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Today’s problems
Building distributed apps is hard



Multiple sources of truth

● Which truth is the real truth?

● Data from the edge

● Data from mobile

● Data from the cloud

● Conflicting data from multiple sources

● Derived, n-level data



Lack of audit trail

● How did we get here?

● Why is the state the way it is?

● When did it become that way?

● Can we regenerate state based on new logic?

● Run what-if scenarios?



Distributed, concurrent writes

● Last write wins
○ Writes based on outdated information

○ Often not the right conflict resolver

● Etags / optimistic concurrency

● Eventually we take on conflict complexity
○ Use CRDTs

○ Roll our own RAFT 😱
○ “Retry until it works”  / “Hope-based consistency”

● Distributed transactions



Spending on the wrong things



Normalized, relational data

On-demand queries often too slow and don’t scale
● Maybe…move data closer to edge to make query run faster

● But…now we have more consistency problems

● Maybe…add a cache layer to improve queries 

● But…now we have more complexity



Today’s solutions
Patterns for building distributed apps



One source of truth

● Everything is an immutable event

● Record of what did happen, not what failed to happen

● Eventually consistent

● Safely distributed

● Developers should not code their own conflict resolvers



Embrace eventual consistency
● Identify activities that need strict consistency

→ More often than not, eventual consistency is enough

● What data can be stale, and how stale?

● When do you need to read your own writes?

● Be explicit about consistency ←-> perf/complexity 

tradeoffs



There is no such thing as a transaction
● Distributed transactions provide false 

sense of security

● What do you do when 

rollback/compensation fails?

● Even distributed transactions require 

conflict resolution



Generate query results before users 
need them

● Materialized views
○ Denormalized data

○ Shaped for consumer needs, not database needs

● O(1) query cost whenever possible

● Makes it easy to replicate views

● Views can be used as explicit consistency boundaries



Spending on the right things



Event Sourcing
Formalizing rules and patterns



Everything you need to know

ƒ(state, event) = state′
ƒ(state, command) =  { event1, event2, … }

Write less code, get distributed system as a bonus



The building blocks
● Events / Event log

● Command

● Entity (aggregate)

● View

● Workflow (process manager)

● Producers and Consumers (gateway)



Commands
● A request to produce an effect

○ Persist an event

○ Philosophy debate: should commands be used to query data?

● Ephemeral
○ Commands do not exist

○ Never included in replay



Events
● Represent something that occurred in the past

● Immutable

● “Reality” is event sourced
○ Input gathered from many senses, reality (a.k.a. “a view”) 

produced in near-real time



Entities

● Handle commands
○ Validate command against current state

○ Generate effects in response, or reject command

● Produce events

● Apply events to state

ƒ(state, event) = state′
ƒ(state, command) =  { event1, event2, … }



Views
● For FP fans: left fold over an event stream

● Apply events to (often denormalized) data

● Consumer-friendly data, optimized for O(1) query

● Views are easily evolved:

○ Change logic in code

○ Replay event stream, regenerate view

● Different scale, resilience, replication needs than entity state

○ Views should not be used to make entity decisions



Workflows
● Manage “long-running” processes

● Define steps as code 

● Examples…
○ Shopping carts

○ Ticket holding (movies, concert, airline)

○ Fulfillment

○ … many more



Mutable state vs events

Balance
$4200.12

Bank Account 867001

Deposit
$200.12

Withdrawal
$765.21

Bank Account 867001

Transfer from 9021123
$1321.41



The event sourcing RULES
● Never modify an event

● Never read the “wall clock” for state

● Never* use random numbers to produce state

● Do not model “failed to create” as events

● Never* produce side effects when processing events



How to build event 
sourced apps with Akka



Simple developer experience

● Model event sourced domain
○ Less code

○ Easier to maintain

○ Smaller cognitive overhead

● Let experts deal with deploy, distribute, etc
○ Trust, but verify



♕ Demo ♛



Thank you

https://akka.io
https://docs.akka.io
https://github.com/akka-samples/akka-chess

Get Started 
for Free


