
Mastering
event sourcing
A game changing design pattern for distributed systems

01

02

03

04

05

Overview

Distributed systems problems
Difficulties building them today

Distributed systems solutions
Tackling distributed systems complexity

Event sourcing
Formalizing solution patterns into rules

Demo
A Real Event-Sourced Application

Q&A

Today’s problems
Building distributed apps is hard

Multiple sources of truth

● Which truth is the real truth?

● Data from the edge

● Data from mobile

● Data from the cloud

● Conflicting data from multiple sources

● Derived, n-level data

Lack of audit trail

● How did we get here?

● Why is the state the way it is?

● When did it become that way?

● Can we regenerate state based on new logic?

● Run what-if scenarios?

Distributed, concurrent writes

● Last write wins
○ Writes based on outdated information

○ Often not the right conflict resolver

● Etags / optimistic concurrency

● Eventually we take on conflict complexity
○ Use CRDTs

○ Roll our own RAFT 😱
○ “Retry until it works” / “Hope-based consistency”

● Distributed transactions

Spending on the wrong things

Normalized, relational data

On-demand queries often too slow and don’t scale
● Maybe…move data closer to edge to make query run faster

● But…now we have more consistency problems

● Maybe…add a cache layer to improve queries

● But…now we have more complexity

Today’s solutions
Patterns for building distributed apps

One source of truth

● Everything is an immutable event

● Record of what did happen, not what failed to happen

● Eventually consistent

● Safely distributed

● Developers should not code their own conflict resolvers

Embrace eventual consistency
● Identify activities that need strict consistency

→ More often than not, eventual consistency is enough

● What data can be stale, and how stale?

● When do you need to read your own writes?

● Be explicit about consistency ←-> perf/complexity

tradeoffs

There is no such thing as a transaction
● Distributed transactions provide false

sense of security

● What do you do when

rollback/compensation fails?

● Even distributed transactions require

conflict resolution

Generate query results before users
need them

● Materialized views
○ Denormalized data

○ Shaped for consumer needs, not database needs

● O(1) query cost whenever possible

● Makes it easy to replicate views

● Views can be used as explicit consistency boundaries

Spending on the right things

Event Sourcing
Formalizing rules and patterns

Everything you need to know

ƒ(state, event) = state′
ƒ(state, command) = { event1, event2, … }

Write less code, get distributed system as a bonus

The building blocks
● Events / Event log

● Command

● Entity (aggregate)

● View

● Workflow (process manager)

● Producers and Consumers (gateway)

Commands
● A request to produce an effect

○ Persist an event

○ Philosophy debate: should commands be used to query data?

● Ephemeral
○ Commands do not exist

○ Never included in replay

Events
● Represent something that occurred in the past

● Immutable

● “Reality” is event sourced
○ Input gathered from many senses, reality (a.k.a. “a view”)

produced in near-real time

Entities

● Handle commands
○ Validate command against current state

○ Generate effects in response, or reject command

● Produce events

● Apply events to state

ƒ(state, event) = state′
ƒ(state, command) = { event1, event2, … }

Views
● For FP fans: left fold over an event stream

● Apply events to (often denormalized) data

● Consumer-friendly data, optimized for O(1) query

● Views are easily evolved:

○ Change logic in code

○ Replay event stream, regenerate view

● Different scale, resilience, replication needs than entity state

○ Views should not be used to make entity decisions

Workflows
● Manage “long-running” processes

● Define steps as code

● Examples…
○ Shopping carts

○ Ticket holding (movies, concert, airline)

○ Fulfillment

○ … many more

Mutable state vs events

Balance
$4200.12

Bank Account 867001

Deposit
$200.12

Withdrawal
$765.21

Bank Account 867001

Transfer from 9021123
$1321.41

The event sourcing RULES
● Never modify an event

● Never read the “wall clock” for state

● Never* use random numbers to produce state

● Do not model “failed to create” as events

● Never* produce side effects when processing events

How to build event
sourced apps with Akka

Simple developer experience

● Model event sourced domain
○ Less code

○ Easier to maintain

○ Smaller cognitive overhead

● Let experts deal with deploy, distribute, etc
○ Trust, but verify

♕ Demo ♛

Thank you

https://akka.io
https://docs.akka.io
https://github.com/akka-samples/akka-chess

Get Started
for Free

