed in the following category pairs: ‘jacuzzi’ and
‘swimming pool indoor’; ‘pond’ and ‘lake’; ‘volcano’ and
‘mountain’; ‘runway’ and ‘highway and road’; ‘operating
room’ and ‘hospital room’; among others. In the whole set
of categories, we identified 53 different ambiguous pairs.

To further differentiate the images from the categories
with shared content, we designed a new interface for
a fourth annotation step. The instructions for the task
are shown Fig. 6.a, while Fig. 6.b shows the annotation
interface. The interface combines exemplar images from
the two categories with shared content (such as ‘art school’
and ‘art studio’), and AMT workers were asked to classify
images into one of the categories or neither of them.

After this fourth annotation step, the Places database
was finalized with over 10 millions labeled exemplars
(10,624,928 images) from 434 place categories.

3 PLACES BENCHMARKS

Here we describe four subsets of Places database as bench-
marks. Places205 and Places88 are from [1]. Two new
benchmarks have been added: from the 434 categories, we
selected 365 categories with more than 4000 images each to

create Places365-Standard and Places365-Challenge. The
details of each benchmark are the following:

• Places365-Standard has 1,803,460 training images
with the image number per class varying from 3,068
to 5,000. The validation set has 50 images per class
and the test set has 900 images per class. Note that the
experiments in this paper are reported on Places365-
Standard.

• Places365-Challenge contains the same categories as
Places365-Standard, but the training set is signifi-
cantly larger with a total of 8 million training images.
The validation set and testing set are the same as the
Places365-Standard. This subset was released for the
Places Challenge 20162 held in conjunction with the
European Conference on Computer Vision (ECCV)
2016, as part of the ILSVRC Challenge.

• Places205. Places205, described in [1], has 2.5 million
images from 205 scene categories. The image number
per class varies from 5,000 to 15,000. The training
set has 2,448,873 total images, with 100 images per
category for the validation set and 200 images per
category for the test set.

• Places88. Places88 contains the 88 common scene
categories among the ImageNet [12], SUN [16] and
Places205 databases. Places88 contains only the im-
ages obtained in round 2 of annotations, from the
first version of Places used in [1]. We call the other
two corresponding subsets ImageNet88 and SUN88
respectively. These subsets are used to compare perfor-
mances across different scene-centric databases, as the
three datasets contain different exemplars per category
(i.e. none of these three datasets contain common
images). Note that finding correspondences between
the classes defined in ImageNet and Places brings
some challenges. ImageNet follows the WordNet def-
initions, but some WordNet definitions are not always
appropriate for describing places. For instance, the
class ’elevator’ in ImageNet refers to an object. In
Places, ’elevator’ takes different meanings depend-
ing on the location of the observer: elevator door,
elevator interior, or elevator lobby. Many categories
in ImageNet do not differentiate between indoor and
outdoor (e.g., ice-skating rink) while in Places, indoor
and outdoor versions are separated as they do not
necessarily afford the same function.

4 COMPARING SCENE-CENTRIC DATASETS

Scene-centric datasets correspond to images labeled with a
scene, or place name, as opposed to object-centric datasets,
where images are labeled with object names. In this section
we use the Places88 benchmark to compare Places dataset
with the tow other biggest scene datasets: ImageNet88 and
SUN88. Fig. 7 illustrates the differences among the number
of images found in the different categories for Places88,
ImageNet88 and SUN88. Notice that Places Database is

2. http://places2.csail.mit.edu/challenge.html
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the largest scene-centric image dataset so far. The next
subsection presents a comparison of these three datasets
in terms of image diversity.

4.1 Dataset Diversity

Given the types of images found on the internet, some
categories will be more biased than others in terms of
viewpoints, types of objects, or even image style [23].
However, bias can be compensated with a high diversity of
images, with many appearances represented in the dataset.
In this section we describe a measure of dataset diversity
to compare how diverse images from three scene-centric
datasets (Places88, SUN88 and ImageNet88) are.

Comparing datasets is an open problem. Even datasets
covering the same visual classes have notable differences
providing different generalization performances when used
to train a classifier [23]. Beyond the number of images
and categories, there are aspects that are important but
difficult to quantify, like the variability in camera poses,
in decoration styles or in the type of objects that appear in
the scene.

Although the quality of a database is often task depen-
dent, it is reasonable to assume that a good database should
be dense (with a high degree of data concentration), and
diverse (it should include a high variability of appearances
and viewpoints). Imagine, for instance, a dataset composed
of 100,000 images all taken within the same bedroom.
This dataset would have a very high density but a very
low diversity as all the images will look very similar. An
ideal dataset, expected to generalize well, should have high
diversity as well. While one can achieve high density by
collecting a large number of images, diversity is not an
obvious quantity to estimate in image sets, as it assumes
some notion of similarity between images. One way to esti-
mate similarity is to ask the question are these two images
similar? However, similarity in the wild is a subjective and
loose concept, as two images can be viewed as similar
if they contain similar objects, and/or have similar spatial
configurations, and/or have similar decoration styles and so
on. A way to circumvent this problem is to define relative
measures of similarity for comparing datasets.

Several measures of diversity have been proposed, par-
ticularly in biology for characterizing the richness of an
ecosystem (see [24] for a review). Here, we propose to
use a measure inspired by the Simpson index of diver-
sity [25]. The Simpson index measures the probability that
two random individuals from an ecosystem belong to the
same species. It is a measure of how well distributed the
individuals across different species are in an ecosystem, and
it is related to the entropy of the distribution. Extending
this measure for evaluating the diversity of images within
a category is non-trivial if there are no annotations of sub-
categories. For this reason, we propose to measure the
relative diversity of image datasets A and B based on
the following idea: if set A is more diverse than set B,
then two random images from set B are more likely to be
visually similar than two random samples from A. Then,

the diversity of A with respect to B can be defined as

DivB(A) = 1− p(d(a1, a2) < d(b1, b2)) (1)

where a1, a2 ∈ A and b1, b2 ∈ B are randomly selected.
With this definition of relative diversity we have that A is
more diverse than B if, and only if, DivB(A) > DivA(B).

For an arbitrary number of datasets, A1, ..., AN , the
diversity of A1 with respect to A2, ..., AN can be defined
as

DivA2,...,AN
(A1) = 1−p(d(a11, a12) < min

i=2:N
d(ai1, ai2))

(2)

where ai1, ai2 ∈ Ai are randomly selected, i = 2 : N .
We measured the relative diversities between SUN88,

ImageNet88 and Places88 using AMT. Workers were pre-
sented with different pairs of images and they had to select
the pair that contained the most similar images. The pairs
were randomly sampled from each database. Each trial
was composed of 4 pairs from each database, giving a
total of 12 pairs to choose from. We used 4 pairs per
database to increase the chances of finding a similar pair
and avoiding users having to skip trials. AMT workers had
to select the most similar pair on each trial. We ran 40
trials per category and two observers per trial, for the 88
categories in common between ImageNet88, SUN88 and
Places88 databases. Fig. 8.a-b shows some examples of
pairs from the diversity experiments for the scene categories
playground (a) and bedroom (b). In the figure only one pair
from each database is shown. We observed that different
annotators were consistent in deciding whether a pair of
images was more similar than another pair of images.

Fig. 8.c shows the histograms of relative diversity for all
the 88 scene categories common to the three databases. If
the three datasets were identical in terms of diversity, the
average diversity should be 2/3 for the three datasets. Note
that this measure of diversity is a relative measure between
the three datasets. In the experiment, users selected pairs
from the SUN database to be the closest to each other 50%
of the time, while the pairs from the Places database were
judged to be the most similar only on 17% of the trials.
ImageNet88 pairs were selected 33% of the time.

The results show that there is a large variation in terms
of diversity among the three datasets, showing Places to
be the most diverse of the three datasets. The average
relative diversity on each dataset is 0.83 for Places, 0.67
for ImageNet88 and 0.50 for SUN. The categories with the
largest variation in diversity across the three datasets were
playground, veranda and waiting room.

4.2 Cross Dataset Generalization
As discussed in [23], training and testing across different
datasets generally results in a drop of performance due to
the dataset bias problem. In this case, the bias between
datasets is due, among other factors, to the differences in
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Fig. 7. Comparison of the number of images per scene category for the common 88 scene categories in Places,
ImageNet, and SUN datasets.
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Fig. 9. Cross dataset generalization of training on
the 88 common scenes between Places, SUN and
ImageNet then testing on the 88 common scenes from:
a) SUN, b) ImageNet and c) Places database.

the diversity between the three datasets. Fig. 9 shows the
classification results obtained from the training and testing
on different permutations of the 3 datasets. For these results
we use the features extracted from a pre-trained ImageNet-
CNN and a linear SVM. In all three cases training and
testing on the same dataset provides the best performance
for a fixed number of training examples. As the Places
database is very large, it achieves the best performance on
two of the test sets when all the training data is used.

5 CONVOLUTIONAL NEURAL NETWORKS
FOR SCENE CLASSIFICATION

Given the impressive performance of the deep Convolu-
tional Neural Networks (CNNs), particularly on the Im-
ageNet benchmark [3], [12], we choose three popular
CNN architectures, AlexNet [3], GoogLeNet [26], and
VGG 16 convolutional-layer CNN [27], then train them on
Places205 and Places365-Standard respectively to create
baseline CNN models. The trained CNNs are named as
PlacesSubset-CNN, i.e., Places205-AlexNet or Places365-
VGG.

All the Places-CNNs presented here were trained using
the Caffe package [28] on Nvidia GPUs Tesla K40 and
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Titan X3. Additionally, given the recent breakthrough per-
formances of the Residual Network (ResNet) on ImageNet
classification [29], we further fine-tuned ResNet152 on
the Places365-Standard (termed as Places365-ResNet) and
compared it with the other trained-from-scratch Places-
CNNs for scene classification.

5.1 Results on Places205 and Places365

After training the various Places-CNNs, we used the final
output layer of each network to classify the test set images
of Places205 and SUN205 (see [1]). The classification
results for Top-1 accuracy and Top-5 accuracy are listed
in Table 1. The Top-1 accuracy is the percentage of the
testing images where the top predicted label exactly match
the ground-truth label. The Top-5 accuracy is that the
percentage of testing images where the ground-truth label
is among the top ranked 5 predicted labels given by an
algorithm. Since there are some ambiguity between some
scene categories, the Top-5 accuracy is a more suitable
criteria of measuring scene classification performance.

As a baseline comparison, we show the results of a linear
SVM trained on ImageNet-CNN features of 5000 images
per category in Places205 and 50 images per category
in SUN205 respectively. We observe that Places-CNNs
perform much better than the ImageNet feature+SVM
baseline while, as expected, Places205-GoogLeNet and
Places205-VGG outperformed Places205-AlexNet with a
large margin, due to their deeper structures. To date (Oct
2, 2016) the top ranked results on the test set of Places205
leaderboard4 is 64.10% on Top-1 accuracy and 90.65% on
Top-5 accuracy. Note that for the test set of SUN205, we
did not fine-tune the Places-CNNs on the training set of
SUN205, as we directly evaluated them on the test set of
SUN.

We further evaluated the baseline Places365-CNNs on
the validation set and test set of Places365. The results
are shown in Table 2. We can see that Places365-VGG and
Places365-ResNet have similar top performances compared
with the other two CNNs5. Even though Places365 has 160
more categories than Places205, the Top-5 accuracy of the
Places205-CNNs (trained on the previous version of Places
[1]) on the test set only drops by 2.5%.

To evaluate how extra categories bring improvements,
we compute the accuracy for the 182 common cate-
gories between Places205 and Places365 (we merge some
categories in Places205 when building Places365 thus
there are less common categories) for Places205-CNN and
Places365-CNN. On the validation set of Places365, we
select the images of the 182 common categories, then
use the aligned 182 outputs of the Places205-AlexNet and
Places365-AlexNet to predict the labels respectively. The
Top1 accuracy for Places205-AlexNet is 0.572, the one for

3. All the Places-CNNs are available at https://github.com/
CSAILvision/places365

4. http://places.csail.mit.edu/user/leaderboard.php
5. The performance of the ResNet might result from fine-tuning or

under-training, as the ResNet is not trained from scratch.

Places365-AlexNet is 0.577. Thus Places365-AlexNet not
only predicts more categories, but also has better accuracy
on the previous existing categories.

Fig.10 shows the responses to examples correctly pre-
dicted by the Places365-VGG. Notice that most of the
Top-5 responses are very relevant to the scene description.
Some failure or ambiguous cases are shown in Fig.11.
Broadly, we can identify two kinds of mis-classification
given the current label attribution of Places: 1) less-typical
activities happening in a scene, such as taking group
photo in a construction site and camping in a junkyard;
2) images composed of multiple scene parts, which make
one ground-truth scene label not sufficient to describe the
whole environment. These results suggest the need to have
multi-ground truth labels for describing environments.

It is important to emphasize that for many scene cate-
gories the Top-1 accuracy might be an ill-defined measure:
environments are inherently multi-labels in terms of their
semantic description. Different observers will use different
terms to refer to the same place, or different parts of the
same environment, and all the labels might fit well the
description of the scene, as we observe in the examples
of Fig.11.

5.2 Web-demo for Scene Recognition

Based on our trained Places-CNN, we created a web-
demo for scene recognition6, accessible through a computer
browser or mobile phone. People can upload photos to
the web-demo to predict the type of environment, with
the 5 most likely semantic categories, and relevant scene
attributes. Two screenshots of the prediction result on the
mobile phone are shown in Fig.12. Note that people can
submit feedback about the result. The top-5 recognition
accuracy of our recognition web-demo in the wild is about
72% (from the 9,925 anonymous feedbacks dated from
Oct.19, 2014 to May 5, 2016), which is impressive given
that people uploaded all kinds of photos from real-life and
not necessarily places-like photos. Places205-AlexNet is the
back-end prediction model in the demo.

5.3 Places365 Challenge Result

The subset Places365-Challenge, which contains more
than 8 million images from 365 scene categories, was used
in the Places Challenge 2016 held as part of the ILSVRC
Challenge in the European Conference on Computer Vision
(ECCV) 2016.

The rule of the challenge is that each team can only
use the provided data in the Places365-Challenge to train
their networks. Standard CNN models trained on Imagenet-
1.2million and previous Places are allowed to use. Each
team can submit at most 5 prediction results. Ranks are
based on the top-5 classification error of each submission.
Winners teams are then invited to give talks at the ILSVRC-
COCO Joint Workshop at ECCV’16.

6. http://places.csail.mit.edu/demo.html

https://github.com/CSAILvision/places365
https://github.com/CSAILvision/places365
http://places.csail.mit.edu/user/leaderboard.php
http://places.csail.mit.edu/demo.html
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TABLE 1
Classification accuracy on the test set of Places205 and the test set of SUN205. We use the class score

averaged over 10-crops of each test image to classify the image. ∗ shows the top 2 ranked results from the
Places205 leaderboard.

Test set of Places205 Test set of SUN205
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.

ImageNet-AlexNet feature+SVM 40.80% 70.20% 49.60% 80.10%
Places205-AlexNet 50.04% 81.10% 67.52% 92.61%
Places205-GoogLeNet 55.50% 85.66% 71.6% 95.01%
Places205-VGG 58.90% 87.70% 74.6% 95.92%
SamExynos∗ 64.10% 90.65% - -
SIAT MMLAB∗ 62.34% 89.66% - -

TABLE 2
Classification accuracy on the validation set and test set of Places365. We use the class score averaged over

10-crops of each testing image to classify the image.

Validation Set of Places365 Test Set of Places365
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.

Places365-AlexNet 53.17% 82.89% 53.31% 82.75%
Places365-GoogLeNet 53.63% 83.88% 53.59% 84.01%
Places365-VGG 55.24% 84.91% 55.19% 85.01%
Places365-ResNet 54.74% 85.08% 54.65% 85.07%

GT: cafeteria

top-1: cafeteria (0.179)
top-2: restaurant (0.167)

top-3: dining hall (0.091)

top-4: coffee shop (0.086)
top-5: restaurant patio (0.080)

GT: natural canal

top-1: swamp (0.529)
top-2: marsh (0.232)

top-3: natural canal (0.063)

top-4: lagoon (0.047)
top-5: rainforest (0.029)

GT: chalet

top-1: ski resort (0.141)
top-2: ice floe (0.129)

top-3: igloo (0.114)

top-4: balcony exterior (0.103)
top-5: courtyard (0.083)

GT: classroom

top-1: locker room (0.585)
top-2: lecture room (0.135)

top-3: conference center (0.061)

top-4: classroom (0.033)
top-5: elevator door (0.025)

GT: creek

top-1: forest broadleaf (0.307)
top-2: forest path (0.208)

top-3: creek (0.086)

top-4: rainforest (0.076)
top-5: cemetery (0.049)

GT: crosswalk

top-1: crosswalk (0.720)
top-2: plaza (0.060)

top-3: street (0.055)

top-4: shopping mall indoor (0.039)
top-5: bazaar outdoor (0.021)

GT: drugstore

top-1: supermarket (0.286)
top-2: hardware store (0.248)

top-3: drugstore (0.120)

top-4: department store (0.087)
top-5: pharmacy (0.052)

GT: greenhouse indoor

top-1: greenhouse indoor (0.479)
top-2: greenhouse outdoor (0.055)

top-3: botanical garden (0.044)

top-4: assembly line (0.025)
top-5: vegetable garden (0.022)

GT: market outdoor

top-1: promenade (0.569)
top-2: bazaar outdoor (0.137)

top-3: boardwalk (0.118)

top-4: market outdoor (0.074)
top-5: flea market indoor (0.029)

Fig. 10. The predictions given by the Places365-VGG for the images from the validation set. The ground-
truth label (GT) and the top 5 predictions are shown. The number beside each label indicates the prediction
confidence.

There were totally 92 valid submissions from 27 teams.
Finally team Hikvision [30] won the 1st place with 9.01%
top-5 error, team MW [31] won the 2nd place with 10.19%
top-5 error, and team Trimps-Soushen [32] won the 3rd
place with 10.30% top-5 error. The leaderboard and the
team information are available at the challenge result page7.
The ranked results of all the submissions are plotted in
Fig.13. The entry from the winner team outperforms our
best baseline with a large margin (∼ 6% in top-5 accuracy).
Note that our baselines are trained with the Places365-
Standard while those challenge entries are trained on the
Places365-Challenge which has 5.5 million more training

7. http://places2.csail.mit.edu/results2016.html

images.

5.4 Generic Visual Features from Places-CNNs
and ImageNet-CNNs
We further used the activation from the trained Places-
CNNs as generic features for visual recognition tasks using
different image classification benchmarks. Activations from
the higher-level layers of a CNN, also termed deep features,
have proven to be effective generic features with state-of-
the-art performance on various image datasets [33], [34].
But most of the deep features are from the CNNs trained
on ImageNet, which is mostly an object-centric dataset.

Here we evaluated the classification performances of
the deep features from scene-centric CNNs and object-
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GT: construction site
top-1: martial arts gym (0.157) 
top-2: stable (0.156) 
top-3: boxing ring (0.091) 
top-4: locker room (0.090) 
top-5: basketball court (0.056) 

GT: aquarium
top-1: restaurant (0.213) 
top-2: ice cream parlor (0.139) 
top-3: coffee shop (0.138) 
top-4: pizzeria (0.085) 
top-5: cafeteria (0.078) 

GT: junkyard
top-1: campsite (0.306) 
top-2: sandbox (0.276) 
top-3: beer garden (0.052) 
top-4: market outdoor (0.035) 
top-5: flea market indoor (0.033) 

GT: lagoon
top-1: balcony interior (0.136) 
top-2: beach house (0.134) 
top-3: boardwalk (0.123) 
top-4: roof garden (0.103) 
top-5: restaurant patio (0.068) 

Fig. 11. Examples of predictions rated as incorrect in
the validation set by the Places365-VGG. GT states
for ground truth label. Note that some of the top-
5 responses are often not wrong per se, predicting
semantic categories near by the GT category. See the
text for details.

  

Fig. 12. Two screenshots of the scene recognition
demo based on the Places-CNN. The web-demo pre-
dicts the type of environment, the semantic categories,
and associated scene attributes for uploaded photos.
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Top-5	errors	of	all	the	92	submission	(sorted)

Baseline	ResNet152:	14.9%

Hikvision:	9.01%

Fig. 13. The ranked results of all the 92 valid sub-
missions. The best baseline trained on Places365-
standard is the Resnet152 which has the top5-error as
14.9%, while the winner network from HikVision gets
9.01% top5-error which outperform the baseline with
large margin.

centric CNNs in a systematic way. The deep features from
several Places-CNNs and ImageNet-CNNs on the following
scene and object benchmarks are tested: SUN397 [16],
MIT Indoor67 [15], Scene15 [13], SUN Attribute [35],
Caltech101 [36], Caltech256 [37], Stanford Action40 [38],
and UIUC Event8 [39].

All of the presented experiments follow the standards in
the mentioned papers. In the SUN397 experiment [16], the
training set size is 50 images per category. Experiments
were run on 5 splits of the training set and test set given
in the dataset. In the MIT Indoor67 experiment [15], the
training set size is 100 images per category. The experiment
is run on the split of the training set and test set given in
the dataset. In the Scene15 experiment [13], the training
set size is 50 images per category. Experiments are run
on 10 random splits of the training set and test set. In
the SUN Attribute experiment [35], the training set size
is 150 images per attribute. The reported result is the
average precision. The splits of the training set and test
set are given in the paper. In Caltech101 and Caltech256
experiment [36], [37], the training set size is 30 images
per category. The experiments are run on 10 random splits
of the training set and test set. In the Stanford Action40
experiment [38], the training set size is 100 images per
category. Experiments are run on 10 random splits of
the training set and test set. The reported result is the
classification accuracy. In the UIUC Event8 experiment
[39], the training set size is 70 images per category and
the test set size is 60 images per category. The experiments
are run on 10 random splits of the training set and test set.

Places-CNNs and ImageNet-CNNs have the same net-
work architectures for AlexNet, GoogLeNet, and VGG,
but they are trained on scene-centric data (Places) and
object-centric data (ImageNet) respectively. For AlexNet
and VGG, we used the 4096-dimensional feature vector
from the activation of the Fully Connected Layer (fc7) of
the CNN. For GoogLeNet, we used the 1024-dimensional
feature vector from the response of the global average pool-
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Fig. 14. Classification accuracy on the SUN397
Dataset. We compare the deep features of Places365-
VGG, Places205-AlexNet (result reported in [1]), and
ImageNet-AlexNet, to hand-designed features (HOG,
gist, etc). The deep features of Places365-VGG outper-
forms other deep features and hand-designed features
by a large margin. Results of other hand-designed
features/kernels are fetched from [16].

ing layer before softmax producing the class predictions.
The classifier in all of the experiments is a linear SVM
with the default parameter for all of the features.

Table 3 summarizes the classification accuracy on various
datasets for the deep features of Places-CNNs and the deep
features of the ImageNet-CNNs. Fig.14 plots the classifica-
tion accuracy for different visual features on the SUN397
database over different numbers of training samples per
category. The classifier is a linear SVM with the same de-
fault parameters for the two deep feature layers (C=1) [40].
The Places-CNN features show impressive performance on
scene-related datasets, outperforming the ImageNet-CNN
features. On the other hand, the ImageNet-CNN features
show better performance on object-related image datasets.
Importantly, our comparison shows that Places-CNN and
ImageNet-CNN have complementary strengths on scene-
centric tasks and object-centric tasks, as expected from
the type of the datasets used to train these networks. On
the other hand, the deep features from the Places365-
VGG achieve the best performance (63.24%) on the most
challenging scene classification dataset SUN397, while the
deep features of Places205-VGG performs the best on the
MIT Indoor67 dataset. As far as we know, they are the
state-of-the-art scores achieved by a single feature + linear
SVM on those two datasets. Furthermore, we merge the
1000 classes from the ImageNet and the 365 classes from
the Places365-Standard to train a VGG (Hybrid1365-VGG).
The deep feature from the Hybrid1365-VGG achieves the
best score averaged over all the eight image datasets.

5.5 Visualization of the Internal Units
Through the visualization of the unit responses for various
levels of network layers, we can have a better understanding

of what has been learned inside CNNs and what are the
differences between the object-centric CNN trained on Im-
ageNet and the scene-centric CNN trained on Places given
that they share the same architecture AlexNet. Following
the methodology in [2] we feed 100,000 held-out testing
images into the two networks and record the max activation
of each unit pooled over the whole spatial feature map for
each of the images respectively. For each unit, we get the
top three ranked images by ranking their max activations,
then we segment the images by bilinear upsampling the
binarized spatial feature map mask.

The image segmentation results of the units from differ-
ent layers are shown in Fig.15. We can see that from conv1
to conv5, the units detect visual concepts from low-level
edge/texture to high-level object/scene parts. Furthermore,
in the object-centric ImageNet-CNN there are more units
detecting object parts such as dog and people’s heads in the
conv5 layer, while in the scene centric Places-CNN there
are more units detecting scene parts such as bed, chair, or
buildings in the conv5 layer.

Thus the specialty of the units in the object-centric CNN
and scene-centric CNN yield very different performances
of generic visual features on a variety of recognition bench-
marks (object-centric datasets vs scene-centric datasets) in
Table 3.

We further synthesized preferred input images for the
Places-CNN by using the image synthesis technique pro-
posed in [41]. This method uses a learned prior deep
generator network to generate images which maximize the
final class activation or the intermediate unit activation of
the Places-CNN. The synthetic images for 50 scene cate-
gories are shown in Fig.16. These abstract image contents
reveal the knowledge of the specific scene learned and
memorized by the Places-CNN: examples include the buses
within a road environment in the bus station, and the tents
surrounded by forest-types of features for the campsite.
Here we used Places365-AlexNet (other Places365-CNNs
generated similar results). We further used the synthesis
technique to generate the images preferred by the units
in the conv5 layer of Places365-AlexNet. As shown in
Fig.17, the synthesized images are very similar to the
segmented image regions by the estimated receptive field
of the units.

6 CONCLUSION

From the Tiny Image dataset [42], to ImageNet [11] and
Places [1], the rise of multi-million-item dataset initiatives
and other densely labeled datasets [18], [20], [43], [44] have
enabled data-hungry machine learning algorithms to reach
near-human semantic classification of visual patterns, like
objects and scenes. With its category coverage and high-
diversity of exemplars, Places offers an ecosystem of visual
context to guide progress on scene understanding problems.
Such problems could include determining the actions hap-
pening in a given environment, spotting inconsistent objects
or human behaviors for a particular place, and predicting
future events or the cause of events given a scene.
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TABLE 3
Classification accuracy/precision on scene-centric databases (the first four datasets) and object-centric

databases (the last four datasets) for the deep features of various Places-CNNs and ImageNet-CNNs. All the
accuracy/precision is the top-1 accuracy/precision.

Deep Feature SUN397 MIT Indoor67 Scene15 SUN Attribute Caltech101 Caltech256 Action40 Event8 Average
Places365-AlexNet 56.12 70.72 89.25 92.98 66.40 46.45 46.82 90.63 69.92
Places205-AlexNet 54.32 68.24 89.87 92.71 65.34 45.30 43.26 94.17 69.15
ImageNet-AlexNet 42.61 56.79 84.05 91.27 87.73 66.95 55.00 93.71 72.26
Places365-GoogLeNet 58.37 73.30 91.25 92.64 61.85 44.52 47.52 91.00 70.06
Places205-GoogLeNet 57.00 75.14 90.92 92.09 54.41 39.27 45.17 92.75 68.34
ImageNet-GoogLeNet 43.88 59.48 84.95 90.70 89.96 75.20 65.39 96.13 75.71
Places365-VGG 63.24 76.53 91.97 92.99 67.63 49.20 52.90 90.96 73.18
Places205-VGG 61.99 79.76 91.61 92.07 67.58 49.28 53.33 93.33 73.62
ImageNet-VGG 48.29 64.87 86.28 91.78 88.42 74.96 66.63 95.17 77.05
Hybrid1365-VGG 61.77 79.49 92.15 92.93 88.22 76.04 68.11 93.13 81.48
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Fig. 15. a) Visualization of the units’ receptive fields at different layers for the ImageNet-CNN and Places-CNN.
Subsets of units at each layer are shown. In each row we show the top 3 most activated images. Images are
segmented based on the binarized spatial feature map of the units at different layers of ImageNet-CNN and
Places-CNN. Here we take ImageNet-AlexNet and Places205-AlexNet as the comparison examples. See the
detailed visualization methodology in [2].
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